7 research outputs found

    An Automated Approach Towards Sparse Single-Equation Cointegration Modelling

    Get PDF
    In this paper we propose the Single-equation Penalized Error Correction Selector (SPECS) as an automated estimation procedure for dynamic single-equation models with a large number of potentially (co)integrated variables. By extending the classical single-equation error correction model, SPECS enables the researcher to model large cointegrated datasets without necessitating any form of pre-testing for the order of integration or cointegrating rank. Under an asymptotic regime in which both the number of parameters and time series observations jointly diverge to infinity, we show that SPECS is able to consistently estimate an appropriate linear combination of the cointegrating vectors that may occur in the underlying DGP. In addition, SPECS is shown to enable the correct recovery of sparsity patterns in the parameter space and to posses the same limiting distribution as the OLS oracle procedure. A simulation study shows strong selective capabilities, as well as superior predictive performance in the context of nowcasting compared to high-dimensional models that ignore cointegration. An empirical application to nowcasting Dutch unemployment rates using Google Trends confirms the strong practical performance of our procedure

    Sparse generalized Yule–Walker estimation for large spatio-temporal autoregressions with an application to NO2 satellite data

    Get PDF
    We consider a high-dimensional model in which variables are observed over time and space. The model consists of a spatio-temporal regression containing a time lag and a spatial lag of the dependent variable. Unlike classical spatial autoregressive models, we do not rely on a predetermined spatial interaction matrix, but infer all spatial interactions from the data. Assuming sparsity, we estimate the spatial and temporal dependence fully data-driven by penalizing a set of Yule–Walker equations. This regularization can be left unstructured, but we also propose customized shrinkage procedures when observations originate from spatial grids (e.g. satellite images). Finite sample error bounds are derived and estimation consistency is established in an asymptotic framework wherein the sample size and the number of spatial units diverge jointly. Exogenous variables can be included as well. A simulation exercise shows strong finite sample performance compared to competing procedures. As an empirical application, we model satellite measured nitrogen dioxide (NO 2) concentrations in London. Our approach delivers forecast improvements over a competitive benchmark and we discover evidence for strong spatial interactions.</p

    An Automated Approach Towards Sparse Single-Equation Cointegration Modelling

    Get PDF
    In this paper we propose the Single-equation Penalized Error Correction Selector (SPECS) as an automated estimation procedure for dynamic single-equation models with a large number of potentially (co)integrated variables. By extending the classical single-equation error correction model, SPECS enables the researcher to model large cointegrated datasets without necessitating any form of pre-testing for the order of integration or cointegrating rank. We show that SPECS is able to consistently estimate an appropriate linear combination of the cointegrating vectors that may occur in the underlying DGP, while simultaneously enabling the correct recovery of sparsity patterns in the corresponding parameter space. A simulation study shows strong selective capabilities, as well as superior predictive performance in the context of nowcasting compared to high-dimensional models that ignore cointegration. An empirical application to nowcasting Dutch unemployment rates using Google Trends confirms the strong practical performance of our procedure
    corecore