33 research outputs found

    Regulation of BRCA1 stability through the tandem UBX domains of isoleucyl-tRNA synthetase 1

    Get PDF
    Aminoacyl-tRNA synthetases possess unique domains. In this study the structure of the vertebrate IARS1 and EARS1 complex reveals that vertebrate IARS1 protects the DNA repair factor BRCA1 from proteolytic degradation via its UBX-fold domain. Aminoacyl-tRNA synthetases (ARSs) have evolved to acquire various additional domains. These domains allow ARSs to communicate with other cellular proteins in order to promote non-translational functions. Vertebrate cytoplasmic isoleucyl-tRNA synthetases (IARS1s) have an uncharacterized unique domain, UNE-I. Here, we present the crystal structure of the chicken IARS1 UNE-I complexed with glutamyl-tRNA synthetase 1 (EARS1). UNE-I consists of tandem ubiquitin regulatory X (UBX) domains that interact with a distinct hairpin loop on EARS1 and protect its neighboring proteins in the multi-synthetase complex from degradation. Phosphomimetic mutation of the two serine residues in the hairpin loop releases IARS1 from the complex. IARS1 interacts with BRCA1 in the nucleus, regulates its stability by inhibiting ubiquitylation via the UBX domains, and controls DNA repair function

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    Tumor-associated autoantibodies as diagnostic and prognostic biomarkers

    No full text
    In the process of tumorigenesis, normal cells are remodeled to cancer cells and protein expression patterns are changed to those of tumor cells. A newly formed tumor microenvironment elicits the immune system and, as a result, a humoral immune response takes place. Although the tumor antigens are undetectable in sera at the early stage of tumorigenesis, the nature of an antibody amplification response to antigens makes tumor-associated autoantibodies as promising early biomarkers in cancer diagnosis. Moreover, the recent development of proteomic techniques that make neo-epitopes of tumor-associated autoantigens discovered concomitantly has opened a new area of ‘immuno-proteomics’, which presents tumor-associated autoantibody signatures and confers information to redefine the process of tumorigenesis. In this article, the strategies recently used to identify and validate serum autoantibodies are outlined and tumor-associated antigens suggested until now as diagnostic/prognostic biomarkers in various tumor types are reviewed. Also, the meaning of autoantibody signatures and their clinical utility in personalized medicine are discussed

    Enhanced expression of cell-surface B-cell receptor-associated protein 31 contributes to poor survival of non-small cell lung carcinoma cells.

    No full text
    B-cell receptor-associated protein 31 (BAP31) is an endoplasmic reticulum (ER) membrane protein which plays a role as a molecular chaperone for the newly synthesized transmembrane proteins. BAP31 is also an important apoptosis regulator for extrinsic apoptosis induction in the ER membrane. Recent studies have shown that BAP31 is also expressed on the surface of embryonic stem cells. However, the function of cell surface BAP31 (csBAP31) still remains unclarified. In an attempt to search for surface markers on tumorspheres, here, we generated monoclonal antibodies (MAbs) against the sphere cells from the non-small cell lung carcinoma cell (NSCLC) line A549. SP1-B7, one of the MAbs, recognized csBAP31 whose expression was further increased on A549 sphere cells, as compared with A549 adherent cells. To investigate the role of csBAP31 in A549 cells, A549 adherent and sphere cells were stained with annexin V, propidium iodide, and SP1-B7. Interestingly, annexin V-high cells showed increased expression of csBAP31 as compared with annexin V-low cells. Caspase-3/7 activity was also increased in csBAP31-high cells as compared with csBAP31-low cells, suggesting that csBAP31-high cells are more sensitive to apoptosis. To further demonstrate the survival of csBAP31-positive A549 cells, csBAP31-positive and -negative A549 cells were sorted and subjected to the clonogenic survival assay. The colony number of csBAP31-positive A549 cells was decreased by approximately 1.7-fold, as compared that of csBAP31-negative A549 cells, suggesting that csBAP31-positve cells are sensitive to cell death indeed. The results suggest that enhanced expression of csBAP31 contributes to poor survival of NSCLC cells

    Total Antioxidant Capacity from Dietary Supplement Decreases the Likelihood of Having Metabolic Syndrome in Korean Adults

    No full text
    This study was conducted to estimate antioxidant vitamin intake and total antioxidant capacity (TAC) from diet and dietary supplements and to examine their association with metabolic syndrome (MetS) in Korean adults. Out of 6308 adults 19~64 years old from the 2010~2011 Korea National Health and Nutrition Examination Survey, 1847 adults were classified as dietary supplement users and the other 4461 adults were classified as non-users. Antioxidant intake and TAC from diet and dietary supplements were estimated using dietary intake data and linked with the antioxidant and TAC database for common Korean foods. The prevalence of MetS was lower in dietary supplement users (odds ratio (OR) = 0.82; 95% confidence interval (CI), 0.68–0.98) than that in non-users. Among dietary supplement users, a lower prevalence of MetS was observed in the highest tertile for vitamin A (OR = 0.72; 95% CI, 0.53–0.99) and vitamin E (OR = 0.74; 95% CI, 0.55– 0.99) intake than that in the lowest tertile among non-users. Subjects in the highest tertile of TAC among dietary supplement users showed a lower prevalence of MetS (OR = 0.72; 95% CI, 0.52–0.99) than non-users. The results imply that intake of vitamin A, vitamin E, and TAC from dietary supplements might have a protective effect on MetS among Korean adults

    Total Antioxidant Capacity from Dietary Supplement Decreases the Likelihood of Having Metabolic Syndrome in Korean Adults

    No full text
    This study was conducted to estimate antioxidant vitamin intake and total antioxidant capacity (TAC) from diet and dietary supplements and to examine their association with metabolic syndrome (MetS) in Korean adults. Out of 6308 adults 19~64 years old from the 2010~2011 Korea National Health and Nutrition Examination Survey, 1847 adults were classified as dietary supplement users and the other 4461 adults were classified as non-users. Antioxidant intake and TAC from diet and dietary supplements were estimated using dietary intake data and linked with the antioxidant and TAC database for common Korean foods. The prevalence of MetS was lower in dietary supplement users (odds ratio (OR) = 0.82; 95% confidence interval (CI), 0.68–0.98) than that in non-users. Among dietary supplement users, a lower prevalence of MetS was observed in the highest tertile for vitamin A (OR = 0.72; 95% CI, 0.53–0.99) and vitamin E (OR = 0.74; 95% CI, 0.55– 0.99) intake than that in the lowest tertile among non-users. Subjects in the highest tertile of TAC among dietary supplement users showed a lower prevalence of MetS (OR = 0.72; 95% CI, 0.52–0.99) than non-users. The results imply that intake of vitamin A, vitamin E, and TAC from dietary supplements might have a protective effect on MetS among Korean adults

    HSPA1L Enhances Cancer Stem Cell-Like Properties by Activating IGF1Rβ and Regulating β-Catenin Transcription

    No full text
    Studies have shown that cancer stem cells (CSCs) are involved in resistance and metastasis of cancer; thus, therapies targeting CSCs have been proposed. Here, we report that heat shock 70-kDa protein 1-like (HSPA1L) is partly involved in enhancing epithelial–mesenchymal transition (EMT) and CSC-like properties in non-small cell lung cancer (NSCLC) cells. Aldehyde dehydrogenase 1 (ALDH1) is considered a CSC marker in some lung cancers. Here, we analyzed transcriptional changes in genes between ALDH1high and ALDH1low cells sorted from A549 NSCLC cells and found that HSPA1L was highly expressed in ALDH1high cells. HSPA1L played two important roles in enhancing CSC-like properties. First, HSPA1L interacts directly with IGF1Rβ and integrin αV to form a triple complex that is involved in IGF1Rβ activation. HSPA1L/integrin αV complex-associated IGF1Rβ activation intensified the EMT-associated cancer stemness and γ-radiation resistance through its downstream AKT/NF-κB or AKT/GSK3β/β-catenin activation pathway. Secondly, HSPA1L was also present in the nucleus and could bind directly to the promoter region of β-catenin to function as a transcription activator of β-catenin, an important signaling protein characterizing CSCs by regulating ALDH1 expression. HSPA1L may be a novel potential target for cancer treatment because it both enhances IGF1Rβ activation and regulates γβ-catenin transcription, accumulating CSC-like properties

    Cyclic Peptide Mimotopes for the Detection of Serum Anti–ATIC Autoantibody Biomarker in Hepato-Cellular Carcinoma

    No full text
    Tumor-associated (TA) autoantibodies have been identified at the early tumor stage before developing clinical symptoms, which holds hope for early cancer diagnosis. We identified a TA autoantibody from HBx-transgenic (HBx-tg) hepatocellular carcinoma (HCC) model mouse, characterized its target antigen, and examined its relationship to human HCC. The mimotopes corresponding to the antigenic epitope of TA autoantibody were screened from a random cyclic peptide library and used for the detection of serum TA autoantibody. The target antigen of the TA autoantibody was identified as an oncogenic bi-functional purine biosynthesis protein, ATIC. It was upregulated in liver cancer tissues of HBx-tg mouse as well as human HCC tissues. Over-expressed ATIC was also secreted extracellularly via the cancer-derived exosomes, which might cause auto-immune responses. The cyclic peptide mimotope with a high affinity to anti-ATIC autoantibody, CLPSWFHRC, distinguishes between serum samples from HCC patients and healthy subjects with 70.83% sensitivity, 90.68% specificity (AUC = 0.87). However, the recombinant human ATIC protein showed a low affinity to anti-ATIC autoantibody, which may be incompatible as a capture antigen for serum TA autoantibody. This study indicates that anti-ATIC autoantibody can be a potential HCC-associated serum biomarker and suggests that autoantibody biomarker’s efficiency can be improved by using antigenic mimicry to native antigens present in vivo

    csBAP31-positive cells show decreased survival.

    No full text
    <p>(A, B) csBAP31-positive and -negative A549 cells were sorted after staining with SP1-B7. (C) Live sorted cells were seeded and cultured for 9 days. Colonies were stained with crystal violet. (D) Statistical analysis of C (<i>n</i> = 10). ***, <i>p</i><0.005.</p

    Cell surface expression of SP1-B7 antigen on various NSCLC cells.

    No full text
    <p>(A) Flow cytometric analysis of A549 adherent (adh A549) and sphere cells (sph A549) with SP1-B7. Red-colored population indicates secondary antibody staining as a control. (B) Flow cytometric analysis of NSCLC cell lines (NCI-H460, NCI-H1703), virus-transformed lung epithelial cell (BEAS-2B), and PBMC with SP1-B7.</p
    corecore