1,352 research outputs found

    The SLS-Berlin: Validation of a German Computer-Based Screening Test to Measure Reading Proficiency in Early and Late Adulthood

    Get PDF
    Reading proficiency, i.e., successfully integrating early word-based information and utilizing this information in later processes of sentence and text comprehension, and its assessment is subject to extensive research. However, screening tests for German adults across the life span are basically non-existent. Therefore, the present article introduces a standardized computerized sentence-based screening measure for German adult readers to assess reading proficiency including norm data from 2,148 participants covering an age range from 16 to 88 years. The test was developed in accordance with the children’s version of the Salzburger LeseScreening (SLS, Wimmer and Mayringer, 2014). The SLS-Berlin has a high reliability and can easily be implemented in any research setting using German language. We present a detailed description of the test and report the distribution of SLS-Berlin scores for the norm sample as well as for two subsamples of younger (below 60 years) and older adults (60 and older). For all three samples, we conducted regression analyses to investigate the relationship between sentence characteristics and SLS-Berlin scores. In a second validation study, SLS-Berlin scores were compared with two (pseudo)word reading tests, a test measuring attention and processing speed and eye-movements recorded during expository text reading. Our results confirm the SLS-Berlin’s sensitivity to capture early word decoding and later text related comprehension processes. The test distinguished very well between skilled and less skilled readers and also within less skilled readers and is therefore a powerful and efficient screening test for German adults to assess interindividual levels of reading proficiency

    Other city symphonies

    Get PDF
    Catalogue description of the film program curated by Eva Hielscher and Steven Jacobs on 'Other City Symphonies' during the 2015 Pordenone Silent Film Festival, including paragraphs on individual films

    Identification of long non-coding RNAs involved in neuronal development and intellectual disability

    Get PDF
    Recently, exome sequencing led to the identification of causal mutations in 16–31% of patients with intellectual disability (ID), leaving the underlying cause for many patients unidentified. In this context, the noncoding part of the human genome remains largely unexplored. For many long non-coding RNAs (lncRNAs) a crucial role in neurodevelopment and hence the human brain is anticipated. Here we aimed at identifying lncRNAs associated with neuronal development and ID. Therefore, we applied an integrated genomics approach, harnessing several public epigenetic datasets. We found that the presence of neuron-specific H3K4me3 confers the highest specificity for genes involved in neurodevelopment and ID. Based on the presence of this feature and GWAS hits for CNS disorders, we identified 53 candidate lncRNA genes. Extensive expression profiling on human brain samples and other tissues, followed by Gene Set Enrichment Analysis indicates that at least 24 of these lncRNAs are indeed implicated in processes such as synaptic transmission, nervous system development and neurogenesis. The bidirectional or antisense overlapping orientation relative to multiple coding genes involved in neuronal processes supports these results. In conclusion, we identified several lncRNA genes putatively involved in neurodevelopment and CNS disorders, providing a resource for functional studies

    Other city symphonies 2

    Get PDF

    CRISPR/Cas9-mediated genome editing in naïve human embryonic stem cells

    Get PDF
    The combination of genome-edited human embryonic stem cells (hESCs) and subsequent neural differentiation is a powerful tool to study neurodevelopmental disorders. Since the naive state of pluripotency has favourable characteristics for efficient genome-editing, we optimized a workflow for the CRISPR/Cas9 system in these naive stem cells. Editing efficiencies of respectively 1.3-8.4% and 3.819% were generated with the Cas9 nuclease and the D10A Cas9 nickase mutant. Next to this, wildtype and genome-edited naive hESCs were successfully differentiated to neural progenitor cells. As a proofof- principle of our workflow, two monoclonal genome-edited naive hESCs colonies were obtained for TUNA, a long non-coding RNA involved in pluripotency and neural differentiation. In these genome-edited hESCs, an effect was seen on expression of TUNA, although not on neural differentiation potential. In conclusion, we optimized a genome-editing workflow in naive hESCs that can be used to study candidate genes involved in neural differentiation and/or functioning

    First enantioselective synthesis of isagarin, a natural product isolated from Pentas longiflora Oliv.

    Get PDF
    For the first time, an enantioselective synthesis of both 1R,4S-isagarin 1a and 1S,4R-isagarin 1b was achieved starting from 1,4-dimethoxy-2-vinylnaphtalene 2. The key steps involve a Sharpless asymmetric dihydroxylation and reaction with an acetonylating pyridinium ylid

    A Hierarchical Diffusion Model Analysis of Age Effects on Visual Word Recognition

    Get PDF
    Reading is one of the most popular leisure activities and it is routinely performed by most individuals even in old age. Successful reading enables older people to master and actively participate in everyday life and maintain functional independence. Yet, reading comprises a multitude of subprocesses and it is undoubtedly one of the most complex accomplishments of the human brain. Not surprisingly, findings of age-related effects on word recognition and reading have been partly contradictory and are often confined to only one of four central reading subprocesses, i.e., sublexical, orthographic, phonological and lexico-semantic processing. The aim of the present study was therefore to systematically investigate the impact of age on each of these subprocesses. A total of 1,807 participants (young, N = 384; old, N = 1,423) performed four decision tasks specifically designed to tap one of the subprocesses. To account for the behavioral heterogeneity in older adults, this subsample was split into high and low performing readers. Data were analyzed using a hierarchical diffusion modeling approach, which provides more information than standard response time/accuracy analyses. Taking into account incorrect and correct response times, their distributions and accuracy data, hierarchical diffusion modeling allowed us to differentiate between age- related changes in decision threshold, non-decision time and the speed of information uptake. We observed longer non-decision times for older adults and a more conservative decision threshold. More importantly, high-performing older readers outperformed younger adults at the speed of information uptake in orthographic and lexico-semantic processing, whereas a general age- disadvantage was observed at the sublexical and phonological levels. Low- performing older readers were slowest in information uptake in all four subprocesses. Discussing these results in terms of computational models of word recognition, we propose age-related disadvantages for older readers to be caused by inefficiencies in temporal sampling and activation and/or inhibition processes

    A Diffusion Model Analysis

    Get PDF
    Effects of stimulus length on reaction times (RTs) in the lexical decision task are the topic of extensive research. While slower RTs are consistently found for longer pseudo-words, a finding coined the word length effect (WLE), some studies found no effects for words, and yet others reported faster RTs for longer words. Moreover, the WLE depends on the orthographic transparency of a language, with larger effects in more transparent orthographies. Here we investigate processes underlying the WLE in lexical decision in German-English bilinguals using a diffusion model (DM) analysis, which we compared to a linear regression approach. In the DM analysis, RT-accuracy distributions are characterized using parameters that reflect latent sub-processes, in particular evidence accumulation and decision-independent perceptual encoding, instead of typical parameters such as mean RT and accuracy. The regression approach showed a decrease in RTs with length for pseudo-words, but no length effect for words. However, DM analysis revealed that the null effect for words resulted from opposing effects of length on perceptual encoding and rate of evidence accumulation. Perceptual encoding times increased with length for words and pseudo-words, whereas the rate of evidence accumulation increased with length for real words but decreased for pseudo-words. A comparison between DM parameters in German and English suggested that orthographic transparency affects perceptual encoding, whereas effects of length on evidence accumulation are likely to reflect contextual information and the increase in available perceptual evidence with length. These opposing effects may account for the inconsistent findings on WLEs
    corecore