18 research outputs found

    Time-dependent biphasic modulation of human BDNF by antidepressants in neuroblastoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent rodent studies reported that antidepressant treatments affect the expression of brain-derived neurotrophic factor (BDNF) mRNA in a way that is dependent on treatment duration, by selective modulation of different BDNF transcripts. However, no data are available for the human BDNF gene. We studied the effect of different antidepressants on BDNF mRNA expression in human neuroblastoma SH-SY5Y cells.</p> <p>Results</p> <p>Cultured cells were treated with the antidepressants fluoxetine, reboxetine and desipramine for different time lengths (6, 24, 48 hours). Expression of total BDNF mRNA was analyzed by reverse transcription PCR and levels of different BDNF transcripts were detected by hemi-nested PCR with specific primers.</p> <p>Short-term treatment (6 hours) with reboxetine or desipramine reduced total BDNF, whereas long-term treatment (48 hours) significantly increased total BDNF mRNA levels. These changes were accounted for by differential regulation of BDNF IV and VIa/b transcripts. Fluoxetine showed no significant effects.</p> <p>Conclusion</p> <p>This is the first study showing biphasic changes in the expression of total and specific BDNF transcripts in human cells following antidepressant treatments. These findings suggest that biphasic induction of BDNF by antidepressants could be a feature common to rodents and humans and encourage the use of SH-SY5Y cells as a tool for investigation of drug effects on human genes.</p

    SCN1A overexpression, associated with a genomic region marked by a risk variant for a common epilepsy, raises seizure susceptibility

    Get PDF
    Mesial temporal lobe epilepsy with hippocampal sclerosis and a history of febrile seizures is associated with common variation at rs7587026, located in the promoter region of SCN1A. We sought to explore possible underlying mechanisms. SCN1A expression was analysed in hippocampal biopsy specimens of individuals with mesial temporal lobe epilepsy with hippocampal sclerosis who underwent surgical treatment, and hippocampal neuronal cell loss was quantitatively assessed using immunohistochemistry. In healthy individuals, hippocampal volume was measured using MRI. Analyses were performed stratified by rs7587026 type. To study the functional consequences of increased SCN1A expression, we generated, using transposon-mediated bacterial artificial chromosome transgenesis, a zebrafish line expressing exogenous scn1a, and performed EEG analysis on larval optic tecta at 4 day post-fertilization. Finally, we used an in vitro promoter analysis to study whether the genetic motif containing rs7587026 influences promoter activity. Hippocampal SCN1A expression differed by rs7587026 genotype (Kruskal-Wallis test P = 0.004). Individuals homozygous for the minor allele showed significantly increased expression compared to those homozygous for the major allele (Dunn's test P = 0.003), and to heterozygotes (Dunn's test P = 0.035). No statistically significant differences in hippocampal neuronal cell loss were observed between the three genotypes. Among 597 healthy participants, individuals homozygous for the minor allele at rs7587026 displayed significantly reduced mean hippocampal volume compared to major allele homozygotes (Cohen's D = - 0.28, P = 0.02), and to heterozygotes (Cohen's D = - 0.36, P = 0.009). Compared to wild type, scn1lab-overexpressing zebrafish larvae exhibited more frequent spontaneous seizures [one-way ANOVA F(4,54) = 6.95 (P < 0.001)]. The number of EEG discharges correlated with the level of scn1lab overexpression [one-way ANOVA F(4,15) = 10.75 (P < 0.001]. Finally, we showed that a 50 bp promoter motif containing rs7587026 exerts a strong regulatory role on SCN1A expression, though we could not directly link this to rs7587026 itself. Our results develop the mechanistic link between rs7587026 and mesial temporal lobe epilepsy with hippocampal sclerosis and a history of febrile seizures. Furthermore, we propose that quantitative precision may be important when increasing SCN1A expression in current strategies aiming to treat seizures in conditions involving SCN1A haploinsufficiency, such as Dravet syndrome

    Associative Learning of Quantitative Mechanosensory Stimuli in Honeybees

    No full text
    The proboscis extension response (PER) has been widely used to evaluate honeybees’ (Apis mellifera) learning and memory abilities, typically by using odors and visual cues for the conditioned stimuli. Here we asked whether honeybees could learn to distinguish between different magnitudes of the same type of stimulus, given as two speeds of air flux. By taking advantage of a novel automated system for administering PER experiments, we determined that the bees were highly successful when the lower air flux was rewarded and less successful when the higher flux was rewarded. Importantly, since our method includes AI-assisted analysis, we were able to consider subthreshold responses at a high temporal resolution; this analysis revealed patterns of rapid generalization and slowly acquired discrimination between the rewarded and unrewarded stimuli, as well as indications that the high air flux may have been mildly aversive. The learning curve for these mechanosensory stimuli, at least when the lower flux is rewarded, more closely mimics prior data from olfactory PER studies rather than visual ones, possibly in agreement with recent findings that the insect olfactory system is also sensitive to mechanosensory information. This work demonstrates a new modality to be used in PER experiments and lays the foundation for deeper exploration of honeybee cognitive processes when posed with complex learning challenges
    corecore