227 research outputs found

    Impact of skeletal heterogeneity and treatment method on interpretation of environmental variability from the proteinaceous skeletons of deep-sea gorgonian octocorals

    Get PDF
    The stable isotope geochemistry of gorgonian octocoral skeletons facilitates detailed time series reconstructions of nutrient biogeochemistry. However, comparisons among reconstructions from different locations require realistic estimates of the uncertainty surrounding each measured geochemical value. Here, we determine quantitative uncertainties related to 1) standard skeletal pretreatment in preparation for stable isotopic analysis and 2) biological variability associated with a heterogeneous isotopic composition of the gorgonin skeleton. We found that the 5% HCl pretreatment required for the δ13C measurements does not significantly impact the δ15N values of the skeleton nor the reproducibility of the δ15N measurements. In contrast, while 5% HCl pretreatment significantly altered bulk δ13C values via removal of CaCO3, it did not change amino acid δ13C values in the organic skeleton. We found that the variance of repeat measurements of skeleton samples formed contemporaneously and homogenized skeleton for both δ13C and δ15N exceeded that of instrumental uncertainty of an acetanilide standard. This indicates that instrumental uncertainty underestimates the true precision of an isotopic measurement of the organic skeleton. Furthermore, measurements of contemporaneous skeleton around the circumference of an octocoral colony yielded variability exceeding that of homogenized skeleton. Based on these results, we find that 1) both δ13C and δ15N values can be measured simultaneously in pretreated skeleton, 2) growth bands should be homogenized prior to analysis, and 3) reported error should include uncertainty due to biological effects determined from repeat analysis of homogenized skeleton and not just instrument error to reduce false significant differences. Our results present an important protocol for processing proteinaceous octocoral skeletons and propagating uncertainty to more accurately reconstruct nutrient dynamics from proteinaceous deep-sea octocoral skeletons

    Distribution of deep-water corals, sponges, and demersal fisheries landings in Southern California, USA: implications for conservation priorities

    Get PDF
    Deep-sea corals in Southern California are diverse and abundant but subject to multiple stressors, including bottom-contact fisheries using mobile and fixed gear. There is a need for more information on the distribution of these taxa in relation to the distribution of demersal fishing effort, and the distribution of marine protected areas, in order to improve spatial planning. There are many marine managed areas in Southern California, including essential fish habitat (EFH) areas, conservation areas, and a national marine sanctuary, but specific areas of overlap between bottom fishing and benthic epifauna are poorly known. Groundfish surveys were conducted by the National Marine Fisheries Service using a remotely operated vehicle throughout Southern California between 2003 and 2011 to document abundance and distribution of deep-water rockfish and flatfish to a depth of 500 m. Corals and sponges were also common in these images, providing an opportunity to examine these communities. Analyses of 34,792 still images revealed abundance and diversity of coral and sponge taxa, as well as frequency of fishing debris. The occurrence data were overlaid in a geographic information system with landings data for deep-water (>50 m) demersal fisheries to identify areas of spatial overlap. Corals or sponges were observed in 23% of images. A total of 15 coral genera and six sponge morphotypes were identified. A total of 70 species codes were targeted by deep-water demersal fisheries operating below 50 m for years 2007–2011. A novel priority-setting algorithm was developed to identify areas of high richness, abundance, and fishing intensity (RAFi). Several highly-ranked areas were already protected as EFH (Footprint, Piggy Bank). Other highly-ranked sites (West Catalina Island, San Clemente Island, 9-Mile Bank, Santa Rosa Flats) were encompassed by transient gear restrictions, such as Rockfish conservation areas, but are now recommended for permanent protection by the Pacific Fishery Management Council

    \u3cem\u3eNautilus\u3c/em\u3e Sample 2016: New Techniques and Partnerships

    Get PDF
    In 2016, E/V Nautilus and the ROV Hercules collected 549 geological, biological, and water samples (2,022 subsamples) to characterize several US West Coast national marine sanctuaries, the Cascadia margin, and offshore southern California. Most samples are archived at partnering repositories: geological samples to the Marine Geological Samples Lab at the University of Rhode Island and biological samples to Harvard University’s Museum of Comparative Zoology. The national marine sanctuary samples were split between these repositories and the California Academy of Sciences. During this field season, we experimented with new sampling methods to improve exploration efficiency and robustness

    Deep coral and associated species taxonomy and ecology: (DeepCAST) II Expedition Report, Roatan, Honduras, May 21-28, 2011

    Get PDF
    NOAA has a mandate to explore and understand deep-sea coral ecology under Magnuson-Stevens Sustainable Fisheries Conservation Act Reauthorization of 2009. Deep-sea corals are increasingly considered a proxy for marine biodiversity in the deep-sea because corals create complex structure, and this structure forms important habitat for associated species of shrimp, crabs, sea stars, brittle stars, and fishes. Yet, our understanding of the nature of the relationships between deep-corals and their associated species is incomplete. One of the primary challenges of conducting any type of deep-sea coral (DSC) research is access to the deep-sea. The deep-sea is a remote environment that often requires long surface transits and sophisticated research vehicles like submersibles and remotely operated vehicles (ROVs). The research vehicles often require substantial crew, and the vehicles are typically launched from large research vessels costing many thousands of dollars a day. To overcome the problem of access to the deep-sea, the Deep Coral and Associated Species Taxonomy and Ecology (DeepCAST) Expeditions are pioneering the use of shore-based submersibles equipped to do scientific research. Shore-based subs alleviate the need for expensive ships because they launch and return under their own power. One disadvantage to the approach is that shore-based subs are restricted to nearby sites. The disadvantage is outweighed, however, by the benefit of repeated observations, and the opportunity to reduce the costs of exploration while expanding knowledge of deep-sea coral ecology

    Biodiversity Assessment of the Fishes of Saba Bank Atoll, Netherlands Antilles

    Get PDF
    Biodiversity surveys were conducted on Saba Bank, Netherlands Antilles, to assess ichthyofaunal richness and to compare with published surveys of other Caribbean localities. The primary objective was to estimate the total species richness of the Saba Bank ichthyofauna. A variety of sampling techniques was utilized to survey the fish species of both the visually accessible megafauna and the camouflaged and small-sized species comprising the cryptic ichthyofauna. Based on results presented herein, the number of species known on Saba Bank is increased from 42 previously known species to 270 species. Expected species-accumulation curves demonstrate that the current estimate of species richness of fishes for Saba Bank under represents the actual richness, and our knowledge of the ichthyofauna has not plateaued. The total expected fish-species richness may be somewhere between 320 and 411 species.The Saba Bank ichthyofaunal assemblage is compared to fish assemblages found elsewhere in the Caribbean. Despite the absence of shallow or emergent shore habitats like mangroves, Saba Bank ranks as having the eighth highest ichthyofaunal richness of surveyed localities in the Greater Caribbean. Some degree of habitat heterogeneity was evident. Fore-reef, patch-reef, and lagoonal habitats were sampled. Fish assemblages were significantly different between habitats. Species richness was highest on the fore reef, but 11 species were found only at lagoonal sites. A comprehensive, annotated list of the fishes currently known to occur on Saba Bank, Netherland Antilles, is provided and color photographs of freshly collected specimens are presented for 165 of the listed species of Saba Bank fishes to facilitate identification and taxonomic comparison with similar taxa at other localities. Coloration of some species is shown for the first time. Preliminary analysis indicates that at least six undescribed new species were collected during the survey and these are indicated in the annotated list

    Habitat availability and heterogeneity and the Indo-Pacific warm pool as predictors of marine species richness in the tropical Indo-Pacific

    Get PDF
    Range overlap patterns were observed in a dataset of 10,446 expert-derived marine species distribution maps, including 8,295 coastal fishes, 1,212 invertebrates (crustaceans and molluscs), 820 reef-building corals, 50 seagrasses and 69 mangroves. Distributions of tropical Indo-Pacific shore fishes revealed a concentration of species richness in the northern apex and central region of the Coral Triangle epicenter of marine biodiversity. This pattern was supported by distributions of invertebrates and habitat-forming primary producers. Habitat availability, heterogeneity and sea surface temperatures were highly correlated with species richness across spatial grains ranging from 23,000 to 5,100,000 km2 with and without correction for autocorrelation. The consistent retention of habitat variables in our predictive models supports the area of refuge hypothesis which posits reduced extinction rates in the Coral Triangle. This does not preclude support for a center of origin hypothesis that suggests increased speciation in the region may contribute to species richness. In addition, consistent retention of sea surface temperatures in models suggests that available kinetic energy may also be an important factor in shaping patterns of marine species richness. Kinetic energy may hasten rates of both extinction and speciation. The position of the Indo-Pacific Warm Pool to the east of the Coral Triangle in central Oceania and a pattern of increasing species richness from this region into the central and northern parts of the Coral Triangle suggests peripheral speciation with enhanced survival in the cooler parts of the Coral Triangle that also have highly concentrated available habitat. These results indicate that conservation of habitat availability and heterogeneity is important to reduce extinction and that changes in sea surface temperatures may influence the evolutionary potential of the region

    A survey of deep-water coral and sponge habitats along the west coast of the US using a remotely operated vehicle: NOAA Fisheries Survey Vessel (FSV)'Bell M. Shimada', November 1-5, 2010

    Get PDF
    Remotely operated vehicle (ROV) surveys were conducted from NOAA’s state-of-the-art Fisheries Survey Vessel (FSV) Bell M. Shimada during a six-day transit November 1-5, 2010 between San Diego, CA and Seattle, WA. The objective of this survey was to locate and characterize deep-sea coral and sponge ecosystems at several recommended sites in support of NOAA’s Coral Reef Conservation Program. Deep-sea corals and sponges were photographed and collected whenever possible using the Southwest Fisheries Science Center’s (SWFSC) Phantom ROV ‘Sebastes’ (Fig. 1). The surveyed sites were recommended by National Marine Sanctuary (NMS) scientists at Monterey Bay NMS, Gulf of the Farallones NMS, and Olympic Coast NMS (Fig. 2). The specific sites were: Sur Canyon, The Football, Coquille Bank, and Olympic Coast NMS. During each dive, the ROV collected digital still images, video, navigation, and along-track conductivity-temperature-depth (CTD), and optode data. Video and high-resolution photographs were used to quantify abundance of corals, sponges, and associated fishes and invertebrates to the lowest practicable taxonomic level, and also to classify the seabed by substrate type. A reference laser system was used to quantify area searched and estimate the density of benthic fauna

    Growth and feeding of deep-sea coral Lophelia pertusa from the California margin under simulated ocean acidification conditions

    Get PDF
    The global decrease in seawater pH known as ocean acidification has important ecological consequences and is an imminent threat for numerous marine organisms. Even though the deep sea is generally considered to be a stable environment, it can be dynamic and vulnerable to anthropogenic disturbances including increasing temperature, deoxygenation, ocean acidification and pollution. Lophelia pertusa is among the better-studied cold-water corals but was only recently documented along the US West Coast, growing in acidified conditions. In the present study, coral fragments were collected at ∼300 m depth along the southern California margin and kept in recirculating tanks simulating conditions normally found in the natural environment for this species. At the collection site, waters exhibited persistently low pH and aragonite saturation states (Ωarag) with average values for pH of 7.66 ± 0.01 and Ωarag of 0.81 ± 0.07. In the laboratory, fragments were grown for three weeks in “favorable” pH/Ωarag of 7.9/1.47 (aragonite saturated) and “unfavorable” pH/Ωarag of 7.6/0.84 (aragonite undersaturated) conditions. There was a highly significant treatment effect (P < 0.001) with an average% net calcification for favorable conditions of 0.023 ± 0.009% d−1 and net dissolution of −0.010 ± 0.014% d-1 for unfavorable conditions. We did not find any treatment effect on feeding rates, which suggests that corals did not depress feeding in low pH/ Ωarag in an attempt to conserve energy. However, these results suggest that the suboptimal conditions for L. pertusa from the California margin could potentially threaten the persistence of this cold-water coral with negative consequences for the future stability of this already fragile ecosystem

    Crumbling Reefs and Cold-Water Coral Habitat Loss in a Future Ocean: Evidence of “Coralporosis” as an Indicator of Habitat Integrity

    Get PDF
    Ocean acidification is a threat to the net growth of tropical and deep-sea coral reefs, due to gradual changes in the balance between reef growth and loss processes. Here we go beyond identification of coral dissolution induced by ocean acidification and identify a mechanism that will lead to a loss of habitat in cold-water coral reef habitats on an ecosystem-scale. To quantify this, we present in situ and year-long laboratory evidence detailing the type of habitat shift that can be expected (in situ evidence), the mechanisms underlying this (in situ and laboratory evidence), and the timescale within which the process begins (laboratory evidence). Through application of engineering principals, we detail how increased porosity in structurally critical sections of coral framework will lead to crumbling of load-bearing material, and a potential collapse and loss of complexity of the larger habitat. Importantly, in situ evidence highlights that cold-water corals can survive beneath the aragonite saturation horizon, but in a fundamentally different way to what is currently considered a biogenic cold-water coral reef, with a loss of the majority of reef habitat. The shift from a habitat with high 3-dimensional complexity provided by both live and dead coral framework, to a habitat restricted primarily to live coral colonies with lower 3-dimensional complexity represents the main threat to cold-water coral reefs of the future and the biodiversity they support. Ocean acidification can cause ecosystem-scale habitat loss for the majority of cold-water coral reefs.BN/Marie-Eve Aubin-Tam La

    Refining trace metal temperature proxies in cold-water scleractinian and stylasterid corals

    Get PDF
    The Li/Mg, Sr/Ca and oxygen isotopic (O) compositions of many marine biogenic carbonates are sensitive to seawater temperature. Corals, as cosmopolitan marine taxa with carbonate skeletons that can be precisely dated, represent ideal hosts for these geochemical proxies. However, efforts to calibrate and refine temperature proxies in cold-water corals (<20 °C) remain limited. Here we present skeletal Li/Mg, Sr/Ca, O and carbon isotope (C) data from live-collected specimens of aragonitic scleractinian corals (Balanophyllia, Caryophyllia, Desmophyllum, Enallopsammia, Flabellum, Lophelia, and Vaughanella), both aragonitic and high-Mg calcitic stylasterid genera (Stylaster and Errina), and shallow-water high-Mg calcite crustose coralline algae (Lithophyllum, Hydrolithon, and Neogoniolithon). We interpret these data in conjunction with results from previously explored taxa including aragonitic zooxanthellate scleractinia and foraminifera, and high-Mg calcite octocorals. We show that Li/Mg ratios covary most strongly with seawater temperature, both for aragonitic and high-Mg calcitic taxa, making for reliable and universal seawater temperature proxies. Combining all of our biogenic aragonitic Li/Mg data with previous calibration efforts we report a refined relationship to temperature: Li/MgAll Aragonite = (). This calibration now permits paleo-temperature reconstruction to better than ±3.4 °C (95% prediction intervals) across biogenic aragonites, regardless of taxon, from 0 to 30 °C. For taxa in this study, aragonitic stylasterid Li/Mg offers the most robust temperature proxy (Li/MgStylasterid (Arag) = ()) with a reproducibility of ±2.3 °C. For the first time, we show that high-Mg calcites have a similar exponential relationship with temperature, but with a lower intercept value (Li/Mg = ()). This calibration opens the possibility of temperature reconstruction using high-Mg calcite corals and coralline algae. The commonality in the relationship between Li/Mg and temperature transcends phylogeny and suggests abiogenic trace metal incorporation mechanism
    corecore