1,663 research outputs found

    Climatic impacts of historical wetland drainage in Switzerland

    Get PDF
    The effects of historical land-use and land-cover changes on the climate of the Swiss Plateau in the different seasons were investigated. In the 19th century, a civil engineering project was initiated to reshape the lake and river system on the Swiss Plateau in order to ban the frequent flooding during extreme weather events. The landscape modifications consisted primarily of a conversion of wetlands with extended peat soils into a highly productive agricultural landscape. Historical maps (1800-1850) served as a basis for the reconstruction of the past land use. The "Lokal-Modell” of the Consortium for Small-Scale Modelling was used to conduct eight one-month long high-resolution simulations (1.5 × 1.5 km2) with present and past landscape conditions. The modified soil and surface properties led to distinctly altered energy and moisture exchanges at the surface and as a consequence affected the local and regional climate. The climatic changes show different characteristics and magnitudes in the cold (October - March) as compared to the warm season (April - September). The landscape modifications led to an average daytime cooling between −0.12 °C (January) and −0.61 °C (April) and a night-time warming of 0.19 °C−0.34 °C. The differences in the mean monthly temperatures show a warming of 0.1 °C−0.2 °C in the cold season and a cooling of similar magnitude in most of the study area in the warm season. The modification of the radiation budget and the surface energy balance distinctly affected the convective activity in the study area in the warm season, but had only a weak effect on convectivity in the cold season. The cloud coverage in the warm season is therefore distinctly reduced compared to the pas

    Evaluating the capabilities and uncertainties of droplet measurements for the fog droplet spectrometer (FM-100)

    Get PDF
    Droplet size spectra measurements are crucial to obtain a quantitative microphysical description of clouds and fog. However, cloud droplet size measurements are subject to various uncertainties. This work focuses on the error analysis of two key measurement uncertainties arising during cloud droplet size measurements with a conventional droplet size spectrometer (FM-100): first, we addressed the precision with which droplets can be sized with the FM-100 on the basis of the Mie theory. We deduced error assumptions and proposed a new method on how to correct measured size distributions for these errors by redistributing the measured droplet size distribution using a stochastic approach. Second, based on a literature study, we summarized corrections for particle losses during sampling with the FM-100. We applied both corrections to cloud droplet size spectra measured at the high alpine site Jungfraujoch for a temperature range from 0 °C to 11 °C. We showed that Mie scattering led to spikes in the droplet size distributions using the default sizing procedure, while the new stochastic approach reproduced the ambient size distribution adequately. A detailed analysis of the FM-100 sampling efficiency revealed that particle losses were typically below 10% for droplet diameters up to 10 μm. For larger droplets, particle losses can increase up to 90% for the largest droplets of 50 μm at ambient wind speeds below 4.4 m s<sup>−1</sup> and even to >90% for larger angles between the instrument orientation and the wind vector (sampling angle) at higher wind speeds. Comparisons of the FM-100 to other reference instruments revealed that the total liquid water content (LWC) measured by the FM-100 was more sensitive to particle losses than to re-sizing based on Mie scattering, while the total number concentration was only marginally influenced by particle losses. Consequently, for further LWC measurements with the FM-100 we strongly recommend to consider (1) the error arising due to Mie scattering, and (2) the particle losses, especially for larger droplets depending on the set-up and wind conditions

    Noble gases, chemical composition, and cosmic-ray exposure age of the Yamato-74357 lodranite

    Get PDF
    Cosmic-ray produced ^3He, ^Ne, and ^Ar concentrations and the chemical composition of the Yamato-74357 lodranite have been determined. Concordant concentrations of ^3He and ^Ne have been obtained on both samples (Bern and Misasa). The concentration of cosmogenic ^Ar is twice as high in the Bern as in the Misasa sample. The ^3He, ^Ne and ^Ar data for both samples yield an average cosmic-ray exposure age of 5.8±2.0Ma. This age indicates that Yamato-74357 belongs to the lodranite group, which probably originates from a common break-up event about 5Ma ago. Radiogenic ^4He and ^Ar concentrations in the Bern sample are higher than those in the Misasa sample by more than a factor of two, suggesting that minerals enriched in U, Th and K are enriched in the finer grained fraction. The isotopic compositions of Kr and Xe are identical to those of the terrestrial atmosphere, except for the ^Xe abundance. The small ^Xe excess (^Xe/^Xe=1.15±0.04) is presumably due to the early formation of this meteorite

    Kinetics of neuropeptide Y, catecholamines, and physiological responses during moderate and heavy intensity exercises.

    Get PDF
    Neuropeptide Y 1-36 (NPY1-36) is a vasoconstrictor peptide co-secreted with norepinephrine (NE) by nerve endings during sympathetic activation. NPY1-36 potentiates NE action post-synaptically through the stimulation of the Y1 receptor, whereas its metabolite NPY3-36 resulting from DPP4 action activates Y2 presynaptic receptors, inhibiting NE and acetylcholine secretion. The secretions of NPY1-36 and NPY3-36 in response to sympathetic nervous system activation have not been studied due to the lack of analytical techniques available to distinguish them. We determined in healthy volunteers NPY1-36, NPY3-36 and catecholamine kinetics and how these neurotransmitters modulate the physiological stress response during and after moderate- and heavy-intensity exercises. Six healthy males participated in this randomized, double-blind, saxagliptin vs placebo crossover study. The volunteers performed an orthostatic test, a 30-min exercise at moderate intensity and a 15-min exercise at heavy intensity each followed by 50 min of recovery in two separate sessions with saxagliptin or placebo. Oxygen consumption (V̇O <sub>2</sub> ), ventilation and heart rate were continuously recorded. NE, epinephrine, NPY1-36 and NPY3-36 were quantified by tandem mass spectrometry. We found that exercise triggers NPY1-36 and NE secretion in an intensity-dependent manner and that NE returns faster to the baseline concentration than NPY1-36 after exercise. NPY3-36 rises during recovery parallel to the decline of NPY1-36. Saxagliptin reverses the NPY1-36/NPY3-36 ratio but does not affect hemodynamics, nor NPY1-36 and catecholamine concentrations. We found that NPY1-36 half-life is considerably shorter than previously established with immunoassays. NPY1-36 and NE secretions are finely regulated to prevent an excessive physiological Y1 stimulating response to submaximal exercise

    Nitrous oxide net exchange in a beech dominated mixed forest in Switzerland measured with a quantum cascade laser spectrometer

    No full text
    International audienceNitrous oxide fluxes were measured at the Lägeren CarboEurope IP flux site over the multi-species mixed forest dominated by European beech and Norway spruce. Measurements were carried out during a four-week period in October?November 2005 during leaf senescence. Fluxes were measured with a standard ultrasonic anemometer in combination with a quantum cascade laser absorption spectrometer that measured N2O, CO2, and H2O mixing ratios simultaneously at 5 Hz time resolution. To distinguish insignificant fluxes from significant ones it is proposed to use a new approach based on the significance of the correlation coefficient between vertical wind speed and mixing ratio fluctuations. This procedure eliminated roughly 56% of our half-hourly fluxes. Based on the remaining, quality checked N2O fluxes we quantified the mean efflux at 0.8 ± 0.4 ?mol m?2 h?1 (mean ± standard error). Most of the contribution to the N2O flux occurred during a 6.5-h period starting 4.5 h before each precipitation event. No relation with precipitation amount could be found. Visibility data representing fog density and duration at the site indicate that wetting of the canopy may have as strong an effect on N2O effluxes as does below-ground microbial activity. It is speculated that above-ground N2O production from the senescing leaves at high moisture (fog, drizzle, onset of precipitation event) may be responsible for part of the measured flux. In comparison with the annual CO2 budget of ?342 g C m?2 yr?1 it is estimated that concurrent N2O fluxes offset at least 5% of the greenhouse forcing reduction via net CO2 uptake

    SafeWeb: A Middleware for Securing Ruby-Based Web Applications

    Get PDF
    Web applications in many domains such as healthcare and finance must process sensitive data, while complying with legal policies regarding the release of different classes of data to different parties. Currently, software bugs may lead to irreversible disclosure of confidential data in multi-tier web applications. An open challenge is how developers can guarantee these web applications only ever release sensitive data to authorised users without costly, recurring security audits. Our solution is to provide a trusted middleware that acts as a “safety net” to event-based enterprise web applications by preventing harmful data disclosure before it happens. We describe the design and implementation of SafeWeb, a Ruby-based middleware that associates data with security labels and transparently tracks their propagation at different granularities across a multi-tier web architecture with storage and complex event processing. For efficiency, maintainability and ease-of-use, SafeWeb exploits the dynamic features of the Ruby programming language to achieve label propagation and data flow enforcement. We evaluate SafeWeb by reporting our experience of implementing a web-based cancer treatment application and deploying it as part of the UK National Health Service (NHS)

    Preliminary report on the Yamato-86032 lunar meteorite: III. Ages, noble gas isotopes, oxygen isotopes and chemical abundances

    Get PDF
    The isotope abundances of He, Ne, Ar, Kr, and Xe, including ^Kr, the oxygen isotopic composition, and the concentrations of Na, K, Sc, Ti, Cr, Fe, Co, Y, Zr, La, Sm, Eu, Hf, Ta, and W were determined for the lunar meteorite Yamato-86032. Based on the radionuclide ^Kr we obtain a terrestrial age of 72000±30000 years, whereas the cosmic-ray exposure age is 10.6±0.6 Ma assuming exposure of the meteorite as a small object in space. Exposure to cosmic rays occurred at shallow shielding of about 40g/cm^2. The K-Ar gas retention ages of two separate splits are 3680±300 Ma and 3810±400 Ma, respectively. All ages agree with those for the lunar meteorites Y-82192 and Y-82193 recovered in the same area on the antarctic ice. The small amounts of trapped solar wind noble gases indicate that the Y-86032 material was exposed only briefly, some grains perhaps not at all, to the solar wind. The concentrations are similar to those of the Yamato-82 lunar meteorites. The oxygen isotopic composition is within the range of that for lunar rocks. The chemical composition of the samples from Y-86032,Y-82192,and Y-82193 is uniform for most major elements but not for all minor and trace elements, probably due to inhomogeneity of the source material. From the fact that the history of Y-86032 is the same as that of Y-82192/3 we conclude that these three rocks are pieces of the same meteorite fall

    Simulations of the adsorption of ionic species at polarisable liquid liquid interfaces

    Get PDF
    The adsorption of ions at the interface between two immiscible electrolyte solutions (ITIES) is primarily controlled by the potential distribution across the interface, which in turn is influenced by the adsorption process. In the present paper, we simulate the effect of the adsorption of charged species on the charge distribution at the ITIES based on the classical description of the interface employing the Gouy–Chapman model. The inner layer is considered as a charged plane, where the ionic adsorption takes place. The potential at this plane is determined by the electro-neutrality condition. Various adsorption isotherms are considered, including potential dependent isotherms based on the Langmuir and Frumkin adsorption models. The potential distribution and the charge density profile are derived by solving the Poisson–Boltzman equation numerically. We show that the charge distribution in the interfacial region is significantly affected by the adsorption of ionic species. Under certain conditions, the adsorption results in a non-monotonic potential distribution with a potential trap at the interface

    Reactivity of Monolayer-Protected Gold Nanoclusters at Dye-Sensitized Liquid/Liquid Interfaces

    Get PDF
    Hexanethiolate monolayer-protected gold nanoclusters (MPCs) were used as redox quenchers at the polarizable water/1,2-dichloroethane (DCE) interface. Photocurrent responses originating from the heterogeneous quenching of photoexcited water soluble porphyrin complexes by MPCs dissolved in the DCE phase were observed. As MPCs can function as both electron acceptors and donors, the photocurrent results from the superposition of two simultaneous processes, which correspond to the oxidation and reduction of MPCs. The magnitude of the net photocurrent is essentially determined by the balance of the kinetics of these two processes, which can be controlled by tuning the Galvani potential difference between the two phases. We show that, within the available potential window, the apparent electron-transfer rate constants follow classical Butler−Volmer dependence on the applied potential difference

    CdSe Sensitized Thin Aqueous Films: Probing the Potential Distribution Inside Multilayer Assemblies

    Get PDF
    Ultrathin polypeptide multilayer films are assembled by the sequential electrostatic adsorption of monolayers of poly-L-lysine and poly-L-glutamic acid onto carboxylic acid terminated alkanethiol-modified gold surfaces. The polypeptide multilayer films are hydrophilic, can incorporate electroactive species such as ferri/ferrocyanide, and are stable when immersed in organic solvents such as 1,2-dichloroethane. Cadmium selenide quantum dots stabilized by negatively charged citrate groups are electrostatically attached to the multilayer film assembly in order to act as photoactive species. Photocurrent responses originating from the CdSe sensitized ultrathin multilayer film are investigated as functions of the applied potential, the thickness of the film and the presence of quenchers in the organic phase. A theoretical model is proposed in order to analyze the kinetics of the photoinduced electron-transfer reactions and to probe the potential distribution within the film
    corecore