72 research outputs found

    Development of High Sensitive X-and γ-Ray Personal Dosimeter Using Photostimulated Luminescent Detector

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    Effects of daily quercetin-rich supplementation on cardiometabolic risks in male smokers

    Get PDF
    Limited information from human studies indicates that dietary quercetin supplementation influences blood lipid profiles, glycemic response, and inflammatory status, collectively termed cardiometabolic risks. We tested the hypothesis that quercetin-rich supplementation, derived from onion peel extract, improves cardiometabolic risk components in healthy male smokers in a randomized, double blinded, placebo-controlled parallel design. Randomly assigned subjects were instructed to take either the placebo (n = 43) or 100 mg quercetin capsules each day (n = 49) for 10 weeks. Anthropometric parameters and blood pressure were measured, and blood lipids, glucose, interleukin-6, and soluble vascular cell adhesion molecule-1 (sVCAM-1) were determined at baseline and after 10 weeks of quercetin supplementation. Quercetin-rich supplementation significantly reduced serum concentrations of total cholesterol (P < 0.05) and LDL-cholesterol (P < 0.01), whereas these effects were not shown in the placebo group. Furthermore, significant increases were observed in serum concentrations of HDL-cholesterol both in the placebo (P < 0.005) and quercetin-rich supplementation group (P < 0.001); however, changes in HDL-cholesterol were significantly greater in subjects receiving quercetin-rich supplementation than the placebo. Both systolic (P < 0.05) and diastolic blood pressure (P < 0.01) decreased significantly in the quercetin-rich supplementation group. Glucose concentrations decreased significantly after 10 weeks of quercetin-rich supplementation (P < 0.05). In contrast, no effects of quercetin-rich supplementation were observed for the inflammatory markers-IL-6 and sVCAM-1. Daily quercetin-rich supplementation from onion peel extract improved blood lipid profiles, glucose, and blood pressure, suggesting a beneficial role for quercetin as a preventive measure against cardiovascular risk

    Gas6 Downregulation Impaired Cytoplasmic Maturation and Pronuclear Formation Independent to the MPF Activity

    Get PDF
    Previously, we found that the growth arrest-specific gene 6 (Gas6) is more highly expressed in germinal vesicle (GV) oocytes than in metaphase II (MII) oocytes using annealing control primer (ACP)-PCR technology. The current study was undertaken to investigate the role of Gas6 in oocyte maturation and fertilization using RNA interference (RNAi). Interestingly, despite the specific and marked decrease in Gas6 mRNA and protein expression in GVs after Gas6 RNAi, nuclear maturation including spindle structures and chromosome segregation was not affected. The only discernible effect induced by Gas6 RNAi was a change in maturation promoting factor (MPF) activity. After parthenogenetic activation, Gas6 RNAi-treated oocytes at the MII stage had not developed further and arrested at MII (90.0%). After stimulation with Sr2+, Gas6-silenced MII oocytes had markedly reduced Ca2+ oscillation and exhibited no exocytosis of cortical granules. In these oocytes, sperm penetration occurred during fertilization but not pronucleus (PN) formation. By roscovitine and colcemid treatment, we found that the Gas6 knockdown affected cytoplasmic maturation directly, independent to the changed MPF activity. These results strongly suggest that 1) the Gas6 signaling itself is important to the cytoplasmic maturation, but not nuclear maturation, and 2) the decreased Gas6 expression and decreased MPF activity separately or mutually influence sperm head decondensation and PN formation

    The motivations for the adoption of management innovation by local governments and its performance effects

    Get PDF
    This article analyses the economic, political and institutional antecedents and performance effects of the adoption of shared Senior Management Teams (SMTs) – a management innovation (MI) that occurs when a team of senior managers oversees two or more public organizations. Findings from statistical analysis of 201 English local governments and interviews with organizational leaders reveal that shared SMTs are adopted to develop organisational capacity in resource‐challenged, politically risk‐averse governments, and in response to coercive and mimetic institutional pressures. Importantly, sharing SMTs may reduce rather than enhance efficiency and effectiveness due to redundancy costs and the political transaction costs associated with diverting resources away from a high‐performing partner to support their lower‐performing counterpart

    Artificial Oocyte: Development and Potential Application

    No full text
    Millions of people around the world suffer from infertility, with the number of infertile couples and individuals increasing every year. Assisted reproductive technologies (ART) have been widely developed in recent years; however, some patients are unable to benefit from these technologies due to their lack of functional germ cells. Therefore, the development of alternative methods seems necessary. One of these methods is to create artificial oocytes. Oocytes can be generated in vitro from the ovary, fetal gonad, germline stem cells (GSCs), ovarian stem cells, or pluripotent stem cells (PSCs). This approach has raised new hopes in both basic research and medical applications. In this article, we looked at the principle of oocyte development, the landmark studies that enhanced our understanding of the cellular and molecular mechanisms that govern oogenesis in vivo, as well as the mechanisms underlying in vitro generation of functional oocytes from different sources of mouse and human stem cells. In addition, we introduced next-generation ART using somatic cells with artificial oocytes. Finally, we provided an overview of the reproductive application of in vitro oogenesis and its use in human fertility

    Modulation of Mechanical Stress Mitigates Anti-Dsg3 Antibody-Induced Dissociation of Cell–Cell Adhesion

    Get PDF
    It is becoming increasingly clear that mechanical stress in adhesive junctions plays a significant role in dictating the fate of cell–cell attachment under physiological conditions. Targeted disruption of cell–cell junctions leads to multiple pathological conditions, among them the life-threatening autoimmune blistering disease pemphigus vulgaris (PV). The dissociation of cell–cell junctions by autoantibodies is the hallmark of PV, however, the detailed mechanisms that result in tissue destruction remain unclear. Thus far, research and therapy in PV have focused primarily on immune mechanisms upstream of autoantibody binding, while the biophysical aspects of the cell– cell dissociation process leading to acantholysis are less well studied. In work aimed at illuminating the cellular consequences of autoantibody attachment, it is reported that externally applied mechanical stress mitigates antibody-induced monolayer fragmentation and inhibits p38 MAPK phosphorylation activated by anti-Dsg3 antibody. Further, it is demonstrated that mechanical stress applied externally to cell monolayers enhances cell contractility via RhoA activation and promotes the strengthening of cortical actin, which ultimately mitigates antibody-induced cell–cell dissociation. The study elevates understanding of the mechanism of acantholysis in PV and shifts the paradigm of PV disease development from a focus solely on immune pathways to highlight the key role of physical transformations at the target cell
    corecore