50 research outputs found

    Unusual features of pomoviral RNA movement

    Get PDF
    This work is partially supported by the Scottish Government’s Rural and Environment Science and Analytical Services (RESAS) DivisionPotato mop-top pomovirus (PMTV) is one of a few viruses that can move systemically in plants in the absence of the capsid protein (CP). Pomoviruses encode the triple gene block genetic module of movement proteins (TGB 1, 2, and 3) and recent research suggests that PMTV RNA is transported either as ribonucleoprotein (RNP) complexes containing TGB1 or encapsidated in virions containing TGB1. Furthermore, there are different requirements for local or systemic (long-distance) movement. Research suggests that nucleolar passage of TGB1 may be important for the long-distance movement of both RNP and virions. Moreover, and uniquely, the long-distance movement of the CP-encoding RNA requires expression of both major and minor CP subunits and is inhibited when only the major CP sub unit is expressed. This paper reviews pomovirus research and presents a current model for RNA movement.Publisher PDFPeer reviewe

    Intermolecular base-pairing interactions, a unique topology and exoribonuclease-resistant noncoding RNAs drive formation of viral chimeric RNAs in plants

    Get PDF
    In plants, exoribonuclease-resistant RNAs (xrRNAs) are produced by many viruses. Whereas xrRNAs contribute to the pathogenicity of these viruses, the role of xrRNAs in the virus infectious cycle remains elusive.Here, we show that xrRNAs produced by a benyvirus (a multipartite RNA virus with four genomic segments) in plants are involved in the formation of monocistronic coat protein (CP)-encoding chimeric RNAs. Naturally occurring chimeric RNAs, we discovered, are composed of 5 '-end of RNA 2 and 3 '-end of either RNA 3 or RNA 4 bearing conservative exoribonuclease-resistant 'coremin' region.Using computational tools and site-directed mutagenesis, we show that de novo formation of chimeric RNAs requires intermolecular base-pairing interaction between 'coremin' and 3 '-proximal part of the CP gene of RNA 2 as well as a stem-loop structure immediately adjacent to the CP gene. Moreover, knockdown of the expression of the XRN4 gene, encoding 5 '-> 3 ' exoribonuclease, inhibits biogenesis of both xrRNAs and chimeric RNAs.Our findings suggest a novel mechanism involving a unique tropology of the intermolecular base-pairing complex between xrRNAs and RNA2 to promote formation of chimeric RNAs in plants. XrRNAs, essential for chimeric RNA biogenesis, are generated through the action of cytoplasmic Xrn 4 5 '-> 3 ' exoribonuclease conserved in all plant species

    The Virulence Factor p25 of Beet Necrotic Yellow Vein Virus Interacts With Multiple Aux/IAA Proteins From Beta vulgaris: Implications for Rhizomania Development

    Get PDF
    Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) is characterized by excessive lateral root (LR) formation. Auxin-mediated degradation of Aux/IAA transcriptional repressors stimulates gene regulatory networks leading to LR organogenesis and involves several Aux/IAA proteins acting at distinctive stages of LR development. Previously, we showed that BNYVV p25 virulence factor interacts with BvIAA28, a transcriptional repressor acting at early stages of LR initiation. The evidence suggested that p25 inhibits BvIAA28 nuclear localization, thus, de-repressing transcriptional network leading to LR initiation. However, it was not clear whether p25 interacts with other Aux/IAA proteins. Here, by adopting bioinformatics, in vitro and in vivo protein interaction approaches we show that p25 interacts also with BvIAA2 and BvIAA6. Moreover, we confirmed that the BNYVV infection is, indeed, accompanied by an elevated auxin level in the infected LRs. Nevertheless, expression levels of BvIAA2 and BvIAA6 remained unchanged upon BNYVV infection. Mutational analysis indicated that interaction of p25 with either BvIAA2 or BvIAA6 requires full-length proteins as even single amino acid residue substitutions abolished the interactions. Compared to p25-BvIAA28 interaction that leads to redistribution of BvIAA28 into cytoplasm, both BvIAA2 and BvIAA6 remained confined into the nucleus regardless of the presence of p25 suggesting their stabilization though p25 interaction. Overexpression of p25-interacting partners (BvIAA2, BvIAA6 and BvIAA28) in Nicotiana benthamiana induced an auxin-insensitive phenotype characterized by plant dwarfism and dramatically reduced LR development. Thus, our work reveals a distinct class of transcriptional repressors targeted by p25

    Comparative Transcriptome Analysis Provides Molecular Insights into the Interaction of Beet necrotic yellow vein virus and Beet soil-borne mosaic virus with their Host Sugar Beet

    Get PDF
    Fernando Gil J, Wibberg D, Eini O, Savenkov EI, Varrelmann M, Liebe S. Comparative Transcriptome Analysis Provides Molecular Insights into the Interaction of Beet necrotic yellow vein virus and Beet soil-borne mosaic virus with their Host Sugar Beet. Viruses. 2020;12(1): 76.Beet necrotic yellow vein virus (BNYVV) and Beet soil-borne mosaic virus (BSBMV) are closely related species, but disease development induced in their host sugar beet displays striking differences. Beet necrotic yellow vein virus induces excessive lateral root (LR) formation, whereas BSBMV-infected roots appear asymptomatic. A comparative transcriptome analysis was performed to elucidate transcriptomic changes associated with disease development. Many differentially expressed genes (DEGs) were specific either to BNYVV or BSBMV, although both viruses shared a high number of DEGs. Auxin biosynthesis pathways displayed a stronger activation by BNYVV compared to BSBMV-infected plants. Several genes regulated by auxin signalling and required for LR formation were exclusively altered by BNYVV. Both viruses reprogrammed the transcriptional network, but a large number of transcription factors involved in plant defence were upregulated in BNYVV-infected plants. A strong activation of pathogenesis-related proteins by both viruses suggests a salicylic acid or jasmonic acid mediated-defence response, but the data also indicate that both viruses counteract the SA-mediated defence. The ethylene signal transduction pathway was strongly downregulated which probably increases the susceptibility of sugar beet to Benyvirus infection. Our study provides a deeper insight into the interaction of BNYVV and BSBMV with the economically important crop sugar beet

    Potato mop-top virus co-opts the stress sensor HIPP26 for long-distance movement

    Get PDF
    The work of LT, GC, SJ and AR is funded by the Scottish Government’s Rural and Environmental Science and Analytical Services (RESAS) Division, PH by the BBSRC (grant BB/M024911/1) and The Royal Society and EIS by the Swedish Research Council Formas and the Carl Tryggers Foundation.Virus movement proteins facilitate virus entry into the vascular system to initiate systemic infection. The potato mop-top virus (PMTV) movement protein, TGB1, is involved in long-distance movement of both viral ribonucleoprotein complexes and virions. Here, our analysis of TGB1 interactions with host Nicotiana benthamiana proteins revealed an interaction with a member of the heavy metal-associated isoprenylated plant protein family, HIPP26, which acts as a plasma membrane-to-nucleus signal during abiotic stress. We found that knockdown of NbHIPP26 expression inhibited virus long-distance movement but did not affect cell-to-cell movement. Drought and PMTV infection up-regulated NbHIPP26 gene expression, and PMTV infection protected plants from drought. In addition, NbHIPP26 promoter-reporter fusions revealed vascular tissue-specific expression. Mutational and biochemical analyses indicated that NbHIPP26 subcellular localization at the plasma membrane and plasmodesmata was mediated by lipidation (S-acylation and prenylation), as nonlipidated NbHIPP26 was predominantly in the nucleus. Notably, coexpression of NbHIPP26 with TGB1 resulted in a similar nuclear accumulation of NbHIPP26. TGB1 interacted with the carboxyl-terminal CVVM (prenyl) domain of NbHIPP26, and bimolecular fluorescence complementation revealed that the TGB1-HIPP26 complex localized to microtubules and accumulated in the nucleolus, with little signal at the plasma membrane or plasmodesmata. These data support a mechanism where interaction with TGB1 negates or reverses NbHIPP26 lipidation, thus releasing membrane-associated NbHIPP26 and redirecting it via microtubules to the nucleus, thereby activating the drought stress response and facilitating virus long-distance movement.PostprintPeer reviewe

    Draft genome of the oomycete pathogen <i>Phytophthora cactorum</i> strain LV007 isolated from European beech (<i>Fagus sylvatica</i>)

    Get PDF
    Phytophthora cactorum is a broad host range phytopathogenic oomycete. P. cactorum strain LV007 was isolated from a diseased European Beech (Fagus sylvatica) in Malmö, Sweden in 2016. The draft genome of P. cactorum strain LV007 is 67.81 Mb. It contains 15,567 contigs and 21,876 predicted protein-coding genes. As reported for other phytopathogenic Phytophthora species, cytoplasmic effector proteins including RxLR and CRN families were identified. The genome sequence has been deposited at DDBJ/ENA/GenBank under the accession NBIJ00000000. The version described in this paper is version NBIJ01000000.</p

    Effect of RNA silencing suppression activity of chrysanthemum virus B p12 protein on small RNA species

    Get PDF
    Funder: Swedish University of Agricultural SciencesAbstract: Chrysanthemum virus B encodes a multifunctional p12 protein that acts as a transcriptional activator in the nucleus and as a suppressor of RNA silencing in the cytoplasm. Here, we investigated the impact of p12 on accumulation of major classes of small RNAs (sRNAs). The results show dramatic changes in the sRNA profiles characterised by an overall reduction in sRNA accumulation, changes in the pattern of size distribution of canonical siRNAs and in the ratio between sense and antisense strands, lower abundance of siRNAs with a U residue at the 5′-terminus, and changes in the expression of certain miRNAs, most of which were downregulated
    corecore