21 research outputs found

    Terahertz near-field nanoscopy based on detectorless laser feedback interferometry under different feedback regimes

    Get PDF
    Near-field imaging techniques, at terahertz frequencies (1–10 THz), conventionally rely on bulky laser sources and detectors. Here, we employ a semiconductor heterostructure laser as a THz source and, simultaneously, as a phase-sensitive detector, exploiting optical feedback interferometry combined with scattering near-field nanoscopy. We analyze the amplitude and phase sensitivity of the proposed technique as a function of the laser driving current and of the feedback attenuation, discussing the operational conditions ideal to optimize the nano-imaging contrast and the phase sensitivity. As a targeted nanomaterial, we exploit a thin (39 nm) flake of Bi2Te2.2Se0.8, a topological insulator having infrared active optical phonon modes. The self-mixing interference fringes are analyzed within the Lang–Kobayashi formalism to rationalize the observed variations as a function of Acket's parameter C in the full range of weak feedback (C < 1)

    Charge trapping and coalescence dynamics in few layer MoS2

    Get PDF
    The optoelectronic properties of a material are determined by the processes following light-matter interaction. Here we use femtosecond optical spectroscopy to systematically study photoexcited carrier relaxation in few-layer MoS2flakes as a function of excitation density and sample thickness. We find bimolecular coalescence of charges into indirect excitons as the dominant relaxation process in two- to three-layer flakes while thicker flakes show a much higher density of defects, which efficiently trap charges before they can coalesce

    Ultrafast nonequilibrium dynamics of strongly coupled resonances in the intrinsic cavity of W S 2 nanotubes

    Get PDF
    This paper presents a femtosecond optical pump-probe study of the non-equilibrium behavior of the coupled optical resonances in semiconducting WS2. The authors focus on the transient optical response of WS2 nanotubes and show that it arises primarily from the photoinduced shifts of the exciton and trion resonances due to band gap renormalization and screening of the Coulomb interaction providing the exciton and trion binding energy

    Broadband nonlinear optical response of monolayer MoSe2under ultrafast excitation

    Get PDF
    Due to their strong light-matter interaction, monolayer transition metal dichalcogenides (TMDs) have proven to be promising candidates for nonlinear optics and optoelectronics. Here, we characterize the nonlinear absorption of chemical vapour deposition (CVD)-grown monolayer MoSe2in the 720-810 nm wavelength range. Surprisingly, despite the presence of strong exciton resonances, monolayer MoSe2exhibits a uniform modulation depth of ∼80 ± 3% and a saturation intensity of ∼2.5 ± 0.4 MW/cm2. In addition, pump-probe spectroscopy is performed to confirm the saturable absorption and reveal the photocarrier relaxation dynamics over hundreds of picoseconds. Our results unravel the unique broadband nonlinear absorptive behavior of monolayer MoSe2under ultrafast excitation and highlight the potential of using monolayer TMDs as broadband ultrafast optical switches with customizable saturable absorption characteristics

    Tunable broadband light emission from graphene

    Full text link
    Graphene is an ideal material for integrated nonlinear optics thanks to its strong light-matter interaction and large nonlinear optical susceptibility. Graphene has been used in optical modulators, saturable absorbers, nonlinear frequency converters, and broadband light emitters. For the latter application, a key requirement is the ability to control and engineer the emission wavelength and bandwidth, as well as the electronic temperature of graphene. Here, we demonstrate that the emission wavelength of graphene' s broadband hot carrier photoluminescence can be tuned by integration on photonic cavities, while thermal management can be achieved by out-of-plane heat transfer to hexagonal boron nitride. Our results pave the way to graphene-based ultrafast broadband light emitters with tunable emission.Comment: 22 pages, 5 Figure

    Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling.

    Get PDF
    Van der Waals heterostructures have emerged as promising building blocks that offer access to new physics, novel device functionalities and superior electrical and optoelectronic properties 1-7 . Applications such as thermal management, photodetection, light emission, data communication, high-speed electronics and light harvesting 8-16 require a thorough understanding of (nanoscale) heat flow. Here, using time-resolved photocurrent measurements, we identify an efficient out-of-plane energy transfer channel, where charge carriers in graphene couple to hyperbolic phonon polaritons 17-19 in the encapsulating layered material. This hyperbolic cooling is particularly efficient, giving picosecond cooling times for hexagonal BN, where the high-momentum hyperbolic phonon polaritons enable efficient near-field energy transfer. We study this heat transfer mechanism using distinct control knobs to vary carrier density and lattice temperature, and find excellent agreement with theory without any adjustable parameters. These insights may lead to the ability to control heat flow in van der Waals heterostructures

    Solution processable and optically switchable 1D photonic structures

    Get PDF
    We report the first demonstration of a solution processable, optically switchable 1D photonic crystal which incorporates phototunable doped metal oxide nanocrystals. The resulting device structure shows a dual optical response with the photonic bandgap covering the visible spectral range and the plasmon resonance of the doped metal oxide the near infrared. By means of a facile photodoping process, we tuned the plasmonic response and switched effectively the optical properties of the photonic crystal, translating the effect from the near infrared to the visible. The ultrafast bandgap pumping induces a signal change in the region of the photonic stopband, with recovery times of several picoseconds, providing a step toward the ultrafast optical switching. Optical modeling uncovers the importance of a complete modeling of the variations of the dielectric function of the photodoped material, including the high frequency region of the Drude response which is responsible for the strong switching in the visible after photodoping. Our device configuration offers unprecedented tunability due to flexibility in device design, covering a wavelength range from the visible to the near infrared. Our findings indicate a new protocol to modify the optical response of photonic devices by optical triggers only

    Ultrafast nonequilibrium dynamics of strongly coupled resonances in the intrinsic cavity of WS2 nanotubes

    No full text
    Strong coupling of electric transition dipoles with optical or plasmonic resonators modifies their light-matter interaction and, therefore, their optical spectra. Semiconducting WS2 nanotubes intrinsically provide the dipoles through their excitonic resonances, and the optical cavity via their cylindrical shape. We investigate the nonequi- librium light-matter interaction in WS2 nanotubes in the time domain using femtosecond transient extinction spectroscopy. We develop a phenomenological coupled oscillator model with time-dependent parameters to describe the transient extinction spectra, allowing us to extract the underlying nonequilibrium electron dynamics. We find that the exciton and trion resonances shift due to many-body effects of the photogenerated charge carriers and their population dynamics on the femto- and picosecond timescale. Our results show that the time-dependent phenomenological model quantitatively reproduces the nonequilibrium optical response of strongly coupled systems
    corecore