194 research outputs found

    A macroeconomic regression analysis of the European construction industry

    Full text link
    Purpose – The purpose of this paper is to analyse the international construction sector from a macroeconomic point of view through production functions. The aim is to contribute additional knowledge on the European construction sector, highlighting differences in the industry among European countries Design/methodology/approach – In order to analyse the sector panel, data from 1996-2005 for nine European countries were used. Raw data were obtained from Eurostat (Bach Project). Variables for the production functions were chosen after a correlation analysis. Annual turnover was taken as the dependent variable, whereas total assets and personnel costs were the independent variables. The econometric regression models considered were linear (bivariate and multivariate) and logarithmic (Cobb-Douglas). Findings – In spite of the limitations stated, there are some factors that can explain the results obtained, such as the diverse preponderance of small and medium enterprises and the different roles played by informal economy, migration and subcontracting in each of the countries. Research limitations/implications – Data collected by Eurostat are provided by the enterprises voluntarily. This implies a bias in the representativeness of the data. Thus, the discrepancies and inconsistencies in the results obtained are a direct consequence of the data limitations. Furthermore, the regression models obtained should be tested using future data to predict the behaviour of the construction industry in each one of the countries. Originality/value – The use of production functions in the construction industry is a novel approach that should be further developed to gather more precise information on the behaviour of the sector.Pellicer Armiñana, TM.; Pellicer Armiñana, E.; Eaton, D. (2009). A macroeconomic regression analysis of the European construction industry. Engineering, Construction and Architectural Management. 16(6):573-597. doi:10.1108/09699980911002584S573597166Bon, R. (1988). Direct and indirect resource utilisation by the construction sector. Habitat International, 12(1), 49-74. doi:10.1016/0197-3975(88)90039-2Bon, R., & Crosthwaite, D. (2001). The future of international construction: some results of 1992-1999 surveys. Building Research & Information, 29(3), 242-247. doi:10.1080/096132101300099790Bon, R., & Pietroforte, R. (1990). Historical comparison of construction sectors in the United States, Japan, Italy and Finland using input-output tables. Construction Management and Economics, 8(3), 233-247. doi:10.1080/01446199000000021Clarke, L., & Wall, C. (2000). Craft versus industry: the division of labour in European housing construction. Construction Management and Economics, 18(6), 689-698. doi:10.1080/014461900414745Dikmen, I., Birgonul, M. T., & Budayan, C. (2009). Strategic Group Analysis in the Construction Industry. Journal of Construction Engineering and Management, 135(4), 288-297. doi:10.1061/(asce)0733-9364(2009)135:4(288)Drewer, S. (2001). A perspective of the international construction system. Habitat International, 25(1), 69-79. doi:10.1016/s0197-3975(00)00027-8Druker, J., & Croucher, R. (2000). National collective bargaining and employment flexibility in the European building and civil engineering industries. Construction Management and Economics, 18(6), 699-709. doi:10.1080/014461900414754Fellini, I., Ferro, A., & Fullin, G. (2007). Recruitment processes and labour mobility: the construction industry in Europe. Work, Employment and Society, 21(2), 277-298. doi:10.1177/0950017007076635Hua, G. B., & Pin, T. H. (2000). Forecasting construction industry demand, price and productivity in Singapore: the BoxJenkins approach. Construction Management and Economics, 18(5), 607-618. doi:10.1080/014461900407419Janssen, J. (2000). The European construction industry and its competitiveness: a construct of the European Commission. Construction Management and Economics, 18(6), 711-720. doi:10.1080/014461900414763Lillie, N., & Greer, I. (2007). Industrial Relations, Migration, and Neoliberal Politics: The Case of the European Construction Sector. Politics & Society, 35(4), 551-581. doi:10.1177/0032329207308179Lopes, J., Ruddock, L., & Ribeiro, F. L. (2002). Investment in construction and economic growth in developing countries. Building Research & Information, 30(3), 152-159. doi:10.1080/09613210110114028Miozzo, M., & Dewick, P. (2002). Building competitive advantage: innovation and corporate governance in European construction. Research Policy, 31(6), 989-1008. doi:10.1016/s0048-7333(01)00173-1Ofori, G. (2000). Globalization and construction industry development: research opportunities. Construction Management and Economics, 18(3), 257-262. doi:10.1080/014461900370627Ofori, G. (2003). Frameworks for analysing international construction. Construction Management and Economics, 21(4), 379-391. doi:10.1080/0144619032000049746Pietroforte, R., & Gregori, T. (2003). An input-output analysis of the construction sector in highly developed economies. Construction Management and Economics, 21(3), 319-327. doi:10.1080/0144619032000056153Pries ∗, F., & Janszen, F. (1995). Innovation in the construction industry: the dominant role of the environment. Construction Management and Economics, 13(1), 43-51. doi:10.1080/01446199500000006Ruddock, L. (2002). Measuring the global construction industry: improving the quality of data. Construction Management and Economics, 20(7), 553-556. doi:10.1080/01446190210159908Ruddock, L., & Lopes, J. (2006). The construction sector and economic development: the ‘Bon curve’. Construction Management and Economics, 24(7), 717-723. doi:10.1080/01446190500435218Schneider, F., & Enste, D. H. (2000). Shadow Economies: Size, Causes, and Consequences. Journal of Economic Literature, 38(1), 77-114. doi:10.1257/jel.38.1.77Sorrell, S. (2003). Making the link: climate policy and the reform of the UK construction industry. Energy Policy, 31(9), 865-878. doi:10.1016/s0301-4215(02)00130-1Wells, J. (1996). Labour migration and international construction. Habitat International, 20(2), 295-306. doi:10.1016/0197-3975(95)00064-xWinch, G. (1998). The growth of self-employment in British construction. Construction Management and Economics, 16(5), 531-542. doi:10.1080/014461998372079Winch, G. M. (2000). Institutional reform in British construction: partnering and private finance. Building Research & Information, 28(2), 141-155. doi:10.1080/096132100369046Wong, J. M. W., Chiang, Y. H., & Ng, T. S. (2008). Construction and economic development: the case of Hong Kong. Construction Management and Economics, 26(8), 815-826. doi:10.1080/01446190802189927Ngowi, A. B., Pienaar, E., Talukhaba, A., & Mbachu, J. (2005). The globalisation of the construction industry—a review. Building and Environment, 40(1), 135-141. doi:10.1016/j.buildenv.2004.05.00

    Tendencias en investigación sobre seguridad y salud laboral. Propuesta metodológica aplicada al sector de la construcción

    Get PDF
    En este artículo se realiza un análisis de las tendencias en investigación sobre seguridad y salud ocupacional aplicadas al sector de la construcción. Se investigaron fuentes publicadas en inglés (1930 -2007) y se encontraron más de 250 artículos. Para clasificar la información, se propone el "ciclo riesgo accidente" formado por cinco pasos que reflejan la realidad de la seguridad laboral en la construcción. Para cada paso, se seleccionaron las publicaciones más representativas y se elaboraron árboles de evolución lógica teniendo en cuenta el contenido, grado de importancia, orden cronológico, aplicación sobre cada tema, etc. Con estos árboles, se pasa de lo general a lo particular en forma cronológica, para demostrar las tendencias actuales en investigación en seguridad y salud en la construcción y podemos concluir que la investigación en este aspecto sigue siendo escasa, tratándose de un campo lleno de oportunidades y con un futuro prometedor

    Propuesta para la evaluación del impacto económico de la siniestralidad laboral en el sector de la construcción

    Get PDF
    Los accidentes laborales suponen importantes costos humanos y económicospara la empresa, el accidentado y la sociedad. Generalmente, representan una granrepercusión económica negativa para las empresas del sector de la construcción,las cuales soportan un costo mayor del que se refleja debido a la gran cantidad devariables ocultas que se desconocen.Dado que hasta ahora la evaluación de los costos generados por los accidenteslaborales ha tenido lugar mediante el desarrollo de métodos muy dispares entre sí,y según Durán [1], no se ha hecho ningún tipo de evaluación económica que estimede manera exhaustiva el costo de los daños a la salud relacionados con el trabajo,en esta comunicación, se presenta mediante un modelo matemático de aplicaciónal sector de la construcción español, que el costo de los accidentes laborales es elconsumo de recursos materiales y humanos derivados del aseguramiento, la prevencióny los siniestros

    El control de gestión en las empresas consultoras de ingeniería: Modelo Cogest

    Full text link
    El sector de la consultoría de ingeniería ha ido evolucionando progresivamente, formando empresas que operan en un mercado fuertemente competitivo. Estas empresas tienen su propia función de producción (basada en los gastos de personal y el capital) y, en consecuencia, están sujetas a los dictados de las leyes económicas que rigen los mercados y a los agentes que operan en ellos. La capacidad expansiva del sector queda de manifiesto por la existencia de economías de escala y porque todavía no opera la ley de rendimientos decrecientes. No obstante, necesitan implantar un control de gestión específico, para mejorar su capacidad competitiva y superar las limitaciones actuales de la contabilidad financiera, analítica y presupuestaria. La presente tesis plantea, teóricamente, el control de gestión en el ámbito de las empresas consultoras de ingeniería, delimitando su alcance y contenido. El control de los costes se configura como la parte central del control de gestión. Para su desarrollo se utiliza el método de cálculo de costes por actividades, estableciendo como principio general la absorción total de los costes, que consiste en distribuir los gastos contabilizados entre los productos obtenidos. El elemento portador de costes, para poder imputar a las actividades, es la variable hora-técnico. El coste estándar por unidad de tiempo se calcula agregando los gastos fijos y los administrativos, mediante cuatro repartos sucesivos de los cinco niveles diferentes de gasto definidos. Una vez expuesto el planteamiento teórico, se diseña, desarrolla y experimenta el modelo de control de gestión (COGEST), fundamentado en un sistema de base de datos y una aplicación informática que tiene un planteamiento abierto, multiusuario, operativo en tiempo real y acceso remoto. Como sistema gestor de base de datos se ha utilizado el modelo relacional, apoyado en la arquitectura de informática distribuida, que es la que permite Microsoft Access.Pellicer Armiñana, E. (2001). El control de gestión en las empresas consultoras de ingeniería: Modelo Cogest [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/4421Palanci

    Optimization of Green Building Design Processes: Case Studies within the European Union

    Full text link
    [EN] Green buildings have recently become a key aspect of the construction field and bring along a renovation of the whole industry chain. Such changes introduce new challenges for all subjects involved, and designers are also a ected by such issues, especially for the development of projects based on international green building standards. Within this scope, project management plays a key role in the optimization of the design phase. This research analyzes the design process of international projects fromthe project management perspective through a multiple case study approach, considering the sustainability-related tasks that negatively a ect the project design development under two types of contractual approaches: Design-Build and Design-Bid-Build. It aims to identify whether the Design-Build or Design-Bid-Build process is the best solution for developing green building projects. Two case studies in Italy and two case studies in Spain are analyzed, and the e ects of the project management issues are evaluated under three di erent points of view: Time, cost, and level of sustainability of the building. A poorly planned process for the achievement of the various green building features of the project can impact the project schedule and the budget, whereas, a poorly managed project could also negatively impact its green building features. Finally, this research also highlights the positive relationship between process integration and green building design development.Orsi, A.; Guillén Guillamón, IE.; Pellicer, E. (2020). Optimization of Green Building Design Processes: Case Studies within the European Union. Sustainability. 12(6):1-16. https://doi.org/10.3390/su1206227611612

    Organizational Factors that Drive to BIM Effectiveness: Technological Learning, Collaborative Culture, and Senior Management Support

    Full text link
    [EN] Senior management support is a key dynamic capacity for design companies in the architecture, engineering, and construction (AEC) industry, given the fact that they must identify changes in the competitive environment, which are increasingly becoming more and more technological. In addition, senior management support is obliged to react in the most efficient and effective way. Currently, the project design teams that have adopted building information modeling (BIM) are subject to constant changes in the technological environment, of which the activity is influenced by the behavior of senior management support. This research focuses on this issue by analyzing the role played by the variables of technological learning, collaborative culture, and support provided by senior management as precedents of BIM technology effectiveness. The data set has been obtained from 92 AEC companies in Spain. Using partial least squares (PLS), this research finds evidence of the previously mentioned relationships and the existence of partial mediation effects generated by technological learning and collaborative culture within the support of senior management in BIM technology effectiveness. In addition, this model achieves an appropriate level of predictive validation to explain BIM technology effectiveness in engineering project designs. The results highlight that senior management support needs to promote a technological learning and collaborative culture to improve the technological capabilities. The contribution and original value of the paper is to provide empirical evidence that the effectiveness of BIM factors in project design teams is influenced by the behavior of top management support.Villena-Manzanares, F.; García-Segura, T.; Pellicer, E. (2021). Organizational Factors that Drive to BIM Effectiveness: Technological Learning, Collaborative Culture, and Senior Management Support. Applied Sciences. 11(1):1-16. https://doi.org/10.3390/app11010199S116111Kassem, M., Brogden, T., & Dawood, N. (2012). BIM and 4D planning: a holistic study of the barriers and drivers to widespread adoption. Journal of Construction Engineering and Project Management, 2(4), 1-10. doi:10.6106/jcepm.2012.2.4.001Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. doi:10.2307/249008Holden, R. J., & Karsh, B.-T. (2010). The Technology Acceptance Model: Its past and its future in health care. Journal of Biomedical Informatics, 43(1), 159-172. doi:10.1016/j.jbi.2009.07.002Lee, Y., Kozar, K. A., & Larsen, K. R. T. (2003). The Technology Acceptance Model: Past, Present, and Future. Communications of the Association for Information Systems, 12. doi:10.17705/1cais.01250Lee, S., & Yu, J. (2016). Comparative Study of BIM Acceptance between Korea and the United States. Journal of Construction Engineering and Management, 142(3), 05015016. doi:10.1061/(asce)co.1943-7862.0001076Ahuja, R., Jain, M., Sawhney, A., & Arif, M. (2016). Adoption of BIM by architectural firms in India: technology–organization–environment perspective. Architectural Engineering and Design Management, 12(4), 311-330. doi:10.1080/17452007.2016.1186589Xu, H., Feng, J., & Li, S. (2014). Users-orientated evaluation of building information model in the Chinese construction industry. Automation in Construction, 39, 32-46. doi:10.1016/j.autcon.2013.12.004Ahmed, A. L., & Kassem, M. (2018). A unified BIM adoption taxonomy: Conceptual development, empirical validation and application. Automation in Construction, 96, 103-127. doi:10.1016/j.autcon.2018.08.017Ullah, K., Lill, I., & Witt, E. (2019). An Overview of BIM Adoption in the Construction Industry: Benefits and Barriers. Emerald Reach Proceedings Series, 297-303. doi:10.1108/s2516-285320190000002052Latorre Uriz, A., Sanz, C., & Sánchez, B. (2019). Aplicación de un modelo Lean-BIM para la mejora de la productividad en redacción de proyectos de edificación. Informes de la Construcción, 71(556), 313. doi:10.3989/ic.67222Lu, N., & Korman, T. (2010). Implementation of Building Information Modeling (BIM) in Modular Construction: Benefits and Challenges. Construction Research Congress 2010. doi:10.1061/41109(373)114Gu, N., & London, K. (2010). Understanding and facilitating BIM adoption in the AEC industry. Automation in Construction, 19(8), 988-999. doi:10.1016/j.autcon.2010.09.002Gurevich, U., Sacks, R., & Shrestha, P. (2017). BIM adoption by public facility agencies: impacts on occupant value. Building Research & Information, 45(6), 610-630. doi:10.1080/09613218.2017.1289029Lee, S., & Yu, J. (2016). Discriminant model of BIM acceptance readiness in a construction organization. KSCE Journal of Civil Engineering, 21(3), 555-564. doi:10.1007/s12205-016-0555-9VDC Use in 2007: Significant Value, Dramatic Growth, and Apparent Business Opportunityhttp://cife.stanford.eduYuan, H., Yang, Y., & Xue, X. (2019). Promoting Owners’ BIM Adoption Behaviors to Achieve Sustainable Project Management. Sustainability, 11(14), 3905. doi:10.3390/su11143905Dodgson, M. (1993). Organizational Learning: A Review of Some Literatures. Organization Studies, 14(3), 375-394. doi:10.1177/017084069301400303Xue, W., Wang, Y., & Man, Q. (2015). Research on information models for the construction schedule management based on the IFC standard. Journal of Industrial Engineering and Management, 8(3). doi:10.3926/jiem.1283Lee, G., & Borrmann, A. (2020). BIM policy and management. Construction Management and Economics, 38(5), 413-419. doi:10.1080/01446193.2020.1726979Mahamadu, A.-M., Mahdjoubi, L., & Booth, C. A. (2017). Critical BIM qualification criteria for construction pre-qualification and selection. Architectural Engineering and Design Management, 13(5), 326-343. doi:10.1080/17452007.2017.1296812Arayici, Y., Coates, P., Koskela, L., Kagioglou, M., Usher, C., & O’Reilly, K. (2011). BIM adoption and implementation for architectural practices. Structural Survey, 29(1), 7-25. doi:10.1108/02630801111118377Alwisy, A., Al-Hussein, M., & Al-Jibouri, S. H. (2012). BIM Approach for Automated Drafting and Design for Modular Construction Manufacturing. Computing in Civil Engineering (2012). doi:10.1061/9780784412343.0028Song, J., Migliaccio, G. C., Wang, G., & Lu, H. (2017). Exploring the Influence of System Quality, Information Quality, and External Service on BIM User Satisfaction. Journal of Management in Engineering, 33(6), 04017036. doi:10.1061/(asce)me.1943-5479.0000549Orlikowski, W. J. (2000). Using Technology and Constituting Structures: A Practice Lens for Studying Technology in Organizations. Organization Science, 11(4), 404-428. doi:10.1287/orsc.11.4.404.14600Elmualim, A., & Gilder, J. (2013). BIM: innovation in design management, influence and challenges of implementation. Architectural Engineering and Design Management, 10(3-4), 183-199. doi:10.1080/17452007.2013.821399Ismail, N. A. A., Chiozzi, M., & Drogemuller, R. (2017). An overview of BIM uptake in Asian developing countries. doi:10.1063/1.5011596Hosseini, M. R., Banihashemi, S., Chileshe, N., Namzadi, M. O., Udaeja, C., Rameezdeen, R., & McCuen, T. (2016). BIM adoption within Australian Small and Medium-sized Enterprises (SMEs): an innovation diffusion model. Construction Economics and Building, 16(3), 71-86. doi:10.5130/ajceb.v16i3.5159Harrison, C., & Thurnell, D. (2015). BIM implementation in a New Zealand consultingquantity surveying practice. International Journal of Construction Supply Chain Management, 5(1), 1-15. doi:10.14424/ijcscm501015-01-15Bryde, D., Broquetas, M., & Volm, J. M. (2013). The project benefits of Building Information Modelling (BIM). International Journal of Project Management, 31(7), 971-980. doi:10.1016/j.ijproman.2012.12.001Yilmaz, G., Akcamete, A., & Demirors, O. (2019). A reference model for BIM capability assessments. Automation in Construction, 101, 245-263. doi:10.1016/j.autcon.2018.10.022Koutamanis, A. (2020). Dimensionality in BIM: Why BIM cannot have more than four dimensions? Automation in Construction, 114, 103153. doi:10.1016/j.autcon.2020.103153Mayouf, M., Gerges, M., & Cox, S. (2019). 5D BIM: an investigation into the integration of quantity surveyors within the BIM process. Journal of Engineering, Design and Technology, 17(3), 537-553. doi:10.1108/jedt-05-2018-0080Mesároš, P., Smetanková, J., & Mandičák, T. (2019). The Fifth Dimension of BIM – Implementation Survey. IOP Conference Series: Earth and Environmental Science, 222, 012003. doi:10.1088/1755-1315/222/1/012003Ghaffarianhoseini, A., Tookey, J., Ghaffarianhoseini, A., Naismith, N., Azhar, S., Efimova, O., & Raahemifar, K. (2017). Building Information Modelling (BIM) uptake: Clear benefits, understanding its implementation, risks and challenges. Renewable and Sustainable Energy Reviews, 75, 1046-1053. doi:10.1016/j.rser.2016.11.083Ragu-Nathan, B. S., Apigian, C. H., Ragu-Nathan, T. S., & Tu, Q. (2004). A path analytic study of the effect of top management support for information systems performance. Omega, 32(6), 459-471. doi:10.1016/j.omega.2004.03.001Cao, D., Wang, G., Li, H., Skitmore, M., Huang, T., & Zhang, W. (2015). Practices and effectiveness of building information modelling in construction projects in China. Automation in Construction, 49, 113-122. doi:10.1016/j.autcon.2014.10.014Sharma, & Yetton. (2003). The Contingent Effects of Management Support and Task Interdependence on Successful Information Systems Implementation. MIS Quarterly, 27(4), 533. doi:10.2307/30036548Young, R., & Jordan, E. (2008). Top management support: Mantra or necessity? International Journal of Project Management, 26(7), 713-725. doi:10.1016/j.ijproman.2008.06.001Rosenberg, N. (1976). On Technological Expectations. The Economic Journal, 86(343), 523. doi:10.2307/2230797Succar, B. (2009). Building information modelling framework: A research and delivery foundation for industry stakeholders. Automation in Construction, 18(3), 357-375. doi:10.1016/j.autcon.2008.10.003Baiden, B. K., Price, A. D. F., & Dainty, A. R. J. (2006). The extent of team integration within construction projects. International Journal of Project Management, 24(1), 13-23. doi:10.1016/j.ijproman.2005.05.001Chan, A. P. C., Scott, D., & Chan, A. P. L. (2004). Factors Affecting the Success of a Construction Project. Journal of Construction Engineering and Management, 130(1), 153-155. doi:10.1061/(asce)0733-9364(2004)130:1(153)Cassel, C., Hackl, P., & Westlund, A. H. (1999). Robustness of partial least-squares method for estimating latent variable quality structures. Journal of Applied Statistics, 26(4), 435-446. doi:10.1080/02664769922322Hair, J. F., Ringle, C. M., & Sarstedt, M. (2013). Partial Least Squares Structural Equation Modeling: Rigorous Applications, Better Results and Higher Acceptance. Long Range Planning, 46(1-2), 1-12. doi:10.1016/j.lrp.2013.01.001Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. doi:10.1108/ebr-11-2018-0203Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: updated guidelines. Industrial Management & Data Systems, 116(1), 2-20. doi:10.1108/imds-09-2015-0382Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879-903. doi:10.1037/0021-9010.88.5.879Reinartz, W., Haenlein, M., & Henseler, J. (2009). An empirical comparison of the efficacy of covariance-based and variance-based SEM. International Journal of Research in Marketing, 26(4), 332-344. doi:10.1016/j.ijresmar.2009.08.001Marcoulides, & Saunders. (2006). Editor’s Comments: PLS: A Silver Bullet? MIS Quarterly, 30(2), iii. doi:10.2307/25148727SmartPLS 3. Boenningstedt: SmartPLS GmbHhttp://www.smartpls.comChin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A Partial Least Squares Latent Variable Modeling Approach for Measuring Interaction Effects: Results from a Monte Carlo Simulation Study and an Electronic-Mail Emotion/Adoption Study. Information Systems Research, 14(2), 189-217. doi:10.1287/isre.14.2.189.16018Podsakoff, N. P., Shen, W., & Podsakoff, P. M. (s. f.). The Role of Formative Measurement Models in Strategic Management Research: Review, Critique, and Implications for Future Research. Research Methodology in Strategy and Management, 197-252. doi:10.1016/s1479-8387(06)03008-6Hair, J. F., Sarstedt, M., & Ringle, C. M. (2019). Rethinking some of the rethinking of partial least squares. European Journal of Marketing, 53(4), 566-584. doi:10.1108/ejm-10-2018-0665F. Hair Jr, J., Sarstedt, M., Hopkins, L., & G. Kuppelwieser, V. (2014). Partial least squares structural equation modeling (PLS-SEM). European Business Review, 26(2), 106-121. doi:10.1108/ebr-10-2013-012

    Delay causes in road infrastructure projects in developing countries

    Full text link
    [EN] Project delays adversely affect road infrastructure development in developing countries. Unfavorable consequences of project delays involve cost overrun, contractual disputes, arbitration, and quality non-conformities. Despite these risks, literature shows that delays are still a prevalent problem in construction management. Although there is a considerable number of publications on project delays, few studies have compared their causes between developing countries. Therefore, this study aimed to: a) classify and determine the level of influence of the delay causes; b) find the relationship between delay causes and country's development; and c) propose recommendations for mitigating the most critical causes in developing countries. A systematic literature review provided a sample of 14 primary studies from Africa (50%) and Asia (50%). Based on this sample, the study found that developing countries, with a GDP per capita (US2018)<=US2018) <= 2,000, may experience different delay causes depending on the economic and the geographical contexts. In African countries with a Global Competitiveness Index -GCI <= 56, road projects may experience delays due to financial issues of the project owner, as well as delays due to equipment/material issues of the project supplier/subcontractor. On the other hand, in Asian countries with a GCI between 62 and 49, road projects may experience delays due to financial issues of the project contractor, and delays due to planning issues of the project designer/consultant. According to these economic contexts, this study proposes a frame of causes and mitigation actions as a contribution to the risk analysis of road projects in developing countries.Omar Sanchez wants to acknowledge and thank Colciencias for the sponsorship and support through the "Convocatoria Doctorados Nacionales-2015" program. Colciencias is The Administrative Department of Science, Technology, and Innovation, a Colombian government agency that supports fundamental and applied research in Colombia.Mejía, G.; Sánchez, O.; Castañeda, K.; Pellicer, E. (2020). Delay causes in road infrastructure projects in developing countries. Revista de la Construcción. 19(2):220-234. https://doi.org/10.7764/rdlc.19.2.220-234S22023419

    A Review of Multi-Criteria Assessment of the Social Sustainability of Infrastructures

    Full text link
    [EN] Nowadays multi-criteria methods enable non-monetary aspects to be incorporated into the assessment of infrastructure sustainability. Yet evaluation of the social aspects is still neglected and the multi-criteria assessment of these social aspects is still an emerging topic. Therefore, the aim of this article is to review the current state of multi-criteria infrastructure assessment studies that include social aspects. The review includes an analysis of the social criteria, participation and assessment methods. The results identify mobility and access, safety and local development among the most frequent criteria. The Analytic Hierarchy Process and Simple Additive Weighting methods are the most frequently used. Treatments of equity, uncertainty, learning and consideration of the context, however, are not properly analyzed yet. Anyway, the methods for implementing the evaluation must guarantee the social effect on the result, improvement of the representation of the social context and techniques to facilitate the evaluation in the absence of information.This research was funded by the Government of Chile under the Doctoral Fellowship Program Abroad (grant CONICYT-2015/72160059), the project DIUFRO DI14-0096 and the Spanish Ministry of Economy and Competitiveness along with FEDER funding (Projects BIA2014-56574-R and BIA2017-85098-R).Sierra-Varela, LA.; Yepes, V.; Pellicer, E. (2018). A Review of Multi-Criteria Assessment of the Social Sustainability of Infrastructures. Journal of Cleaner Production. 187:496-513. https://doi.org/10.1016/j.jclepro.2018.03.022S49651318

    Finding Differences among Construction Companies Management Practices and Their Relation to Project Performance

    Full text link
    [EN] The performance of construction companies is linked to the performance of their projects because their financial success and the satisfaction of their clients depends on it. However, most studies of construction companies' performance consider mainly the corporate aspects but not the performance they achieve in their projects as a result of their management practices. A key issue is determining the differences among management practices used by construction companies that provide them with a competitive advantage, which was the purpose of this study. To achieve this goal, nine construction companies were selected for participation in this collaborative benchmarking study, and the management practices that differentiate the investigated construction companies were determined. The results highlight the relevance of the management of information and communication and the importance of lean management practices as the tools for analysis and planning or to improve processes. Construction companies' managers should consider these differentiating elements as a path to achieve competitive advantage.Castillo, T.; Alarcón, LF.; Pellicer, E. (2018). Finding Differences among Construction Companies Management Practices and Their Relation to Project Performance. Journal of Management in Engineering. 34(3):1-13. doi:10.1061/(ASCE)ME.1943-5479.0000606S11334
    corecore