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A B S T R A C T

We consider a high-dimensional model in which variables are observed over time and space.
The model consists of a spatio-temporal regression containing a time lag and a spatial lag
of the dependent variable. Unlike classical spatial autoregressive models, we do not rely on
a predetermined spatial interaction matrix, but infer all spatial interactions from the data.
Assuming sparsity, we estimate the spatial and temporal dependence fully data-driven by
penalizing a set of Yule–Walker equations. This regularization can be left unstructured, but we
also propose customized shrinkage procedures when observations originate from spatial grids
(e.g. satellite images). Finite sample error bounds are derived and estimation consistency is
established in an asymptotic framework wherein the sample size and the number of spatial units
diverge jointly. Exogenous variables can be included as well. A simulation exercise shows strong
finite sample performance compared to competing procedures. As an empirical application,
we model satellite measured nitrogen dioxide (NO2) concentrations in London. Our approach
delivers forecast improvements over a competitive benchmark and we discover evidence for
strong spatial interactions.

1. Introduction

In this paper, we propose the SPatial LAsso-type SHrinkage (SPLASH) estimator: a fully data-driven, sparse estimator for large
patio-temporal models. A unique feature of our estimator is its capability to provide interpretable estimates of spatial interactions
etween many spatial units in a fully data-driven way, while simultaneously tackling important econometric challenges, such as
nherent endogeneity problems and overparameterization of the model. SPLASH specializes in, without being limited to, modelling
utcomes of spatial units that are ordered on a regularly spaced spatial grid. Relevant examples of such settings include the dynamic
odelling of political preferences across voting districts, crime statistics across municipalities, and satellite-measured air pollutants.

llustrating the latter, we apply our estimator to predict NO2 concentrations in Greater London based on daily satellite images.
Spatio-temporal models are powerful tools to explain and exploit dependencies between variables that are observed over both

ime and space, but they come with a number of challenges. In particular, endogeneity issues arise because the contemporaneous
bservations occur on both sides of the model equation. Furthermore, the inclusion of both spatial and temporal lags quickly results
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in heavily parameterized models. To circumvent these issues, a large part of the literature incorporates predetermined spatial weight
matrices that govern the contemporaneous interactions between spatial units. Examples of this modelling strategy are: the spatial
autoregressive model with a Gaussian quasi-maximum likelihood estimator (QMLE) (Lee, 2004); the QMLE estimation of stationary
spatial panels with fixed effects detailed (Yu et al., 2008); an extension of these spatial panels to include spatially autoregressive
disturbances (Lee and Yu, 2010); a further extension to a non-stationary setting in which units can be spatially cointegrated (Yu
et al., 2012); and a computationally beneficial generalized method of moments (GMM) estimator (Lee and Yu, 2014). In some
settings, however, the specification of a pre-determined spatial weight matrix is a non-trivial, and potentially error-prone, step in
the model building process. Accordingly, recent literature focuses on either incorporating multiple weight matrices (e.g. Debarsy
and LeSage, 2018; Zhang and Yu, 2018) or, at the expense of estimating many parameters, directly inferring all spatial interactions
rom the data (e.g. Lam and Souza, 2019; Gao et al., 2019; Ma et al., 2023). Our model is a member of the latter category.

SPLASH offers the flexibility of a data-driven spatial weight matrix, without suffering from endogeneity or overparameterization.
part from the assumption of a generous bandwidth, SPLASH leaves the spatial weight matrix and autoregressive matrix unspecified,
hile employing regularization to estimate sparse solutions. We show how dependencies between neighbouring units on a spatial
rid translate to diagonally structured patterns of sparsity in the spatial weight matrix. Accordingly, SPLASH incorporates a tailored
egularization component to exploit such structured sparsity when present, but without imposing it from the outset. Furthermore,
PLASH does not require the use of external instruments to correct for endogeneity. Building upon previous works by Dou et al.
2016) and Gao et al. (2019), we utilize the generalized Yule–Walker equations to resolve the endogeneity problem. Further
eneralizing the latter contributions, we extend the system of Yule–Walker equations to allow for the inclusion of exogenous
ariables.

Our work is related to the literature on the estimation of (nonparametric) spatial weight matrices and banded spatio-temporal
ector autoregressions. We highlight a number of key contributions along with differences and similarities with respect to the
urrent literature. Lam and Souza (2014) consider a model specification where the spatial units depend linearly on a spatial lag and
xogenous regressors and show that the adaptive lasso can consistently selects the correct sparsity pattern. To solve the endogeneity
ssue, they require the error variance to decay to zero as the time dimension grows large. Ahrens and Bhattacharjee (2015) solve
he endogeneity problem using external instruments. Their two-step lasso estimation procedure selects the relevant instruments in
he first step and the relevant spatial interactions in the second step. This approach, however, requires the instruments and the
diosyncratic component to be serially independent, resulting in limited applicability to spatio-temporal models. Finally, Lam and
ouza (2019) augment a spatial lag model with a set of potentially endogenous variables. They decompose the spatial weight matrix
nto a pre-determined component based on expert knowledge and a sparse adjustment matrix that represents specification errors.
he adjustment matrix is sparsely estimated based on a penalized version of instrumental variables (IV) regression. In contrast to
ur approach, Lam and Souza (2019) do not regularize the interactions between the dependent variables and the variables in the
ugmenting set, and they assume the number of such interactions to be fixed. A fixed number of interactions is inappropriate in
igh-dimensional settings in which the number of spatial units diverges.

Most closely related to our work are several recent contributions on banded estimation of spatio-temporal VARs. First, Gao et al.
2019), and Ma et al. (2023) consider the same model that appears in this work, and they also rely on the generalized Yule–Walker
quations for estimation. The key difference with our paper lies in the method by which the model complexity is controlled during
stimation. Gao et al. (2019) assume the coefficient matrices to be banded with a bandwidth that is small compared to the number
f spatial units. The bandwidth is determined from the data and all parameters within the selected bandwidth are left unregularized.
ur SPLASH estimator, however, has the ability to exploit (structured) sparsity within the bandwidth and thereby improve estimation
nd forecasting performance. In addition, apart from a generous upper bound on the bandwidth to ensure identification, SPLASH
oes not require an a priori choice regarding the bandwidth. The recently developed bagging approach by Ma et al. (2023) does
llow for sparsity within the bands, yet it also requires the calculation of so-called solution paths. That is, a forward addition
nd backward deletion stage are needed to determine the variables that enter the final model specification. In contrast, the SPLASH
stimator provides this solution at once. Furthermore, their approach is not designed to detect diagonally structured forms of sparsity,
hile the ability to do so results in clear performance improvements of SPLASH in both the simulations and the empirical application
ocumented below. Finally, Wang and Tsay (2023) consider constrained estimation of the Yule–Walker equations for, potentially
isspecified, high-dimensional VAR models. As part of their general framework, they consider banded VARs as a special case. Their
odel, however, does not include a contemporaneous (spatial) lag, nor is their estimator designed to uncover the type of (structured)

parsity that is essential to our application.
Several theoretical contributions are put forth in this paper. First, since SPLASH is based on the generalized Yule–Walker

quations, which require estimates of the population autocovariance matrices, we derive a novel convergence result for banded
stimates of the autocovariance matrices. Second, we derive finite-sample performance bounds for the estimation and prediction
rror of our estimator and utilize these bounds to derive asymptotic consistency of SPLASH in a variety of settings. For example,
n the case of a finitely bounded bandwidth and unstructured sparsity, it follows that the number of spatial units 𝑁 may grow at
ny polynomial rate of the number of temporal observations 𝑇 . Finally, we develop a strategy to extend the system of Yule–Walker
quations to accommodate additional exogenous regressors and we derive similar performance bounds of SPLASH in this broader
ramework as well.

We document strong performance of SPLASH in terms of estimation and forecast accuracy, both in simulated settings and in
n empirical application. The simulation results highlight that SPLASH obtains highly competitive predictive accuracy even when
ompared to correctly-specified lattice-based methods. Furthermore, despite the heavier parametrization, the average estimation
2

rrors attained by SPLASH are among the lowest and the estimates are demonstrated to allow for straightforward interpretation
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upon visualization. In our empirical application, we collect daily NO2 column densities from 1 August 2018 to 31 March 2023,
ecorded by the TROPOspheric Monitoring Instrument (TROPOMI) on board of the Corpernicus Sentinel-5 Precursor satellite. Each
patial unit represents an aggregation of a small number of pixels on the satellite image. We again find that SPLASH is a competitive
lternative to popular lattice-based methods in terms of forecasting performance, and that spatial–temporal methods in general
eliver significant forecast improvements over regularized estimation of a reduced form VAR. In addition, we find evidence for
patial interactions between first-order and second-order neighbours (i.e. neighbours of neighbours). By visualizing these spatial
nteractions, we shed light on the dominant flow vectors of NO2 which can aid the development of regional NO2 containment

policies.
This paper is organized as follows. In Section 2 we introduce the spatio-temporal vector autoregressive model and discuss its

stability and sparsity properties. Next, we develop the sparse estimation strategy of this model in Section 3, which includes banded
covariance matrix estimation (3.1) and the SPLASH estimator (3.2). The simulation results are described in Section 4, followed by
the empirical application in Section 5. We conclude in Section 6.

Notation

The indicator function 1{𝐴} equals 1 if 𝐴 is true and zero otherwise. For a vector 𝒙 ∈ R𝑁 , the 𝐿𝑝-norm of 𝒙 is denoted
𝒙‖𝑝 =

(
∑𝑁
𝑖=1 |𝑥𝑖|

𝑝)1∕𝑝, with ‖𝒙‖∞ = max𝑖 ||𝑥𝑖|| as an important special case. The total number elements in 𝒙 is denoted by
𝒙| and the number of non-zero elements in 𝒙 is denoted by M (𝒙) =

∑𝑁
𝑖=1 1{𝑥𝑖 ≠ 0}. The Orlicz norm is defined as ‖⋅‖𝜓 =

nf
{

𝑐 > 0 ∶ E
[

𝜓 (| ⋅ |∕𝑐)
]

≤ 1
}

for any 𝜓(⋅) ∶ R+ → R+ being a convex, increasing function with 𝜓(0) = 0 and 𝜓(𝑥) → ∞ as 𝑥 → ∞.
In addition, we rely on several matrix norms. For a matrix 𝑨 ∈ R𝑀×𝑁 , the matrix norms induced by the vector 𝐿𝑝-norms are given
by ‖𝑨‖𝑝 = sup𝒙∈R𝑀

(

‖𝑨𝒙‖𝑝 ∕ ‖𝒙‖𝑝
)

. Noteworthy examples are: ‖𝑨‖1 = max1≤𝑗≤𝑁
∑𝑀
𝑖=1

|

|

|

𝑎𝑖𝑗
|

|

|

, the spectral norm ‖𝑨‖2 =
[

𝜆max(𝑨′𝑨)
]1∕2

where 𝜆max(⋅) stands for the maximum eigenvalue, and ‖𝑨‖∞ = max1≤𝑖≤𝑀
∑𝑁
𝑗=1

|

|

|

𝑎𝑖𝑗
|

|

|

. Finally, we define ‖𝑨‖⊢ = max
{

‖𝑨‖1 , ‖𝑨‖∞
}

.
Let 𝑆 ⊆ {1,… , 𝑁} denote an index set with cardinality |𝑆|. Then, 𝒙𝑆 denotes the |𝑆|-dimensional vector with the elements of 𝒙
indexed by 𝑆, whereas 𝑨𝑆 denotes the (𝑀×|𝑆|)-dimensional matrix containing the columns of 𝑨 indexed by 𝑆. In addition, we define
D𝐴(𝑘) =

{

𝑎𝑖𝑗 ∣ |𝑖 − 𝑗| = 𝑘
}

as the collections of elements lying on (pairs of) the diagonals in the matrix 𝑨, and Bℎ
(

𝑨
)

=
(

𝑎𝑖𝑗1{|𝑖−𝑗|≤ℎ}
)

as the banded counterpart of 𝑨 with bandwidth ℎ.

2. The spatio-temporal vector autoregression

As in the recent paper by Gao et al. (2019), we consider the spatio-temporal vector autoregression

𝒚𝑡 = 𝑨𝒚𝑡 + 𝑩𝒚𝑡−1 + 𝝐𝑡, 𝑡 = 1,… , 𝑇 , (1)

where 𝒚𝑡 = (𝑦1𝑡,… , 𝑦𝑁𝑡)′ stacks the observations at time 𝑡 over a collection of 𝑁 spatial units. The contemporaneous spatial
dependence between these spatial units is governed by the matrix 𝑨 = (𝑎𝑖𝑗 )𝑁𝑖,𝑗=1 with 𝑎𝑖𝑖 = 0 for 𝑖 = 1,… , 𝑁 . The matrix 𝑩 = (𝑏𝑖𝑗 )𝑁𝑖,𝑗=1
incorporates dependence on past realizations. Finally, 𝝐𝑡 is the innovation vector driving the variation in 𝒚𝑡.

A possible application of model (1) is the use of satellite data to study the concentration of an air pollutant over time (see the
empirical application, Section 5, for more details). Overlaying each satellite image with a spatial grid of 𝑁 grid cells, we record
the pixel value of each grid cell at time 𝑡 in the vector 𝒚𝑡 = (𝑦1𝑡,… , 𝑦𝑁𝑡)′. From a physics viewpoint, the spatial lag 𝑨𝒚𝑡 and the
temporal lag 𝑩𝒚𝑡−1 can capture diffusion processes in the atmosphere. That is, the concentration of the pollutant in a specific grid
cell is determined by its past concentration and the inflow(outflow) of the pollutant from(to) neighbouring cells. These interactions
may reasonably be expected to be localized in the sense that grid cells should be mainly influenced by the concentrations nearby,
an observation that we return to in Section 2.2. The main notation and theoretical results are developed on the basis of model
(1). In Section 3.3, we extend the model by including exogenous variables. In the context of air pollutants, this extension enables
the explicit modelling of mechanisms that influence the dynamic evolution of pollutant concentrations beyond dispersion, such as
atmospheric transport via air currents or new emissions.

2.1. Stability and dependence

To ensure that the spatio-temporal VAR defines a stable dynamic system, we restrict the parameter space in the following way.

Assumption 1 (Stability). We require: (a) ‖𝑨‖⊢ = max
{

‖𝑨‖1 , ‖𝑨‖∞
}

≤ 𝛿𝐴 < 1, and (b) ‖𝑩‖⊢ ≤ 𝛿𝐵 and 𝛿𝐶 ∶= 𝛿𝐵
1−𝛿𝐴

< 1.

Assumption 1 ensures that (1) has a stable reduced form VAR(1) specification. This follows from the following two observations.
First, Assumption 1(a) bounds the maximum row and column sums of 𝑨 and thereby constraints the contemporaneous dependence
between the time series. Invertibility of 𝑰𝑁 − 𝑨 is guaranteed since ‖𝑨‖2 ≤

√

‖𝑨‖1 ‖𝑨‖∞ ≤ 𝛿𝐴 < 1. Hence, we can define the
reduced-form representation as

𝒚𝑡 = 𝑪𝒚𝑡−1 +𝑫𝝐𝑡, (2)

with 𝑪 = (𝑰𝑁 − 𝑨)−1𝑩 and 𝑫 = (𝑰𝑁 − 𝑨)−1. It follows from ‖𝑫‖⊢ ≤
∑∞
𝑗=0 ‖𝑨‖

𝑗
⊢ = 1

1−𝛿𝐴
that the absolute row and column sums

of
(

𝑰𝑁 −𝑨
)−1 are bounded, which is the counterpart of assumption B2 in Dou et al. (2016). Second, Assumption 1(b) controls the

serial dependence of 𝒚𝑡. Indeed, we conclude from ‖𝑪‖2 ≤ ‖𝑪‖⊢ ≤ 𝛿𝐶 < 1 that both unit roots and explosive behaviour of the
reduced form specification are ruled out.
3
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Remark 1. Assumption 1 is defined in terms of ‖⋅‖⊢. Since ‖𝑨‖1 = ‖

‖

𝑨′
‖

‖∞ ≤ ‖𝑨‖⊢ for any matrix 𝑨, the norm ‖⋅‖⊢ is convenient
when bounding products of matrices containing transposes.

Remark 2. Assumption 1 echoes the spatial econometrics literature in which the spatial parameter 𝜆 is bounded from above and
he prespecified spatial weight matrix, say 𝑾 𝑁 , is standardized (see, e.g. Lee, 2004 and Lee and Yu, 2010). Typically, the product
𝑾 𝑁 – the natural counterpart of the matrix 𝑨 – is required to fulfil conditions similar to ‖𝑨‖⊢ ≤ 𝛿𝐴 < 1. For instance, it is not

uncommon to row-normalize 𝑾 𝑁 (each absolute row sum equal to 1) and restrict 𝜆 < 1, see pages 1903–1904 of Lee (2004). If
𝑁 is symmetric, then ‖

‖

𝜆𝑾 𝑁
‖

‖⊢ < 1 holds.

Naturally, the dependence structure of {𝒚𝑡}𝑡∈Z is also determined by the innovation process, on which we impose the following
ssumption.

ssumption 2 (Innovations).

(a) The sequence {𝝐𝑡}𝑡∈Z is a covariance stationary, martingale difference (m.d.) process with respect to the filtration F𝑡−1 =
𝜎
(

𝝐𝑡−1, 𝝐𝑡−2,…
)

, and geometrically strong mixing (𝛼-mixing). That is, the mixing coefficients {𝛼𝑚} satisfy 𝛼𝑚 ≤ 𝑐2𝑒−𝛾𝛼𝑚 for
all 𝑚 and some constants 𝑐2, 𝛾𝛼 > 0.

(b) The smallest eigenvalue of 𝜮𝜖 = E(𝝐1𝝐′1) = (𝜎𝑖𝑗 )𝑁𝑖,𝑗=1 has a positive lower bound, and ‖

‖

𝜮𝜖
‖

‖⊢ ≤ 𝐶𝜖 <∞.
(c) Either one of the following assumptions holds:

(c1) For 𝜓(𝑥) = 𝑥𝑑 , we have sup𝑖,𝑡 ‖‖𝜖𝑖𝑡‖‖𝜓 =
(

E|𝜖𝑖𝑡|𝑑
)1∕𝑑 ≤ 𝜇𝑑 < ∞ for 𝑑 ≥ 4.

(c2) For 𝜓(𝑥) = exp(𝑥) − 1, we have sup𝑖,𝑡 ‖‖𝜖𝑖𝑡‖‖𝜓 ≤ 𝜇∞ < ∞.

Similarly to Masini et al. (2022), Assumption 2 restricts the stochastic properties of the innovation process {𝝐𝑡}. First,
ssumption 2(a) ensures that the memory of the innovation process fades sufficiently fast and limits the cross-sectional dependence
etween the elements in 𝝐𝑡. The m.d. assumption implies that E(𝝐𝑡𝒚′𝑡−𝑗 ) = 𝟎 while the mixing assumption controls the serial
orrelation in the data. Assumption 2(b) restricts the contemporaneous dependence in 𝝐𝑡. The lower bound on the minimum
igenvalue of 𝜮𝜖 implies that each innovation contains unique information, while the upper bound on the maximum eigenvalue of 𝜮𝜖
ounds the degree of cross-sectional dependence, for example by excluding common factor structures. Polynomial or exponential
ail decay of the distribution of the innovations is imposed through either Assumption 2(c1) or Assumption 2(c2), respectively.
he type of tail decay will directly influence the growth rates we can allow for 𝑁 and 𝑇 . The discussions in Masini et al. (2022)
emonstrate that Assumption 2 allows for a wide range of innovation models.

While these assumptions are sufficient to estimate the reduced form VAR in (2), there is a potential issue with endogeneity. In
articular, since 𝒚𝑡 appears on both sides of (1), equation-by-equation OLS estimation is inconsistent for general 𝑨 and 𝑩.1 This
ssue can be addressed through the use of instrumental variables (e.g. Ahrens and Bhattacharjee, 2015; Lam and Souza, 2019) or
ia the generalized Yule–Walker equations, as considered in Gao et al. (2019) and this paper. Under Assumptions 1 and 2, we can
ost-multiply (1) by 𝒚′𝑡−1 and take expectations to obtain

𝜮1 = 𝑨𝜮1 + 𝑩𝜮0. (3)

y plugging in estimates of the population covariance matrices 𝜮1 and 𝜮0 in (3), we obtain a system of equations from which the
arameters in 𝑨 and 𝑩 can be estimated. However, with each row in (3) defining 𝑁 equations with 2𝑁 − 1 unknowns, additional
tructure is required to identify and estimate the parameters.

.2. Structured sparsity

There are several possibilities to introduce structure into 𝑨 and 𝑩. Early spatial econometrics models, e.g. the spatial autoregres-
ive (SAR) model or spatial Durbin model (SDM), incorporate spatial effects through the product 𝜆𝑾 𝑁 (with 𝑾 𝑁 pre-specified).
he specification 𝑨 = 𝜆𝑾 𝑁 imposes substantial structure on 𝑨 and leaves only the single parameter 𝜆 to estimate. Dou et al. (2016)
onsider a more general setting in which each row of 𝑾 𝑁 receives its own spatial autoregressive parameter. Specifically, they set
= diag(𝝀0)𝑾 𝑁 and 𝑩 = diag(𝝀1) + diag(𝝀2)𝑾 𝑁 , and estimate the 3𝑁 coefficients in (𝝀′0,𝝀

′
1,𝝀

′
2)

′. Gao et al. (2019) require 𝑨 and 𝑩
o be banded matrices. We also employ a bandedness assumption, although our bandwidth may be substantially wider than in Gao
t al. (2019).

ssumption 3 (Banded Matrices). Recall 𝑨 = (𝑎𝑖𝑗 )𝑁𝑖,𝑗=1, 𝑩 = (𝑏𝑖𝑗 )𝑁𝑖,𝑗=1, and 𝜮𝜖 = (𝜎𝑖𝑗 )𝑁𝑖,𝑗=1. We have: (a) 𝑎𝑖𝑗 = 𝑏𝑖𝑗 = 0 for all |𝑖 − 𝑗| > 𝑘0
ith 𝑘0 ≤ ⌊(𝑁 − 1)∕4⌋, and (b) 𝜎𝑖𝑗 = 0 for all |𝑖 − 𝑗| > 𝑙0.

1 As pointed out by an anonymous referee, notable exceptions occur when 𝑨 is diagonal, which is ruled out in the current setting, or when 𝑨 is triangular.
4

The latter setting may be justifiable for certain structural VARs, but seems unrealistic in most spatial settings.
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Fig. 1. Sparsity patterns in the matrices 𝑨 and 𝑩 due to localized interactions. (a) A (5 × 5) grid of spatial units with arrows depicting the nearest horizontal
(blue), vertical (red), and diagonal (grey) interactions for 𝑦1 and 𝑦14. (b) The sparsity pattern resulting from nearest horizontal, nearest vertical and nearest
iagonal interactions. The first row in the (25 × 25) matrix has three non-zero elements corresponding to the horizontal interaction 𝑦1 → 𝑦2 causing a non-zero

(1,2) element (blue), the vertical interaction 𝑦1 → 𝑦6 causing a non-zero (1,6) element (red), and 𝑦1 → 𝑦7 causing a non-zero (1, 7) element (grey). The full
colour pattern is recovered by applying this reasoning to all remaining cells in the grid. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Assumption 3 serves two purposes. First, for each spatial unit 𝑖 = 1,… , 𝑁 , the matrices 𝑨 and 𝑩 are banded to have no more
than 𝑁 unknown parameters per equation. With 𝑁 moment conditions for each 𝑖, Assumption 3(a) is the widest bandwidth that
enables identification of the parameters. In many applications, including the one considered in this paper, the actual bandwidth
may be smaller than the upper bound imposed in Assumption 3. While a smaller bandwidth is neither required nor imposed, it will
result in additional sparsity that our estimator is designed to exploit. Second, we demonstrate in Theorem 1 that the combination
of Assumptions 3(a)–(b) implies that the (𝑁 ×𝑁) autocovariance matrices 𝜮𝑗 = E(𝒚𝑡𝒚′𝑡−𝑗 ) are approximately banded. This in turn is
exploited in the Yule–Walker estimation approach, in which we incorporate banded estimation of the autocovariance matrices to
improve the convergence rates of our estimator.

Even under Assumption 3, the number of unknown parameters in 𝑨 and 𝑩 may grow quadratically in 𝑁 . Accurate estimation
f all these parameters becomes infeasible even for moderately sized systems. To alleviate this curse of dimensionality, we rely on
parsity, which in the present context occurs when two spatial units do not interact with each other (given their interactions with
ther units within the system). We demonstrate how a particular, and exploitable, sparsity pattern arises when the spatial units are
rdered in a structured way.

As an illustrative example, let us consider repeated measurements on the (5×5) spatial grid shown in Fig. 1(a). The 𝑁 = 25 spatial
nits are labelled 𝑦1 up to 𝑦25 and enumerated row-wise. This ordering of the spatial entities creates an implicit notion of proximity
nd we intuitively expect economic/physical interactions to be most pronounced at short length scales. For instance, returning to our
unning example of air pollution, we expect elevated concentrations of pollutants (e.g. due to high traffic or polluting industries) to
iffuse through space and mostly affect neighbouring locations. Fig. 1(a) shows the short-range interactions of 𝑦1 and 𝑦14 towards
heir horizontal (blue), vertical (red) and diagonal (grey) nearest neighbour. If these are the only possible interactions, then the
esulting sparsity pattern in the (25 × 25) matrices 𝑨 and 𝑩 would correspond to the coloured elements in Fig. 1(b) (see its caption
or further explanations). The nonzero elements in 𝑨 and 𝑩 are thus seen to cluster in specific, dense diagonals with an occasional
ero whenever neighbours are absent at the grid boundary. It is easy to verify that more distant neighbours (in either direction) are
till found on diagonals but located further away from the main diagonal. Not knowing a priori in which direction and at which
istance these interactions become unimportant, we develop a penalized estimator that is able to detect and efficiently estimate
uch diagonal sparsity patterns without imposing this sparsity structure from the outset.

. Sparse estimation

In this section, we develop the estimation and statistical theory for a sparse estimator of the spatio-temporal VAR in (1). As
entioned in Section 2.2, we exploit the banded structure in 𝑨 and 𝑩 via banded estimation of the sample autocovariance matrices.
ccordingly, we start off by deriving finite-sample error bounds attained by banded sample auto-covariance matrices as estimators
f their population counterparts. Afterwards, we fully develop our estimator and investigate its theoretical properties.

.1. Banded autocovariance matrix estimation

Assumption 3 plays a crucial role in identifying the parameters in 𝑨 and 𝑩, while simultaneously opening up the door for
5

fficiency gains in the estimation of the autocovariance matrices in (3). Since the inverse of a banded matrix is in general not
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banded itself, the matrix 𝑪 = (𝑰𝑁−𝑨)−1𝑩 containing the autoregressive coefficients of the reduced-form representation of the spatio-
temporal VAR in (2) cannot be expected to be banded. However, given its structure, it may be expected to be well-approximated
by a banded matrix. Consequently, combining the approximate bandedness of 𝑪 with the bandedness of 𝜮𝜖 , a reasonable conjecture
would be that the autocovariance matrices of 𝒚𝑡 are approximately banded as well. Indeed, we formalize this conjecture in the
following theorem, along with the expected error bounds one may expect from utilizing a banded estimation approach.

Theorem 1 (Convergence Rates for Banded Sample Autocovariance Matrices). For any matrix 𝑴 = (𝑚𝑖𝑗 ), its ℎ-banded counterpart is defined
as Bℎ

(

𝑴
)

= (𝑚𝑖𝑗1{|𝑖−𝑗|≤ℎ}). Define the (𝑁 × 2𝑁) matrix 𝑽̂ ℎ =
[

Bℎ
(

𝜮̂1
)′

Bℎ
(

𝜮̂0
)]

with 𝜮̂1 =
1
𝑇
∑𝑇
𝑡=2 𝒚𝑡𝒚

′
𝑡−1 and 𝜮̂0 =

1
𝑇
∑𝑇
𝑡=2 𝒚𝑡𝒚

′
𝑡, and

choose

ℎ ∶= ℎ(𝜖) =

⎛

⎜

⎜

⎜

⎝

max
{

log
(

𝐾−𝛿𝑐
𝛿𝑐

)

, log
(

𝐶1
𝜖

)}

|

|

log(𝛿𝐴)||
+ 1

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

log
(

𝐶2
𝜖

)

|

|

log(𝛿𝐶 )||
+ 2

⎞

⎟

⎟

⎟

⎠

(𝑘0 − 1) + 2𝑙0 + 1, (4)

for some 𝐾 ∈ (𝛿𝑐 , 1), with 𝐶1 =
34𝐶𝜖

(1−𝛿𝐴)2(1−𝐾2)2 and 𝐶2 =
4𝐶𝜖

(1−𝛿𝐴)2(1−𝛿2𝐶 )
. Then, ‖‖

‖

𝑽 ℎ − 𝑽 ‖

‖

‖⊢
≤ 4𝜖 with a probability of at least

(a) 1 − 2P1(𝜖,𝑁, 𝑇 ) under Assumptions 1–3 using Assumption 2(b1) (polynomial tails),
(b) 1 − 2P2(𝜖,𝑁, 𝑇 ) under Assumptions 1–3 using Assumption 2(b2) (exponential tails),

where

P1(𝜖,𝑁, 𝑇 ) = (2ℎ + 1)𝑁

[

(

𝑏1𝑇
(1−𝛿)∕3 +

[2ℎ + 1]𝑏3
𝜖

)

exp

(

−𝑇
(1−𝛿)∕3

2𝑏21

)

+
𝑏2[2ℎ + 1]𝑑

𝜖𝑑𝑇
𝛿
2 (𝑑−1)

]

,

for some 0 < 𝛿 < 1, and

P2(𝜖,𝑁, 𝑇 ) = (2ℎ + 1)𝑁
⎡

⎢

⎢

⎣

𝜅1[2ℎ + 1]
𝜖

+ 2
𝜅2

(

𝑇 𝜖2

[2ℎ + 1]2

)
1
7 ⎤
⎥

⎥

⎦

exp
⎛

⎜

⎜

⎝

− 1
𝜅3

(

𝑇 𝜖2

[2ℎ + 1]2

)
1
7 ⎞
⎟

⎟

⎠

.

The constants 𝑏𝑖, 𝜅𝑖, for 𝑖 = 1, 2, 3, are positive and independent of 𝑁 and 𝑇 .

Theorem 1 shows that banded estimators for 𝜮0 and 𝜮1 provide an accurate approximation to 𝑽 =
[

𝜮′
1 𝜮0

]

. Each of these
banded matrices has at most 2ℎ(𝜖) + 1 nonzero elements in their columns/rows. In other words, given 𝜖, 𝑙0 and 𝑘0, Assumptions 1–3
guarantee that 𝜮0 and 𝜮1 can be well-approximated by matrices with bandwidths smaller than 𝑁 . In the following section, we
develop our sparse estimator for 𝑨 and 𝑩 and show that the established approximability of the population autocovariance matrices
improves the convergence rate of the estimator.

3.2. The SPLASH (𝛼, 𝜆) estimator

In this section, we introduce a sparse estimator for large spatio-temporal models generated by (1). Our estimator essentially
combines generalized Yule–Walker estimation with a sparse group penalty (e.g. Simon et al., 2013). Estimation via the Yule–Walker
equations is adopted to control for endogeneity, while the added penalization shrinks the estimates towards the diagonally structured
sparsity displayed in Fig. 1. Compared to Gao et al. (2019), we hereby gain the ability exploit sparsity within the imposed bandwidths
of 𝑨 and 𝑩. In practice, this means that we can assume a much larger bandwidth without substantially sacrificing estimation
accuracy.

3.2.1. Definition
The formal definition of our estimator requires further notation. Part of this notation comes naturally if we briefly review the

generalized Yule–Walker estimator. First, we rewrite the generalized Yule–Walker conditions in (3) more compactly as

𝜮′
1 =

[

𝜮′
1 𝜮0

] [

𝑨 𝑩
]′ =∶ 𝑽 𝑪 ′. (5)

The 𝑖th column of 𝑪 ′ contains all coefficients that belong to the 𝑖th equation in (1). Assumption 3 requires several of these coefficients
to be zero, so we exclude these from the outset. We collect all remaining (possibly) nonzero coefficients of the 𝑖th equation in the
vector 𝒄𝑖, and define 𝑽 𝑖 as the matrix containing the corresponding columns from 𝑽 . In the population, we have 𝑽 𝑖𝒄𝑖 = 𝜮′

1𝒆𝑖 =∶ 𝝈𝑖
for 𝑖 = 1,… , 𝑁 , with 𝒆𝑖 being the 𝑖th column of the (𝑁 ×𝑁) identity matrix. Sample counterparts of 𝑽 𝑖 and 𝝈𝑖 are readily available
from the sample autocovariance matrices. More explicitly, Gao et al. (2019) set 𝝈̂𝑖 = 1

𝑇
∑𝑇
𝑡=2 𝒚𝑡−1𝑦𝑖𝑡 and construct 𝑽̂ 𝑖 from the

appropriate columns of 𝑽̂ =
[

𝜮̂′
1 𝜮̂0

]

. Motivated by 𝝈𝑖 − 𝑽 𝑖𝒄𝑖 = 𝟎, they define their estimator 𝒄̂𝐺𝑀𝑊 𝑌
𝑖 as the following minimizer:

𝒄̂𝐺𝑀𝑊 𝑌
𝑖 = arg min

𝒄

‖

‖

‖

𝝈̂𝑖 − 𝑽̂ 𝑖𝒄
‖

‖

‖

2

2
. (6)

We will adjust this objective function in three ways. First, we define our estimator in terms of banded estimated covariance
matrices. Second, we add a group penalty to sparsely estimate the parameters in 𝑨 and 𝑩. To exploit the diagonally structured
6

parsity in Fig. 1, if it is present, we allow for a penalization of complete diagonals. This form of penalization, however, renders
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Fig. 2. A visualization on the construction of 𝑽̂ 2,ℎ for 𝑁 = 5. (a) If ℎ = 1, then grey elements in 𝑨 and 𝑩 are (potentially) nonzero whereas white elements are
ero by construction. Enumerating along the second row, the active elements are in the set {1, 3, 6, 7, 8}. (b) We select the columns from 𝑽̂ ℎ corresponding to
he active set. (c) The matrix 𝑽̂ 2,ℎ is the submatrix of 𝑽̂ ℎ with only active columns.

quation-by-equation estimation of the parameters infeasible. Therefore, recalling the definitions of Bℎ
(

𝜮̂1
)

and 𝑽̂ ℎ in Theorem 1,
we define 𝝈̂ℎ = vec

(

Bℎ
(

𝜮̂1
)′) and 𝑽̂ (𝑑)

ℎ = diag
(

𝑽̂ 𝑖,ℎ,… , 𝑽̂ 𝑁,ℎ
)

, where 𝑽̂ 𝑖,ℎ contains the columns of 𝑽̂ ℎ that multiply the elements in
𝒄𝑖 (see Fig. 2 for an illustration). Finally, we construct the penalty function. We define an index set that partitions the vector 𝒄 into
sub-vectors, denoted {𝒄𝑔}, that contain the non-zero diagonals of 𝑨 and 𝑩 that are admissible under Assumption 3 as

G𝐴 ∶=
{

𝑔 ⊂ N ∶ 𝒄𝑔 = D𝐴(𝑘), 𝑘 ∈ {1,… , ⌊(𝑁 − 1)∕4⌋}
}

,

G𝐵 ∶=
{

𝑔 ⊂ N ∶ 𝒄𝑔 = D𝐵(𝑘), 𝑘 ∈ {0,… , ⌊(𝑁 − 1)∕4⌋}
}

,
(7)

espectively, and let G = G𝐴 ∪ G𝐵 . Based on this notation, we define our objective function as

L𝛼(𝒄; 𝜆) =
‖

‖

‖

𝝈̂ℎ − 𝑽̂ (𝑑)
ℎ 𝒄‖‖

‖

2

2
+ 𝜆

(

(1 − 𝛼)
∑

𝑔∈G

√

|𝑔| ‖‖
‖

𝒄𝑔
‖

‖

‖2
+ 𝛼 ‖𝒄‖1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶𝑃𝛼 (𝒄)

)

= ‖

‖

‖

𝝈̂ℎ − 𝑽̂ (𝑑)
ℎ 𝒄‖‖

‖

2

2
+ 𝜆𝑃𝛼(𝒄). (8)

he spatial lasso-type shrinkage estimator, abbreviated SPLASH(𝛼, 𝜆) or SPLASH for short, is defined as the minimizer of (8),
.e. 𝒄̂ = arg min𝒄 L𝛼(𝒄; 𝜆). The influence of the penalty function 𝑃𝛼(𝒄) is governed by the penalty parameter 𝜆 and the second

hyperparameter 𝛼 balances group-structured sparsity versus individual sparsity. At the extremities of 𝛼 ∈ [0, 1] we find the group
asso (𝛼 = 0) and the lasso (𝛼 = 1). Intermediate values of 𝛼 will shrink groups of diagonal coefficients in 𝑨 and 𝑩, and individual
arameters. The SPLASH solution promotes completely sparse diagonals and sparse elements within nonzero diagonals, and thus
hrinks towards the sparsity patterns displayed in Fig. 1(b).

.2.2. Implementation
Algorithm 1 describes how to apply the SPLASH estimator. There are three key parts: (1) the selection of the bandwidth parameter

, (2) the determination of the hyperparameters 𝛼 and 𝜆, and (3) the minimization of the objective function L𝛼(𝒄; 𝜆). Further details
n parts (1) and (3) can be found in the articles that are referenced in Algorithm 1. The hyperparameters are determined using time
eries cross-validation. The grid values being outlined in the algorithm are mere recommendations. Finer grids can yield better
olutions at the cost of higher computational demands. If computational resources are scarce, then hyperparameters might also be
re-specified (e.g. fixing 𝛼 to say 0.5 in order to obtain a one-dimensional grid search). Finally, we mention that there is no need
o manually implement the steps in Algorithm 1. An efficient implementation of this procedure is readily available as an R package
n the website of one of the authors.2

.2.3. Theoretical properties
We require an additional assumption on the DGP to ensure that 𝑨 and 𝑩 in (1) are uniquely identified. To this end, we leverage

n Assumption 3, which enables unique identification of 𝑨 and 𝑩 via a straightforward full-rank condition on sub-matrices of the
utocovariance matrices that appear in the generalized Yule–Walker equations.

ssumption 4 (Restricted Minimum Eigenvalue). Assume that

𝜙min(𝒙) ∶= min
𝒙∈R2𝑁 ∶M (𝒙)≤𝑁

‖𝑽 𝒙‖2
‖𝒙‖2

≥ 𝜙0 > 0.

2 https://sites.google.com/view/etiennewijler/code
7

https://sites.google.com/view/etiennewijler/code
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Algorithm 1 SPLASH(𝛼, 𝜆) implementation

1: Compute the (𝑁 ×𝑁) matrices 𝜮̂0 =
1
𝑇
∑𝑇
𝑡=2 𝒚𝑡𝒚

′
𝑡 and 𝜮̂1 =

1
𝑇
∑𝑇
𝑡=2 𝒚𝑡𝒚

′
𝑡−1.

2: Determine the bandwidth ℎ using the bootstrap procedure in Guo et al. (2016, p. 7).
3: Using the selected bandwidth of step 2, calculate Bℎ

(

𝜮̂0
)

, Bℎ
(

𝜮̂1
)

, and construct 𝝈̂ℎ, 𝑽̂ (𝑑) and G as in Section 3.2.1.
4: Define a grid of hyperparameter values. Depending on computational power, we suggest 𝛼grid =

{

0, 0.25, 0.5, 0.75, 1
}

and a
vector of 𝐾 logarithmically spaced points for 𝜆. That is, with 𝜆max = max

(

max𝑔∈G
1
𝑇
‖

‖

‖

𝑽̂ (𝑑)′
ℎ,𝑔 𝝈̂ℎ

‖

‖

‖2
∕
√

|𝑔|,max1≤𝑖≤𝑁𝑐
|

|

|

𝑽̂ (𝑑)′
ℎ,𝑖 𝝈̂ℎ

|

|

|

)

and
𝜆min = 𝜂𝜆max for some small 𝜂 > 0, take 𝜆grid =

{

𝜆1,… , 𝜆𝐾
}

where

𝜆𝑖 = exp
(

ln
(

𝜆max
)

− 𝑖 − 1
𝐾 − 1

[

ln(𝜆max) − ln(𝜆min)
])

𝑖 = 1,… , 𝐾.

5: For each combination (𝛼, 𝜆), use the SGL algorithm as in Simon et al. (2013) to compute the SPLASH solution 𝒄̂(𝛼, 𝜆). Select the
solution with the hyperparameters that perform best via time series cross-validation (see, e.g. Hyndman and Athanasopoulos,
2018).

Assumption 4 states that every sub-matrix containing at most 𝑁 columns from 𝑽 has full column-rank and a minimum singular
value bounded away from zero. Related assumptions appear in Bickel et al. (2009, Section 4), who refer to 𝜙min(𝒙) as a restricted
eigenvalue and use this quantity to construct sufficient conditions for their restricted eigenvalue condition. Assumption 4 fits our
framework particularly well, as the assumed maximum bandwidth of the matrices 𝑨 and 𝑩 in Assumption 3 imply that the diagonal
locks of the matrix 𝑽 (𝑑) never contain more than 𝑁 unique columns of 𝑽 . Using this property, we show in Lemma 1 of Appendix A

that a Sparse Group Lasso compatibility condition is implied by Assumption 4.
Equipped with Assumption 4, we find the following finite-sample bounds on the prediction and estimation error of SPLASH.

Theorem 2. Define

𝜔̄𝛼 = max
{

(1 − 𝛼)
∑

𝑔∈G𝑆

√

|𝑔|, 𝛼
√

|𝑆|
}

,

where G𝑠 =
{

𝑔 ∈ G ∶ 𝒄𝑔 ≠ 𝟎
}

and 𝑆 =
{

𝑗 ∶ 𝑐𝑗 ≠ 0
}

. Under Assumptions 3–4 and ‖𝑽 ‖⊢ ≤ 𝐶𝑉 , it holds that

‖

‖

‖

𝑽̂ (𝑑)
ℎ (𝒄̂ − 𝒄)‖‖

‖

2

2
+ 𝜆

(

(1 − 𝛼)
∑

𝑔∈G

√

|𝑔| ‖‖
‖

𝒄̂𝑔 − 𝒄𝑔
‖

‖

‖2
+ 𝛼 ‖𝒄̂ − 𝒄‖1

)

≤
64𝜔̄2

𝛼𝜆
2

𝜙2
0

(9)

with a probability of at least

(a) 1 − 10P1
(

𝑓 (𝜆, 𝜙0), 𝑁, 𝑇
)

when Assumption 2(b1) (polynomial tail decay) is valid, or
(b) 1 − 10P2

(

𝑓 (𝜆, 𝜙0), 𝑁, 𝑇
)

when Assumption 2(b2) (exponential tail decay) is valid,

here P1 (𝑥,𝑁, 𝑇 ) and P2 (𝑥,𝑁, 𝑇 ) are defined in Theorem 1 and 𝑓 (𝜆, 𝜙0) = min
(

𝜆1∕2

24 ,
𝜆

96𝐶𝑣
, 𝜙012

)

.

Theorem 2 contains a finite-sample bound on the prediction and estimation error for the SPLASH(𝛼, 𝜆) estimator. It offers some
interesting insights. First, we focus on the probability with which inequality (9) holds. For VAR estimation with a penalized least-
quares objective function, such probabilities are governed by tail probabilities of the process { 1

𝑇
∑𝑇
𝑡=1 𝑦𝑖𝑡𝜖𝑗𝑡} (see, e.g. Lemma 4

in Kock and Callot, 2015, or Lemmas 5–6 in Medeiros and Mendes, 2016). Because Yule–Walker estimation relies primarily on
autocovariance matrix estimation, our probability depends on the tail decay of the distribution of {‖‖

‖

𝑽 ℎ − 𝑽 ‖

‖

‖⊢
}. Overall, the

probability of (9) improves through faster tail decay of the innovation distribution (compare cases (a) and (b)) and banded
autocovariance matrix estimation (Theorem 1). Second, we look closer at the performance upper bound itself. The right-hand side
of (9) demonstrates that the upper bound on the prediction and estimation error is increasing in 𝜔̄𝛼 , which in turn is increasing
in the bandwidths 𝑘0 and 𝑙0, increasing in the group sizes (𝛼 < 1), and increasing in the number of relevant interactions |𝑆|
(𝛼 > 0). Furthermore, the prediction and estimation error increases in the degree of penalization. Whereas this seemingly suggests to
minimize 𝜆 as to improve performance bounds, we emphasize that the effect of regularization in Theorem 2 is two-fold: increasing
regularization deteriorates the performance bound, but increases the probability of the set on which the performance bound holds.
Intuitively, shrinkage induces finite-sample bias which worsens accuracy, but simultaneously reduces sensitivity to noise, thereby
enabling performance guarantees at higher degrees of certainty.

The aforementioned effects can also be demonstrated by means of an asymptotic analysis. Based on Theorem 2, we derive the
conditions for convergence of the prediction and estimation errors in the following corollary. The exact convergence rates are also
provided.

Corollary 1. Let 𝜆 ∈ 𝑂 (𝑇 −𝑞𝜆 ), 𝑁 ∈ 𝑂 (𝑇 𝑞𝑁 ), |
|

G𝑆 || ∈ 𝑂
(

𝑇 𝑞𝑔
)

, |𝑆| ∈ 𝑂 (𝑇 𝑞𝑠 ), 𝑘0, 𝑙0 ∈ 𝑂 (𝑇 𝑞𝑘 ), where 𝑞𝜆, 𝑞𝑁 , 𝑞𝑠, and 𝑞𝑘 are fixed and
positive constants. Maintain Assumptions 1–4 and assume that either (i) 𝑞𝜆 <

𝛿(𝑑−1)
2𝑑 − (𝑑+1)𝑞𝑘

𝑑 − 𝑞𝑁
𝑑 for some 0 < 𝛿 < 1 and Assumption 2(b1)

holds, or (ii) 𝑞 < 1 − 𝑞 and Assumption 2(b2) holds. Then,
8
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(a) ‖

‖

‖

𝑽̂ (𝑑)
ℎ (𝒄̂ − 𝒄)‖‖

‖

2

2
= 𝑂𝑝

(

(1 − 𝛼)𝑇 2𝑞𝑔+𝑞𝑁−2𝑞𝜆 + 𝛼𝑇 𝑞𝑠−2𝑞𝜆
)

,

(b) 𝑃𝛼 (𝒄̂ − 𝒄) = (1 − 𝛼)
∑

𝑔∈G

√

|𝑔| ‖‖
‖

𝒄̂𝑔 − 𝒄𝑔
‖

‖

‖2
+ 𝛼 ‖𝒄̂ − 𝒄‖1 = 𝑂𝑝

(

(1 − 𝛼)𝑇 2𝑞𝑔+𝑞𝑁−𝑞𝜆 + 𝛼𝑇 𝑞𝑠−𝑞𝜆
)

.

Corollary 1 provides insights into the determinants of the convergence rate. In particular, the result confirms that the convergence
rate decreases in the bandwidths 𝑘0 and 𝑙0, the number of spatial units 𝑁 , the number of interactions |𝑆| and the degree of
penalization 𝜆. To ensure that the set on which the performance bound in Theorem 2 holds occurs with probability converging
to one, conditions (i) and (ii) impose that the degree of penalization does not decay too fast in 𝑇 . The optimal convergence rate is
obtained by choosing 𝑞𝜆 as large as possible without violating these conditions. Some concrete examples are provided in Remark 3.

Remark 3. Insightful special cases can be examined based on Corollary 1. For the sake of brevity, we consider two cases while
focusing on the estimation error 𝑃𝛼 (𝒄̂ − 𝒄) and assuming errors with at least 𝑑 finite moments (Assumption 2(b1)). In the absence
of within-group shrinkage (𝛼 = 0), Corollary 1 demonstrates that 𝑃0 (𝒄̂ − 𝒄) = 𝑂𝑝

(

𝑇 2𝑞𝑔+𝑞𝑁−𝑞𝜆
)

, with 𝑞𝜆 <
1
2 − 1

2𝑑 − (𝑑+1)𝑞𝑘
𝑑 − 𝑞𝑁

𝑑 .

The estimator now converges almost at rate 𝑇 1∕2−1∕2𝑑

𝑁1+1∕𝑑𝑘(𝑑+1)∕𝑑0 |G𝑆 |
. For fixed 𝑁 and large 𝑑, this is close to the common

√

𝑇 -rate of
fixed-dimensional settings without regularization. If shrinkage is imposed at the individual interaction level only (𝛼 = 1), then
𝑃1 (𝒄̂ − 𝒄) = 𝑂𝑝 (𝑇 𝑞𝑠−𝑞𝜆 ) and the estimation error converges almost at the rate 𝑇 1∕2−1∕2𝑑

|𝑆|𝑁1∕𝑑𝑘(𝑑+1)∕𝑑0

. Noting that 𝑁1+1∕𝑑
|

|

G𝑆 || > |𝑆|𝑁1∕𝑑 , we
ee that SPLASH(1, 𝜆) attains a convergence rate at least as fast SPLASH(0, 𝜆), and possibly faster when the sparsity is unstructured
r the diagonals are highly sparse.

.2.4. Future work: Selection and inference
In this section, we propose two prospective avenues of future research opened up by the development of SPLASH. In particular,

e discuss how the estimator may be extended to provide consistent variable selection or to enable uniformly valid statistical
nference.

We conjecture that a weighted penalty scheme, similar in spirit to the adaptive lasso in Zou (2006), will be able to estimate
the zero coefficients as exactly zero with probability converging to one, while maintaining the ability to consistently estimate the
non-zero parameters in (1). Such an estimator could be defined as be the minimizer of

L𝛼(𝒄; 𝜆,𝝎) =
‖

‖

‖

𝝈̂ℎ − 𝑽̂ (𝑑)
ℎ 𝒄‖‖

‖

2

2
+ 𝜆

(

(1 − 𝛼)
∑

𝑔∈G

√

|𝑔| ‖‖
‖

𝒄𝑔
‖

‖

‖2
+ 𝛼

𝑀
∑

𝑗=1

|

|

𝑐𝑖||
𝜔𝑖

)

,

where 𝑀 denotes number of coefficients in the model. Compared to the objective function in (8), the vector 𝝎 = (𝜔1,… , 𝜔𝑀 )′ is a
ector of positive weights that should be large for parameters that require little shrinkage and small for parameters that are small
r zero. A natural choice that satisfies this requirement is 𝜔𝑖 = |

|

𝑐𝑖||
𝛾 for some 𝛾 ≥ 1, where 𝑐𝑖 is the 𝑖th element of the SPLASH

stimator 𝒄̂ defined in (8). We leave the investigation of the theoretical properties and empirical performance of this ‘‘adaptive
PLASH estimator’’ for future research.

Another prospective extension of our method concerns the ability to conduct honest statistical inference. The main challenges
or inference based on sparse estimators are: (1) the intractability of the limiting distribution and/or its dependence on unknown
arameters (e.g. Knight and Fu, 2000), and (2) convergence results not holding uniformly over the parameter space (e.g. Leeb
nd Pötscher, 2005, 2008). To circumvent these challenges, a ‘‘debiased SPLASH estimator’’ for uniformly valid inference might be

derived by inverting the Karush–Kuhn–Tucker (KKT) conditions, analogous to the desparsified lasso in Van de Geer et al. (2014).
Compared to Van de Geer et al. (2014), however, additional care should be taken to account for the banded autocovariance matrix
and the group penalty. A full derivation is outside the scope of this paper and subject to further investigation.

3.3. Exogenous variables

We generalize model specification (1) by accommodating 𝐾 exogenous variables, i.e.

𝒚𝑡 = 𝑨𝒚𝑡 + 𝑩𝒚𝑡−1 +
𝐾
∑

𝑘=1
diag(𝜷𝑘)𝒙𝑡,𝑘 + 𝝐𝑡, 𝑡 = 1,… , 𝑇 . (10)

Each vector 𝒙𝑡,𝑘 = (𝑥1𝑡,𝑘,… , 𝑥𝑁𝑡,𝑘)′ augments the spatio-temporal vector autoregression with an extra regressor. This regressor may
vary over time and is assumed exogenous, i.e. we have E(𝒙𝑡,𝑘𝝐′𝑡) = 𝐎 for 𝑘 = 1,… , 𝐾. For notational brevity, we consider the situation
in which the exogenous regressors 𝑥𝑖𝑡,1 … , 𝑥𝑖𝑡,𝐾 can only directly influence spatial unit 𝑖. This explains the diagonal structure in
diag(𝜷𝑘). In Remark 5 we argue that this simplification does not greatly hinder generality. In contrast to Ma et al. (2023), we allow
𝜷𝑘 = (𝛽1𝑘,… , 𝛽𝑁𝑘)′ to vary with location. We keep 𝐾 fixed.

To account for the exogenous variables, we modify the generalized Yule–Walker estimator of Section 3.2. We recall 𝜮𝑗 =
E(𝒚𝑡𝒚′𝑡−𝑗 ), and define the matrices 𝜮𝑥𝑘𝑦

𝑗 = E(𝒙𝑡,𝑘𝒚′𝑡−𝑗 ) and 𝜮𝑥𝑘𝑥𝓁
𝑗 = E(𝒙𝑡,𝑘𝒙′𝑡−𝑗,𝓁). Two sets of Yule–Walker equations, namely

𝜮1 = 𝑨𝜮1 + 𝑩𝜮0 +
𝐾
∑

diag(𝜷𝑘)𝜮
𝑥𝑘𝑦
1 (11a)
9

𝑘=1
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e

Y

𝑽

s
S

and

(𝜮𝑥𝑗𝑦
0 )′ = 𝑨(𝜮𝑥𝑗𝑦

0 )′ + 𝑩(𝜮𝑥𝑗𝑦
1 )′ +

𝐾
∑

𝑘=1
diag(𝜷𝑘)𝜮

𝑥𝑘𝑥𝑗
0 , for 𝑗 = 1,… , 𝐾, (11b)

are derived by post-multiplying the model by respectively 𝒚′𝑡−1 and 𝒙′𝑡,𝑘, and taking expectations. Compared to (5), the Yule–Walker
quations in (11a) contain the additional term ∑𝐾

𝑘=1 diag(𝜷𝑘)𝜮
𝑥𝑘𝑦
1 to provide information on 𝜷1,… , 𝜷𝐾 . However, if 𝜮𝑥𝑘𝑦

1 = 𝐎
(e.g. when {𝒙𝑡,𝑘} and {𝒚𝑡} are independent and 𝜷𝑘 = 𝟎), then (11a) alone will not identify 𝜷𝑘. We therefore add the additional

ule–Walker equations in (11b). To develop the estimator, we combine (11a) and (11b) into

⎡

⎢

⎢

⎢

⎢

⎣

𝜮′
1

𝜮𝑥1𝑦
0
⋮

𝜮𝑥𝐾 𝑦
0

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝜮′
1 𝜮0

𝜮𝑥1𝑦
0 𝜮𝑥1𝑦

1
⋮ ⋮

𝜮𝑥𝐾 𝑦
0 𝜮𝑥𝐾 𝑦

1

⎤

⎥

⎥

⎥

⎥

⎦

[

𝑨 𝑩
]′ +

𝐾
∑

𝑘=1

⎡

⎢

⎢

⎢

⎢

⎣

(𝜮𝑥𝑘𝑦
1 )′

𝜮𝑥1𝑥𝑘
0
⋮

𝜮𝑥𝐾𝑥𝑘
0

⎤

⎥

⎥

⎥

⎥

⎦

diag(𝜷𝑘) ∶= 𝑽 ∗𝑪 ′ +
𝐾
∑

𝑘=1
𝑾 ∗

𝑘 diag(𝜷𝑘). (12)

From this point onward, the development of the SPLASHX(𝛼, 𝜆) estimator closely mimics the reasoning from Section 3.2.1. First,
we focus on the 𝑖th spatial unit and collect all the nonzero coefficients of 𝑨 and 𝑩 (as stipulated by Assumption 3) in 𝒄𝑖. Letting 𝑽 ∗

𝑖
denote the columns in 𝑽 ∗ related to 𝒄𝑖 and defining both 𝝈∗

𝑖 =
[

𝜮1 (𝜮𝑥1𝑦
0 )′ ⋯ (𝜮𝑥𝐾 𝑦

0 )′
]′ 𝒆𝑖 and 𝒘∗

𝑖𝑘 = 𝑾 ∗
𝑘𝒆𝑖, result (12) implies

∗
𝑖 𝒄𝑖 +

∑𝐾
𝑘=1 𝒘

∗
𝑖𝑘𝛽𝑖𝑘 = 𝝈∗

𝑖 . Second, we define (a) the sample counterparts of 𝜮𝑗 , 𝜮
𝑥𝑘𝑦
𝑗 and 𝜮𝑥𝑘𝑥𝑙

𝑗 as respectively 𝜮̂𝑗 =
1
𝑇
∑𝑇
𝑡=𝑗+1 𝒚𝑡𝒚

′
𝑡−𝑗 ,

𝜮̂𝑥𝑘𝑦
𝑗 = 1

𝑇
∑𝑇
𝑡=𝑗+1 𝒙𝑡,𝑘𝒚

′
𝑡−𝑗 and 𝜮̂𝑥𝑘𝑥𝓁

𝑗 = 1
𝑇
∑𝑇
𝑡=𝑗+1 𝒙𝑡,𝑘𝒙

′
𝑡−𝑗,𝓁 , and (b) define the quantities 𝝈̂∗

𝑖 , 𝒘̂
∗
𝑖𝑘 and 𝑽̂ ∗

𝑖 based on their underlying
ample covariance matrix estimators. Finally, set 𝝈̂∗ = (𝝈̂∗′

1 ,… , 𝝈̂∗′
𝑁 )′, 𝑽̂ ∗(𝑑) = diag(𝑽̂ ∗

1 ,… , 𝑽̂ ∗
𝑁 ), and 𝑾̂ ∗(𝑑)

𝑘 = diag(𝒘̂∗
1𝑘,… , 𝒘̂∗

𝑁𝑘). The
PLASHX(𝛼, 𝜆) objective function is

L ∗
𝛼 (𝜷1,… , 𝜷𝐾 , 𝒄; 𝜆) =

‖

‖

‖

‖

‖

‖

𝝈̂∗ − 𝑽̂ ∗(𝑑)𝒄 −
𝐾
∑

𝑘=1
𝑾̂ ∗(𝑑)

𝑘 𝜷𝑘
‖

‖

‖

‖

‖

‖

2

2

+ 𝜆

(

𝑃𝛼(𝒄) +
𝐾
∑

𝑘=1
(1 − 𝛼)

√

𝑁 ‖

‖

𝜷𝑘‖‖2 + 𝛼 ‖‖𝜷𝑘‖‖1

)

.

(13)

This objective function allows for the estimation of 𝜷1,… , 𝜷𝐾 , which may contain sparse coefficients or completely sparse vectors 𝜷𝑘,
as well as sparse diagonals in the coefficient matrices 𝑨 and 𝑩. There is a clear mathematical resemblance between the SPLASH and
SPLASHX estimators. Accordingly, under appropriate modifications to Assumptions 1–4, a finding similar to Theorem 2 is attainable.
For the reader’s convenience, we make the correspondence between these assumptions explicit by adhering to the original numbering
while adding a ‘‘*’’. A short discussion of these assumption is found at the end of this section.

Assumption 1*. We require: (a) ‖𝑨‖⊢ = max
{

‖𝑨‖1 , ‖𝑨‖∞
}

≤ 𝛿𝐴 < 1, (b) ‖𝑩‖⊢ ≤ 𝐶𝐵 and 𝐶𝐵
1−𝛿𝐴

< 1, and (c) ‖

‖

𝜷∗
‖

‖1 =
max{‖

‖

𝜷1
‖

‖1 ,… , ‖
‖

𝜷𝐾‖‖1} ≤ 𝐶𝛽 .

Assumption 2*.

(a) The regressor 𝑥𝑖1𝑡1 ,𝑘 and innovation 𝜖𝑖2 ,𝑡2 are independent of each other for all 1 ≤ 𝑖1 < 𝑖2 ≤ 𝑁 , all 1 ≤ 𝑡1, 𝑡2 ≤ 𝑇 , and all
𝑘 = 1,… , 𝐾.

(b) The sequence {𝝐𝑡} is a covariance stationary, martingale difference process with respect to the filtration F𝑡−1 = 𝜎
(

𝝐𝑡−1, 𝝐𝑡−2,…
)

,
and geometrically strong mixing (𝛼-mixing). That is, its mixing coefficients {𝛼𝑚} satisfy 𝛼𝑚 ≤ 𝑐2𝑒−𝛾𝛼𝑚 for all 𝑚 and some constants
𝑐2, 𝛾𝛼 > 0. The largest and smallest eigenvalues of 𝜮𝜖 = E(𝝐1𝝐′1) = (𝜎𝑖𝑗 )𝑁𝑖,𝑗=1 are bounded away from 0 and ∞.

(c) For each 𝑘 = 1,… , 𝐾, the sequence {𝒙𝑡,𝑘} is covariance stationary and geometrically strong mixing (𝛼-mixing). That is, its mixing
coefficients {𝛼∗𝑚} satisfy 𝛼∗𝑚 ≤ 𝑐∗2𝑒

−𝛾∗𝛼𝑚 for all 𝑚 and some constants 𝑐∗2 , 𝛾
∗
𝛼 > 0.

(d) Either one of the following assumptions holds:

(d1) For 𝜓(𝑥) = 𝑥𝑑 and 𝑑 ≥ 4, we require sup𝑖,𝑡 ‖‖𝜖𝑖𝑡‖‖𝜓 =
(

E|𝜖𝑖𝑡|𝑑
)1∕𝑑 ≤ 𝜇𝑑 < ∞ and sup𝑖,𝑡 ‖‖𝑥𝑖𝑡,𝑘‖‖𝜓 =

(

E|𝑥𝑖𝑡,𝑘|𝑑
)1∕𝑑 ≤ 𝜇∗𝑑 < ∞

(𝑘 = 1,… , 𝐾).
(d2) For 𝜓(𝑥) = exp(𝑥) − 1, we have sup𝑖,𝑡 ‖‖𝜖𝑖𝑡‖‖𝜓 ≤ 𝜇∞ < ∞ and sup𝑖,𝑡 ‖‖𝑥𝑖𝑡,𝑘‖‖𝜓 ≤ 𝜇∞ < ∞ (𝑘 = 1,… , 𝐾).

Assumption 3*. Recall 𝑨 = (𝑎𝑖𝑗 )𝑁𝑖,𝑗=1, 𝑩 = (𝑏𝑖𝑗 )𝑁𝑖,𝑗=1, and 𝜮𝜖 = (𝜎𝑖𝑗 )𝑁𝑖,𝑗=1. We have: (a) 𝑎𝑖𝑗 = 𝑏𝑖𝑗 = 0 for all |𝑖 − 𝑗| > 𝑘0 with
𝑘0 ≤ ⌊(𝑁 − 1)∕4⌋, and (b) 𝜎𝑖𝑗 = 0 for all |𝑖 − 𝑗| > 𝑙0.

Assumption 4* (Restricted Minimum Eigenvalue). Define the ((𝐾 + 1)𝑁 × (𝐾 + 2)𝑁) matrix

𝑸 =

⎡

⎢

⎢

⎢

⎢

𝜮′
1 𝜮0 (𝜮𝑥1𝑦

1 )′ … (𝜮𝑥𝐾 𝑦
1 )′

𝜮𝑥1𝑦
0 𝜮𝑥1𝑦

1 𝜮𝑥1𝑥1
0 … 𝜮𝑥1𝑥𝐾

0
⋮ ⋮ ⋮ ⋱ ⋮
𝑥𝐾 𝑦 𝑥𝐾 𝑦 𝑥𝐾𝑥1 𝑥𝐾𝑥𝐾

⎤

⎥

⎥

⎥

⎥

.

10

⎣
𝜮0 𝜮1 𝜮0 … 𝜮0 ⎦
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We assume that

𝜙∗
min(𝒙) ∶= min

𝒙∈R(𝐾+2)𝑁 ∶M (𝒙)≤𝑁+𝐾

‖𝑸𝒙‖2
‖𝒙‖2

≥ 𝜙∗
0 .

Assumption 1*(a)–(b) are as before. Assumption 1*(c) merely assumes an upper bound on the magnitude of the exogenous
regressor coefficients. Assumption 2* controls dependencies over time, in the cross-section, and with the exogenous regressors.
Similar to assumption A8(i) in Ma et al. (2023), we enforce exogeneity through Assumption 2*(a). Assumption 2*(b) is a simple
repetition of Assumption 2(b) and its counterpart for the {𝒙𝑡,𝑘}’s is encountered as Assumption 2*(c). All original moment conditions
are also transferred to the exogenous regressors (Assumption 3*). Clearly, Assumptions 1*–4* allow for an easy analogy with
the earlier assumptions in this paper (at the cost of possibly being more restrictive than strictly necessary). That is, define
𝝐∗𝑡 = 𝝐𝑡+

∑𝐾
𝑘=1 diag(𝜷𝑘)𝒙𝑡,𝑘 and note the linearity of 𝝐∗𝑡 in 𝝐𝑡 and {𝒙𝑡,1,… ,𝒙𝑡,𝐾}. With 𝐾 being fixed, all mixing properties and moments

conditions simply carry over to 𝝐∗𝑡 . Having modified the assumptions to accommodate the setting with exogenous variables, we are
able extend Theorem 2 and derive an applicable finite-sample error bound.

Theorem 3. Define 𝒒 = (𝒄′, 𝜷′
1,… , 𝛽′𝐾 )

′, 𝑆∗ =
{

𝑗 ∶ 𝑞𝑗 ≠ 0
}

and

𝜔̄∗
𝛼 = max

{

(1 − 𝛼)

(

∑

𝑔∈G𝑆

√

|𝑔| +
√

𝑁
𝐾
∑

𝑘=1
1{𝜷𝑘≠𝟎}

)

, 𝛼
√

|𝑆|∗
}

.

nder Assumptions 1*–4* and ‖𝑸‖⊢ ≤ 𝐶𝑄, it holds that

‖

‖

‖

‖

‖

‖

𝑽̂ ∗(𝑑)(𝒄̂ − 𝒄) +
𝐾
∑

𝑘=1
𝑾̂ ∗(𝑑)

𝑘 (𝜷̂𝑘 − 𝜷𝑘)
‖

‖

‖

‖

‖

‖

2

2

+ 𝜆

[

(1 − 𝛼)

(

∑

𝑔∈G

√

|𝑔| ‖‖
‖

𝒄̂𝑔 − 𝒄𝑔
‖

‖

‖2
+

𝐾
∑

𝑘=1

√

𝑁 ‖

‖

‖

𝜷̂𝑘 − 𝜷‖‖
‖2

)

+ 𝛼

(

‖𝒄̂ − 𝒄‖1 +
𝐾
∑

𝑘=1

‖

‖

‖

𝜷̂𝑘 − 𝜷𝑘
‖

‖

‖1

) ]

≤
64𝜔̄∗2

𝛼 𝜆
2

𝜙∗2
0

ith a probability of at least

(a) 1 − 7(𝐾 + 1)(𝐾 + 2)P∗
1
(

𝑓 ∗(𝜆, 𝜙∗
0), 𝑁, 𝑇

)

under Assumption 2(b1) (polynomial tail decay), or
(b) 1 − 7(𝐾 + 1)(𝐾 + 2)P∗

2
(

𝑓 ∗(𝜆, 𝜙∗
0), 𝑁, 𝑇

)

under Assumption 2(b2) (exponential tail decay),

here 𝑓 ∗(𝜆, 𝜙∗
0) = min

{

𝜆1∕2

12
√

6
, 𝜆
144𝐶𝑄

, 𝜆1∕2

12
√

6𝐶𝛽
, 𝜆
144𝐶𝑄𝐶𝛽

,
𝜙∗0
12

}

,

P∗
1 (𝜖,𝑁, 𝑇 ) = 𝑁2

[

(

𝑏1𝑇
(1−𝛿)∕3 +

(𝐾 + 2)𝑁𝑏3
𝜖

)

exp

(

−𝑇
(1−𝛿)∕3

2𝑏21

)

+
𝑏2(𝐾 + 2)𝑑𝑁𝑑

𝜖𝑑𝑇
𝛿
2 (𝑑−1)

]

for some 0 < 𝛿 < 1, and

P∗
2 (𝜖,𝑁, 𝑇 ) = 𝑁2

[

𝜅1(𝐾 + 2)𝑁
𝜖

+ 2
𝜅2

(

𝑇 𝜖2

(𝐾 + 2)𝑁

)1∕7
]

exp

(

− 1
𝜅3

(

𝑇 𝜖2

(𝐾 + 2)2𝑁2

)1∕7
)

ll constants (𝑏1, 𝑏2, 𝜅1, etc.) are positive and independent of 𝑁 and 𝑇 , see Theorem 1.

emark 4. The inclusion of exogenous variables affects the autocovariance structure of the data. For example, if 𝑩 = 𝐎, then
𝑡 = (𝑰𝑛 −𝑨)−1

[
∑𝐾
𝑘=1 diag(𝜷𝑘)𝒙𝑡,𝑘 + 𝝐𝑡

]

and

E(𝒚𝑡𝒚′𝑡) = (𝑰𝑁 −𝑨)−1
[ 𝐾
∑

𝑘,𝜅=1
diag(𝜷𝑘)E(𝒙𝑡,𝑘𝒙𝑡,𝜅 ) diag(𝜷𝜅 ) +𝜮𝜖

]

(𝑰𝑁 −𝑨′)−1.

Clearly, E(𝒚𝑡𝒚′𝑡) now also depends on the various second moments of the exogenous covariates. We do not make any a priori
assumptions on E(𝒙𝑡,𝑘𝒙′𝑡,𝜅 ) and thus define SPLASHX(𝛼, 𝜆) in terms of the unbanded autocovariance matrix estimators.

emark 5. Defining the coefficient matrix in front of 𝒙𝑡,𝑘 as diagonal is not restrictive. That is, by letting 𝒙𝑡,𝑘+1 be a reordered
ersion of 𝒙𝑡,𝑘, the former’s addition to the model can accommodate for the situation in which the dependent variable is influenced
y the exogenous variable 𝒙𝑡,𝑘 from multiple locations.

. Simulations

.1. Simulation setting

In this section, we explore the finite sample performance of our estimator by Monte Carlo simulation. The data generating process
11

nderlying the simulations is the spatio-temporal VAR in (1). We study 𝑇 ∈ {500, 1000, 2000} and draw all errors 𝜖𝑖𝑡 independently
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and 𝑁(0, 1) distributed. The matrices 𝑨 and 𝑩 and the cross-sectional dimension 𝑁 are specified in the two designs below. All
imulation results are based on 𝑁𝑠𝑖𝑚 = 500 Monte Carlo replications.

esign A (Spatial grid with neighbour interactions): As in Fig. 1, we consider an (𝑚×𝑚) grid of spatial units. For 𝑚 = 5 (𝑚 = 10),
his results in a cross-sectional dimension of 𝑁 = 25 (𝑁 = 100). The matrix 𝑨 contains interactions between first horizontal and first
ertical neighbours while all other coefficients are zero. The magnitude of these nonzero interactions are 0.2. For 𝑚 = 5 (𝑚 = 10), the
emporal matrix 𝑩 is a diagonal matrix with elements 0.25 (0.21) on the diagonal. The reduced form VAR matrix 𝑪 = (𝑰𝑁 −𝑨)−1𝑩
as a maximum eigenvalue of 0.814 (0.904).

esign B (Banded specification): We revisit simulation Case 1 in Gao et al. (2019). The matrices 𝑨 and 𝑩 are banded with a
andwidth of 𝑘0 = 3. Specifically, the elements in the matrices (𝑨)𝑁𝑖,𝑗=1 and (𝑩)𝑁𝑖,𝑗 are generated according to the following three
teps:

Step 1: If |𝑖 − 𝑗| = 𝑘0, then 𝑎𝑖𝑗 and 𝑏𝑖𝑗 are drawn independently from a uniform distribution on the two points {−2, 2}. All remaining
elements within the bandwidth are drawn from the mixture distribution 𝜔𝐼{0} + (1 − 𝜔)𝑁(0, 1) with P(𝜔 = 1) = 0.4 and
P(𝜔 = 0) = 0.6.

Step 2: Rescale the matrices 𝑨 and 𝑩 from Step 1 to 𝜂1 ×𝑨∕ ‖𝑨‖2 and 𝜂2 ×𝑩∕ ‖𝑩‖2, where 𝜂1 and 𝜂2 are drawn independently from
𝑈 [0.4, 0.8].

Step 3: To avoid unstable systems, check if ‖‖
‖

(𝑰𝑁 −𝑨)−1𝑩‖

‖

‖2
< 0.95. If this is not the case, then we discard the matrices 𝑨 and 𝑩

and return to Step 1.

e vary the cross-sectional dimension over 𝑁 ∈ {25, 100}.
The two simulation designs are chosen to provide a balanced comparison between modelling approaches with a predetermined

patial weight matrix and modelling approaches that estimate the spatial interactions in a data-driven way.
The two methods with pre-determined spatial weight matrix are taken from Yu et al. (2008) and Lam and Souza (2019). The

stimator in Yu et al. (2008) departs from a spatial–temporal autoregression (hence abbreviated as ST-AR) in which three scalar
arameters and a single spatial weight matrix parametrize the spatial and temporal lag. The parameters are estimated by Gaussian
uasi-maximum likelihood. As mentioned in the introduction, the method in Lam and Souza (2019), LaSo for short, allows for
parse adjustments from a predetermined spatial weight matrix. To match our simulation designs, we include 𝒚𝑡−1 in the matrix of
ovariates (see their Section 3.3.4). For both methods, we let the spatial weight matrix coincide with the ‘‘first-nearest neighbour’’
nteractions implied by Design A. This choice clearly favours these methods in Design A while causing a misspecified model in
esign B.

The second group of methods determines the spatial interactions in a data-driven way. First, we consider three implementations
f our SPLASH estimator: (1) SPLASH(0, 𝜆) promotes non-sparse groups only, (2) SPLASH(0.5, 𝜆) gives equal weight to sparsity
t the group and individual level, and (3) SPLASH(1, 𝜆) encourages unstructured sparsity only. In congruence with Theorems 1
nd 2, we rely on banded autocovariance matrices Bℎ

(

𝜮̂0
)

and Bℎ
(

𝜮̂1
)

with bandwidths selected by the bootstrap procedure
n Guo et al. (2016, p. 7). The included estimators from Gao et al. (2019) are references by GMWY(𝑘) and GMWY(𝑘0). The first
f these estimators implements generalized Yule–Walker estimation for banded 𝑨 and 𝑩 using the selection rule in (2.17) of their
aper. Having observed a rather poor performance of this method during some exploratory simulations for Design B, we provide
he true bandwidths of 𝑨 and 𝑩 to the (infeasible) estimator denoted GMWY(𝑘0). To allow for a comparison with the original
imulation results, neither of these GMWY estimators applies banding to the covariance matrix estimators 𝜮̂0 = 1

𝑇
∑𝑇
𝑡=2 𝒚𝑡𝒚

′
𝑡 and

𝜮̂1 =
1
𝑇
∑𝑇
𝑡=2 𝒚𝑡𝒚

′
𝑡−1. During additional exploratory simulations, we have seen that the performance of the GMWY estimator does not

hange much if banded covariance matrices would be used.
Finally, we also include an 𝐿1-penalized reduced form VAR(1) estimator (abbreviated PVAR). In detail, we consider the reduced

orm VAR(1) specification 𝒚𝑡 = 𝑪𝒚𝑡−1+𝒖𝑡 and estimate 𝑪 by minimizing L𝑝𝑣𝑎𝑟(𝑪) =
∑𝑇
𝑡=2

‖

‖

𝒚𝑡 − 𝑪𝒚𝑡−1‖‖
2
2+𝜆

∑𝑁
𝑖,𝑗=1

|

|

|

𝑐𝑖𝑗
|

|

|

. This estimator
s well-researched in the literature (see, e.g. Kock and Callot, 2015; Gelper et al., 2016; Masini et al., 2022), albeit in different

settings. The inclusion of this estimator serves to uncover any difference in predictive performance stemming from the estimation
of a spatio-temporal representation, as opposed to estimating a purely temporal specification.

The forecasting performance of each estimator will be assessed using the Relative Mean-Squared Forecast Error (RMSFE). Using a
superscript 𝑗 to index a specific Monte Carlo replication, the RMSFE is calculated as

RMSFE =

∑𝑁𝑠𝑖𝑚
𝑗=1

‖

‖

‖

𝒚𝑗𝑇+1 − 𝑪̂𝑗𝒚𝑗𝑇
‖

‖

‖

2

2
∑𝑁𝑠𝑖𝑚
𝑗=1

‖

‖

‖

𝒚𝑗𝑇+1 − 𝑪𝒚𝑗𝑇
‖

‖

‖

2

2

. (14)

The estimation accuracy of the spatio-temporal methods is analysed via the mean estimation error (MEE). Using the superscript
as before, the (MEE) is defined as

MEE = 1
𝑁𝑠𝑖𝑚

𝑁𝑠𝑖𝑚
∑

𝑗=1

‖

‖

‖

‖

(

𝑨̂𝑗 , 𝑩̂𝑗) −
(

𝑨𝑗 ,𝑩𝑗)‖
‖

‖

‖2
. (15)

To provide some insights into the variability in estimation accuracy across simulation trials, we additionally report the standard
errors of the MEEs, which we compute as

SE(MEE) =

√

√

√

√

√

1
𝑁𝑠𝑖𝑚 − 1

𝑁𝑠𝑖𝑚
∑

(

‖

‖

‖

‖

(

𝑨̂𝑗 , 𝑩̂𝑗) −
(

𝑨𝑗 ,𝑩𝑗)‖
‖

‖

‖2
− 𝐸𝐸

)2
. (16)
12

𝑗=1
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Next, a word on the determination of hyperparameters. For each regularized estimator, we construct a unique grid containing
= 20 penalty values that are evenly spaced on a logarithmic scale. The maximum value in each grid, 𝜆max, is the smallest value

that produces the zero solution (see step 4 in Algorithm 1 for its expression for SPLASH). Given 𝜆max, we define the smallest penalty
s 𝜆min = 𝜂𝜆max with 𝜂 = 10−4 (𝜂 = 10−6) for Design A (B). Estimating SPLASH solutions for each 𝜆 ∈

{

𝜆1,… , 𝜆20
}

, each 𝛼 ∈ {0, 0.5, 1},
nd each individual simulation trial remains too computationally expensive (especially for large𝑁). We instead perform a small-scale
reliminary analysis in which we draw a small set of simulations from Designs A and B on which we estimate all solutions for a given
alue of 𝑇 . Then, we choose the order 𝑖𝑇 ∈ {1,… , 20} that minimizes the RMSFE in this preliminary set of simulations. This process
f choosing the order 𝑖𝑇 on a log-equidistant grid for each value of 𝑇 , is equivalent to setting 𝜆 = 𝑚𝑇 𝜆max with 𝑚𝑇 = 10−4(𝑖𝑇 −1)∕20 or
𝑇 = 10−6(𝑖𝑇 −1)∕20 for designs A and B, respectively. For Design A (B), our selected orders for 𝑇 = {500, 1000, 2000} are 𝑖𝑇 = {9, 10, 11}
𝑖𝑇 = {10, 11, 12}), corresponding to 𝑚𝑇 ≈ 0.025, 0.015, 0.01 (𝑚𝑇 ≈ 0.002, 0.001, 0.0005), respectively. Having fixed the preferred order
r multiplier, it suffices to compute the SPLASH solution for each 𝛼 ∈ {0, 0.5, 1}. The penalized VAR method is computationally
ess expensive. Accordingly, we choose its penalty parameter based on a time series cross-validation (TSCV) scheme (e.g. Hyndman
nd Athanasopoulos, 2018). Since a preliminary analysis showed that the penalty selection approach used for SPLASH resulted in
ub-par performance for the LaSo method, we choose the latter’s penalty via TSCV as well. In our implementation of TSCV, the first
0% of the data is used to fit multiple solutions on, which are then evaluated based on the MSFE obtained on the latter 20% of the
ata. The preferred penalty is chosen as the solution that attains the smallest MSFE.3

.2. Simulation results

The simulation outcomes for Design A and B are reported in Table 1. For each design we report the predictive performance
n terms of the RMSFE and the estimation accuracy as measured by the mean estimation error (MEE). Whenever applicable, the
tandard errors of the latter quantity is written in parentheses.

First, we consider the predictive performance under Design A. For all methods, we observe a monotonic decrease in RMSFE
hen 𝑇 increases. Unsurprisingly, the best performance is obtained by the ST-AR method which only needs to estimate two non-zero
arameters to recover the DGP. More impressively, with a maximum RMSFE of 1.013, all three SPLASH implementations are close to
racle performance. This demonstrates that the cost incurred by estimating the DGP in a fully data-driven way, as opposed to relying
n a correctly specified pre-determined weight matrix, is small. There is little difference across the three SPLASH implementations,
ith the effect of group-level regularization providing noteworthy improvements only in the most high-dimensional setting (𝑁 = 100
nd 𝑇 = 500). LaSo obtains a strong predictive accuracy as well, albeit slightly worse than SPLASH when 𝑇 is smaller. This is
omewhat surprising as the LaSo specification has all the correct spatial interactions readily included in its spatial weight matrix
nd simply needs to estimate the redundant adjustment matrix as zero. However, this requires a sufficient high penalty to be selected
ia time series cross-validation which was not the case across simulation trials. Additionally, the LaSo estimator does not always
onvergence and remains rather sensitive to its initialization. The RMSFEs for the GMWY estimators are strikingly high. In the
etting 𝑁 = 25 and 𝑇 = 500, the GMWY estimator frequently underestimates the bandwidth by choosing it to equal 1. This causes
nferior performance across all metrics. The GMWY(𝑘0) estimator, on the other hand, is based on the correct bandwidth, but its
orecast performance is worse. Upon closer inspection, we find that these high RMSFEs are caused by several extreme prediction
rrors. These prediction outliers occur during simulation trials in which the smallest eigenvalue of the estimated matrix 𝑰 − 𝑨̂ is
lose to zero. As the forecasts are based on the reduced form representation and hence (𝑰 − 𝑨̂)−1, the GMWY estimator is prone
o stability issues when the bandwidth is large relative to the dimension. For 𝑁 = 25 and 𝑇 = 2000, the bandwidth selection in
MWY improves, while its forecast performance ironically worsens as a result of increasing stability issues. Finally, the penalized
AR produces stable forecasts but is outperformed by ST-AR and SPLASH across all settings. A correctly specified spatio-temporal
odel can thus outperform a reduced form VAR in terms of forecast performance.

Parallelling the results on the predictive performance, the ST-AR attains the lowest (variability in) MEE, followed by the SPLASH
stimator. The MEE shows the added benefit of group-level regularization in SPLASH as the implementations for 𝛼 = 0 and 𝛼 = 0.5
ttain substantially lower estimation errors. For the SPLASH(0.5, 𝜆) estimator, Fig. 3 illustrates the similarity between the true 𝑨 and
ts estimated counterpart. Indeed, owing to the imposed group-level regularization, the true sparsity pattern in 𝑨 is clearly present in
he (averaged) SPLASH estimates. Continuing the comparison, the LaSo method displays mixed performance, varying from very large
𝑁 = 25 and 𝑇 = 500) to very small (𝑁 = 100 and 𝑇 = 200) MEEs. This again reflects the inability to consistently select a sufficiently
arge penalty parameter, combined with the aforementioned issues with numerical convergence. Finally, GMWY(𝑘) typically obtains
lower MEE than GMWY(𝑘0) as a result of choosing a lower bandwidth. Apparently, estimating a misspecified model by choosing
< 𝑘0 results in a favourable bias–variance trade-off, highlighting the importance of regularization in high-dimensional settings.

Finally, we look at Design B. The methods that rely on a prespecified spatial weight matrix no longer have a competitive
dvantage as its interactions are misspecified. Consequently, the SPLASH estimators and the infeasible GMWY(𝑘0) estimator
ow exhibit the best overall forecast performance. The feasible GMWY(𝑘) estimator shows good performance for 𝑁 = 100 and
∈ {1000, 2000} because the increase in spatial units and time points improves bandwidth selection and diminishes invertibility

ssues. Performance differences between the SPLASH estimators are generally small as no specific type of sparsity dominates. That
s, the group penalty will help in setting to zero the elements outside the bandwidth 𝑘0 and the individual coefficient penalties are

3 We also tried to select the penalty as the sparsest solution whose prediction error lies within one standard error of the minimum prediction error. This
13

election rule, however, did not lead to an improvement in forecast or estimation accuracy.
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Table 1
Simulation results for Design A and B.

Metric 𝑁 𝑇 SPLASH ST-AR LaSo GMWY PVAR

𝛼 = 0 𝛼 = 0.5 𝛼 = 1 𝑘 𝑘0
Design A (Spatial grid with neighbour interactions)

RMSFE

25 500 1.012 1.011 1.012 1.001 1.109 9.924 539.490 1.108
1000 1.004 1.004 1.005 1.000 1.040 29.538 66.157 1.067
2000 1.005 1.005 1.004 1.000 1.003 894.224 527.024 1.042

100 500 1.013 1.014 1.022 1.000 1.526 1.151 463.714 1.158
1000 1.010 1.011 1.012 1.000 1.000 1.104 137.901 1.109
2000 1.005 1.004 1.004 1.000 1.000 1.087 2.300 1.077

MEE

25 500 0.334 0.342 0.477 0.019 3.381 1.162 4.448
(0.015) (0.015) (0.022) (0.001) (0.164) (0.052) (0.212)

1000 0.283 0.281 0.385 0.013 1.416 1.173 4.062
(0.013) (0.013) (0.017) (0.001) (0.081) (0.053) (0.187)

2000 0.243 0.232 0.295 0.009 0.207 1.212 3.956
(0.011) (0.010) (0.013) (0.000) (0.022) (0.054) (0.183)

100 500 0.393 0.411 0.573 0.009 0.768 1.119 2.174
(0.018) (0.019) (0.026) (0.000) (0.082) (0.050) (0.098)

1000 0.367 0.379 0.537 0.007 0.027 1.066 2.082
(0.017) (0.017) (0.024) (0.000) (0.002) (0.048) (0.094)

2000 0.373 0.362 0.504 0.005 0.019 1.046 2.059
(0.017) (0.016) (0.023) (0.000) (0.001) (0.047) (0.093)

Design B (Banded specification)

RMSFE

25 500 1.025 1.026 1.029 1.154 1.495 5.485 1.048 1.125
1000 1.011 1.011 1.012 1.159 1.444 1.387 1.016 1.116
2000 1.007 1.007 1.008 1.156 2.699 1.008 1.008 1.109

100 500 1.052 1.058 1.074 1.140 1.316 1.051 1.037 1.110
1000 1.025 1.028 1.035 1.136 14.308 1.017 1.016 1.104
2000 1.017 1.018 1.021 1.135 6.929 1.009 1.009 1.102

MEE

25 500 0.723 0.761 0.883 0.750 1.338 24.662 1.222
(0.033) (0.035) (0.040) (0.034) (0.071) (5.656) (0.056)

1000 0.656 0.687 0.798 0.744 1.386 4.272 1.134
(0.030) (0.032) (0.037) (0.034) (0.073) (0.923) (0.052)

2000 0.600 0.617 0.709 0.750 1.426 1.829 1.064
(0.028) (0.029) (0.033) (0.034) (0.076) (0.651) (0.049)

100 500 0.831 0.894 1.075 0.735 1.203 1.027 0.799
(0.038) (0.041) (0.049) (0.033) (0.064) (0.049) (0.036)

1000 0.830 0.889 1.051 0.733 1.143 0.755 0.707
(0.038) (0.041) (0.048) (0.033) (0.060) (0.035) (0.032)

2000 0.795 0.849 0.994 0.735 1.203 0.621 0.617
(0.037) (0.039) (0.046) (0.033) (0.064) (0.028) (0.028)

Note: The relative mean-squared forecast error (RMSFE) and mean estimation errors (MEE) are defined in (14) and (16), respectively. In general, lower numbers
indicate better performance. As PVAR estimates a reduced form VAR, there are no model errors for 𝑨 and 𝑩 to report for this method. Standard errors of the
model errors are listed in parentheses.

Fig. 3. Visualizations of the true and estimated spatial weight matrix 𝑨 for Design B. (a) The true spatial weight matrix 𝑨 implied by the (5 × 5) spatial grid
esign (Design B with 𝑚 = 5). (b) The average absolute values of the entries in 𝑨̂ as computed by SPLASH(0.5, 𝜆) for 𝑁 = 25 and 𝑇 = 1000. That is, the (𝑖, 𝑗)th

entry in the matrix on the right equals 1
𝑁𝑠𝑖𝑚

∑𝑁𝑠𝑖𝑚
𝑘=1 |𝑎̂𝑘𝑖𝑗 | with 𝑎̂𝑘𝑖𝑗 being the estimated (𝑖, 𝑗)th entry of 𝑨 in the 𝑘th Monte Carlo replication.
14
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useful to reveal the random zero pattern that occurs close to the main diagonals of 𝑨 and 𝑩. Only being able to indirectly incorporate
contemporaneous interactions, the reduced form PVAR estimator performs neither badly nor among the top contenders. Finally, in
terms of estimation accuracy, SPLASH appears to obtain the lowest MEE for 𝑁 = 25, but is surpassed by GMWY(𝑘0) for 𝑁 = 100.
urprisingly, ST-AR performs very competitive in terms of estimation accuracy, reflecting a beneficial bias–variance trade-off by
stimating a misspecified low-dimensional approximation to the DGP.

. Empirical application

In this section we consider the application of SPLASH to satellite-measured data. Section 5.1 serves as a general guide to
practitioners. It explains the important steps in the analysis and provides additional details on the satellite data collection and
processing. A concrete illustration is presented in Section 5.2 where we predict daily nitrogen dioxide (NO2) concentrations over
Greater London.

5.1. Applying SPLASH: A guide to practitioners

To facilitate the adoption of our SPLASH modelling strategy, we explain in detail how to download, process and model data
from the Copernicus satellite. A readily available implementation of each step, together with the raw data used in the preceding
application, is available at https://sites.google.com/view/etiennewijler/code in the form of separate code scripts and an R package.

Step 1: Data collection Satellite images are downloadable from the Copernicus Open Access Hub.4 First-time users are required
to register a free (at the time of writing) account. Single files can be downloaded interactively via a user interface, whereas
repeated requests are best handled via the API hub. After defining the area of interest (AOI) based on GPS coordinates, all
satellite images that overlap with this AOI can be downloaded. The AOI is subsequently cropped out and the original image is
deleted to free storage space. Sentinel-5P Copernicus data products include ozone, sulphur dioxide, nitrogen dioxide, carbon
monoxide, formaldehyde and methane. The user might also use satellite data from a different data source.

Step 2: Data processing The cropped raw satellite data is mapped onto the spatial grid. All pixels within a given grid cell
are averaged into a single value. Enumerating the cells consecutively (by rows or by columns), the vector 𝒚𝑡 with daily
observations is constructed. This vector is likely to have some missing values as the satellite collects data while orbiting
the earth. These missing observations should be imputed, e.g. using Multivariate Time Series Data Imputation
(mtsdi) R package. This imputation method in Junger and Ponce De Leon (2015) was designed to impute missing values
in air pollution data. Finally, one should assess/model the low-frequency seasonality in the data. That is, applying model (1)
or (10) on daily data does not capture the slow concentration variation with the seasons due to the difference in frequency.
We provide a possible approach in the next section.

Step 3: Data modelling The SPLASH R package fully automates the model-building process by estimating the bandwidth and
banded covariance matrices, calculating the quantities of interest, and selecting the optimal penalty parameter by time series
cross-validation (all steps in Algorithm 1). The sparsely estimated coefficients give an idea of the important interactions and
the implied reduced form VAR can be used for out-of-sample predictions.

5.2. Predicting NO2 concentrations based on satellite data

NO2 is emitted during combustion of fossil fuels (e.g. by motor vehicles) and it has been associated with adverse effects on the
respiratory system.5 The Air Quality Standards Regulations 2010 requires a regular monitoring of NO2 concentration levels in the
UK.6 Using satellite data, we examine the empirical performance of the SPLASH estimator when predicting daily NO2 concentrations
in Greater London. The data is available at the Copernicus Open Access Hub and we consider the time span from 1 August 2018
to 31 March 2023. The original NO2 concentrations are reported in mol/m2, which we convert to mol/cm2 to avoid numerical
instabilities caused by small-scale numbers. The far majority of measurements are captured between 11:00 and 14:00 UTC. As
displayed in Fig. 5(c), the area of interest is mapped onto a (6 × 7) grid with even straight-line distances between the centres of
horizontally (8.57 km) and vertically (8.53 km) neighbouring grid cells. We average pixels and impute missing observations as in
Step 2 of our guide to practitioners.

A first inspection of the data reveals several noteworthy features. First, the average NO2 concentrations (averaged over space
and time) is 1.1689 mol/cm2. Furthermore, there is substantial regional variation in the average daily NO2 concentrations. The
lowest daily average concentration of 0.9671 mol/cm2 is observed over Chipping Ongar (a small market town North-East of the
Greater London Area) and the highest concentration of 1.3479 mol/cm2 is measured at Westminster (the bustling government area
near Buckingham Palace).

4 https://www.copernicus.eu/en/access-data/conventional-data-access-hubs
5 The direct health effect of nitrogen dioxide is difficult to determine because its emission process is typically accompanied with the emission of other air

ollutants (see, e.g. Brunekreef and Holgate, 2002).
6 Source: https://www.legislation.gov.uk/uksi/2010/1001/contents/made.
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Fig. 4. The seasonality in the data. (a) The daily spatially averaged NO2 concentration (green) and its first-order Fourier approximation at the angular frequency
of 𝜔𝑦𝑒𝑎𝑟𝑙𝑦 =

2𝜋
355

≈ 0.0172 (red). (b) The spectral density estimate of the spatially averaged NO2 concentration before (green) and after (red) subtracting the first-
order Fourier approximation. The spectral densities are computed using the Bartlett kernel (e.g. (6.2.15) in Hamilton, 1994) with a bandwidth of 𝑞 = 400. (For
nterpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

We proceed to the final part of Step 2 in our guide to practitioners and investigate the seasonality in the data. First, in Fig. 4(a)
e visualize the spatially averaged NO2 concentration over time. The plot reveals that this concentration is typically highest in
ecember and lowest in June thereby pointing towards seasonality. To get an idea about the relevant frequencies, we look at the

estimated) spectral density. The clear peak at the angular frequency of 𝜔𝑦𝑒𝑎𝑟𝑙𝑦 = 2𝜋
355 ≈ 0.0172 motivates us to include sine and

cosine signals with this baseline period of 365 days. As the residuals after the inclusion of a single Fourier term already produce
a rather flat spectrum (Fig. 4(b)) and further Fourier terms hardly change the spectrum, we decide to detrend the data with this
first-order Fourier approximation throughout this empirical application. The Fourier approximation itself is displayed as the red line
in Fig. 4(a).

A rolling-window approach is used to assess the predictive power of the SPLASH estimator. Motivated by our seasonality analysis,
we assume that the data is generated by the following model:

𝒛𝑡 = 𝒅𝑡 + 𝒚𝑡,

𝒅𝑡 = 𝝁 + 𝜾𝑁

( 𝑀
∑

𝑗=1
𝑎𝑗 cos(𝑗𝜔𝑦𝑒𝑎𝑟𝑙𝑦𝑡) + 𝑏𝑗 sin(𝑗𝜔𝑦𝑒𝑎𝑟𝑙𝑦𝑡)

)

,

𝒚𝑡 = 𝑨𝒚𝑡 + 𝑩𝒚𝑡−1 + 𝝐𝑡,

where 𝜾𝑁 in an 𝑁-dimensional vector of ones. As mentioned in our spectral analysis, we select 𝑀 = 1 (but also remind the reader
that a different data set might require additional Fourier terms). Hence, each spatial unit is assigned its own mean and a common
seasonal term. Each window contains 2 years of the data (730 days) allowing 964 one-step ahead forecasts to be made. For each
window, we proceed along the following four steps: (i) regress out the deterministic component 𝑑𝑡 to obtain the de-seasonalized
data 𝑦̂𝑡 = 𝑧𝑡 − 𝑑𝑡, (ii) estimate the (hyper)parameters of each model based on 𝑦̂𝑡, (iii) produce separate one-step ahead forecasts
for the de-seasonalized data and the deterministic components, and (iv) add the forecasts together to obtain a forecast for the NO2
concentration observed directly after the window.

We consider the same type of estimators as previously seen in the simulations. As before, we include SPLASH(0, 𝜆), SPLASH(0.5,
𝜆), and SPLASH(1, 𝜆). With the current spatial grid of 𝑁 = 6×7 = 42 spatial units, these methods potentially require 2𝑁2−𝑁 = 3486
arameters. However, for identifiability (see Assumption 3), we band the spatial matrix 𝑨 and autoregressive matrix 𝑩 such that
𝑖𝑗 = 𝑏𝑖𝑗 = 0 for |𝑖 − 𝑗| > ⌊(𝑁 − 1)∕4⌋ = 10. Similar to the simulation section, we select the penalty parameter as 𝜆 = 𝑚𝜆𝑚𝑎𝑥 with
he multiplicative factor 𝑚 being determined based on a preliminary set of out-of-sample forecasts. Having no a priori information
oncerning the spatial interactions, we implement the ST-AR and LaSo methods with two spatial weight matrices: the ‘‘first-nearest
eighbour’’ specification is identical to the spatial grid (SG) in Design A of Section 4, and the (normalized) inverse distance (ID)
patial weight matrix 𝑾 = (𝑤𝑖𝑗 )𝑁𝑖,𝑗=1 with each element 𝑤𝑖𝑗 representing the inverse distance in kilometres between spatial units
and 𝑗. The GMWY estimator is implemented with bandwidth 𝑘 = 10, as this provides the best (i.e. least unstable) predictions.
enalty selection for LaSo and PVAR follow the same TSCV scheme discussed in Section 4.1.

The forecast performance is measured along three metrics. We report: (i) the average loss relative to PVAR, (ii) the number of
patial units that are predicted more accurately than the PVAR benchmark (#wins), and (iii) the inclusion in the Model Confidence
et (MCS) by Hansen et al. (2011) at a 10% significance level. These three metrics are calculated using two loss functions for the
orecast errors: the mean squared forecast error (MSFE) and the mean robust forecast error (MRFE). That is, letting 𝑒(𝑗)𝑖,𝑇0+ℎ denote
he one-step ahead forecast error of estimator 𝑗 for the outcome of the 𝑖th spatial unit at period 𝑇0 + ℎ, we calculate

MSFE𝑗 =
1

𝑁𝐻

𝑁
∑

𝑖=1

𝐻
∑

ℎ=1

(

𝑒(𝑗)𝑖,𝑇0+ℎ
)2
, and MRFE𝑗 =

1
𝑁𝐻

𝑁
∑

𝑖=1

𝐻
∑

ℎ=1

(

𝑒(𝑗)𝑖,𝑇0+ℎ
)2

1 +
(

𝑒(𝑗)
)2
, (17)
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Table 2
Forecast performance of various methods for NO2 satellite data on a (6 × 7) grid of observations.

MSFE MRFE

RMSFE #wins MCS RMRFE #wins MCS

SPLASH(0, 𝜆) 0.448 41 Yes 0.885 41 Yes
SPLASH(0.5, 𝜆) 0.448 41 Yes 0.886 41 Yes
SPLASH(1, 𝜆) 0.450 41 Yes 0.889 40 Yes
ST-AR(SG) 0.452 40 Yes 0.885 41 Yes
ST-AR(ID) 0.450 42 Yes 0.885 39 Yes
LaSo(SG) 0.503 27 Yes 0.892 36 Yes
LaSo(ID) 0.464 33 Yes 0.890 37 Yes
GMWY 36.056 0 No 1.759 0 No
PVAR 1.000 – No 1.000 – No

Note: Number of grid points (out of 𝑁 = 45) with lower prediction errors (#wins) and significantly lower prediction errors
(#sign. wins) compared to the 𝐿1-penalized reduced form VAR(1) estimator (PVAR). Relative MSFE and MRFE are abbreviated
by RMSFE and RMRFE, respectively. Values below (above) 1 indicate superior (inferior) performance compared to PVAR.

with 𝐻 = 𝑇 − 𝑇0 the maximum forecast horizon. The MRFE is included to reduce the importance of incidental outliers caused
by several abrupt spikes in the NO2 column densities and/or the stability issues that continued to plague the GMWY method (see
Section 4 for explanations). In Table 2 we report the relative MSFE (RMSFE) and relative MRFE (RMRFE) as the performance in
comparison to the PVAR estimator.

We first look at the columns under MSFE. The RMSFEs show that all spatio-temporal methods, with the exception of GMWY,
improve substantially over the purely penalized VAR benchmark. Incorporating spatial effects is thus important while modelling
NO2 concentrations empirically. The lowest MSFE is obtained by SPLASH(0, 𝜆) but the differences in forecasting performance in
comparison to ST-AR and LaSo are small. For GMWY, we again observed significant stability issues when inverting the estimated
spatial weight matrix to obtain the reduced form representation that is necessary to construct the forecast, resulting in inferior
forecasts. We were not able to resolve this by choosing a smaller bandwidth, possibly because such specifications may start to
omit important spatial interactions. The SPLASH implementations predict 41 out of 42 spatial units more accurately than the PVAR
benchmark, second only to the ST-AR (ID) approach which manages to improve the predictions for all spatial units on the grid.
The LaSo approach performs less favourable here, beating the benchmark for only 27 or 33 spatial units based on the SG and ID
spatial weight matrix, respectively. Finally, the MCS finds statistically significant evidence that the GMWY and PVAR methods obtain
inferior forecasts, but fails to find any significant performance differences among the remaining methods.

Next, we focus on the mean robust forecast error (MRFE). The results are qualitatively similar. The RMRFEs for SPLASH, ST-AR
and LaSo lie even closer together and are practically indistinguishable. The GMWY still displays the worst forecast performance,
although the difference appears less dramatic as a result of the robust loss metric. SPLASH(𝛼, 𝜆) with 𝛼 = 0, 0.5 and the ST-AR(SG)
method are able to beat the PVAR benchmark most often by obtaining lower MRFES for 41 out of 42 spatial units. The MCS again
includes all methods except GMWY and PVAR.

We end this application with a visual analysis of the estimated spatial interactions between neighbouring regions in Greater
London in Fig. 5. To have both individual and group sparsity, we focus on the SPLASH(0.5, 𝜆) estimates. First, the window-averaged
absolute magnitude of the spatial interactions is displayed in Fig. 5(a). A clear diagonal pattern emerges with the largest interactions
clustering on the two diagonals closest to the main diagonal and the two outer diagonals that start at the (1, 7) and (7, 1) elements.
These four diagonals correspond to first-order vertical and horizontal interactions, respectively. For each element in 𝑨, the heat map
in Fig. 5(b) indicates the fraction of rolling windows with a nonzero estimated coefficient. The aforementioned interactions between
first-order horizontal and vertical neighbours are selected in all windows. Additional interactions between diagonal neighbours are
relevant in approximately half of the rolling windows. To facilitate the interpretation of this sparsity pattern, we provide a spatial
plot of our region of interest with the spatial grid overlaid in Fig. 5(c). For spatial unit 21 specifically, we visualize the spatial
interactions that are estimate to be nonzero in at least 20% of the rolling windows and vary the thickness of the arrows to indicate
their (average) estimated magnitudes. The strongest interactions observed are between first-order vertical neighbours, followed by
those between first-order horizontal neighbours. Interactions between diagonal and second-order vertical neighbours are observed
as well, although their average effects are substantially weaker. The fact that the diagonal interactions only seem to occur along
the diagonal from South-West to North-East may be a consequence of the predominant South-West winds over London. Overall, the
intuitive sparsity patterns that arise, in combination with the improvement in forecast performance, are encouraging and provide
empirical validation for the use of SPLASH on spatial data, especially when the spatial units follow a natural ordering on a spatial
grid. The knowledge about the relevant interactions as well as their magnitudes might be exploited by policymakers to study the
effects of for example stricter emission regulations and/or traffic decrease on regional air quality. However, the analysis of these
spatial impulse response would require additional results on statistical inference (see Section 3.2.4).

6. Conclusion

In this paper, we develop the Spatial Lasso-type Shrinkage (SPLASH) estimator, a novel estimation procedure for high-
17
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Fig. 5. Illustrations of the sparsity patterns in the estimated (42 × 42) matrix 𝑨 based on rolling window samples. (a) The average absolute value of the entries
n 𝑨 as averaged across each one-step ahead forecast. (b) The proportion of rolling window forecast with an estimated coefficient being unequal to zero. (c)
he spatial interaction for spatial unit 21 that are non-zero in at least 20% of the forecasts.

ithout imposing such structure a priori. We derive consistency of our estimator in an asymptotic framework in which the number
f both spatial units and temporal observations diverge jointly. To solve the identifiability issue, we rely on a relatively non-
estrictive assumption that the coefficient matrices in the spatio-temporal model are sufficiently banded. Based on this assumption,
e consider banded estimation of high-dimensional spatio-temporal autocovariance matrices, for which we derive novel convergence

ates that are likely to be of independent interest. The SPLASHX extension explains how to include exogenous variables. As an
pplication, we use SPLASH to predict satellite-measured NO2 concentrations in London. We find evidence for spatial interactions
etween neighbouring regions. In addition, our estimator obtains superior forecast accuracy compared to a number of competitive
enchmarks, including the recently introduced spatio-temporal estimator by Gao et al. (2019) that inspired the development of

SPLASH.
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Appendix A. Lemmas

The proofs of the lemmas in this section are available in the supplementary material.

emma 1. Define the quantities 𝑁𝑐 = |𝒄|, 𝑆 = {𝑗 ∶ 𝑐𝑗 ≠ 0}, G𝑆 =
{

𝑔 ∈ G ∶ 𝒄𝑔 ≠ 𝟎
}

, G 𝑐
𝑆 =

{

𝑔 ∈ G ∶ 𝒄𝑔 = 𝟎
}

, 𝜔̄𝛼 =
max

{

(1 − 𝛼)
∑

𝑔∈G𝑆

√

|𝑔|, 𝛼
√

|𝑆|
}

and consider

𝜟 ∈ C𝑁𝑐 (G , 𝑆) ∶=
{

𝜟 ∈ R𝑁𝑐 ∶ 𝑃𝛼,𝑆𝑐 (𝜟) ≤ 3𝑃𝛼,𝑆 (𝜟)
}

,

here

𝑃𝛼,𝑆𝑐 (𝜟) = (1 − 𝛼)
∑

𝑔∈G 𝑐
𝑆

√

|𝑔| ‖‖
‖

𝛥𝑔
‖

‖

‖2
+ 𝛼 ‖

‖

𝜟𝑆𝑐‖‖1 , and

𝑃𝛼,𝑆 (𝜟) = (1 − 𝛼)
∑

𝑔∈G𝑆

√

|𝑔| ‖‖
‖

𝛥𝑔
‖

‖

‖2
+ 𝛼 ‖

‖

𝜟𝑆‖‖1 .

Then, under Assumption 4, it holds that

min
𝜟∈C𝑁𝑐 (G ,𝑆)

𝜔̄𝛼
‖

‖

‖

𝑽 (𝑑)𝜟‖‖
‖2

𝑃𝛼,𝑆 (𝜟)
≥
𝜙0
2
. (A.1)

Lemma 2. Define the set V (𝑥) ∶=
{

‖

‖

‖

𝑽̂ ℎ − 𝑽 ‖

‖

‖2
≤ 𝑥

}

. Then, under Assumption 4, it holds on V
(

𝜙0
4

)

that

min
𝒙∈C𝑁𝑐 (G ,𝑆)

𝜔̄𝛼
‖

‖

‖

𝑽̂ (𝑑)
ℎ 𝒙‖‖

‖2
𝑃𝛼,𝑆 (𝒙)

≥
𝜙0
4
.

Lemma 3. Define the 𝑁(𝑝 + 1) vector 𝝃𝑡 = (𝒚′𝑡 , 𝒚
′
𝑡−1,… , 𝒚′𝑡−𝑝)

′. For all 𝑗 = 1,… , 𝑝, the elements of 𝜮̂𝑗 =
1
𝑇
∑𝑇
𝑡=𝑝+1 𝒚𝑡𝒚

′
𝑡−𝑗 can be expressed

as 1
𝑇
∑𝑇
𝑡=𝑝+1 𝜉𝑖𝑡𝜉𝑗𝑡 after an appropriate choice of (𝑖, 𝑗).

(a) If Assumptions 1 and 2(b1) (polynomial tails) hold, then we have:

P
(

|

|

|

𝑇
∑

𝑡=𝑝+1
𝜉𝑖𝑡𝜉𝑗𝑡 − E(𝜉𝑖𝑡𝜉𝑗𝑡)

|

|

|

> 𝑇 𝜖
)

≤
[

𝑏1𝑇
(1−𝛿)∕3 +

𝑏3
𝜖

]

exp

(

−𝑇
(1−𝛿)∕3

2𝑏21

)

+
𝑏2

𝜖𝑑𝑇
𝛿
2 (𝑑−1)

,

for some 0 < 𝛿 < 1.
(b) If Assumptions 1 and 2(b2) (subexponential tails) hold, then we have:

P
(

|

|

|

𝑇
∑

𝑡=𝑝+1
𝜉𝑖𝑡𝜉𝑗𝑡 − E(𝜉𝑖𝑡𝜉𝑗𝑡)

|

|

|

> 𝑇 𝜖
)

≤
[

𝜅1
𝜖

+
2(𝑇 𝜖2)1∕7

𝜅2

]

exp
(

−
(𝑇 𝜖2)1∕7

𝜅3

)

.

Explicit expressions for the constants 𝑏1, 𝑏2, 𝑏3, 𝜅1, 𝜅2 and 𝜅3 are provided in the proof.

ppendix B. Proofs of main results

roof of Theorem 1. We first prove various intermediate results, see (a)–(d) below. We afterwards combine these results and
ecover Theorem 1.

(a) The matrix 𝑪̃𝑠 =
(

∑𝑠−1
𝑗=0 𝑨

𝑗
)

𝑩 =∶ 𝑫̃𝑠𝑩 has a maximum bandwidth of (𝑠 + 1)(𝑘0 − 1) + 1 and satisfies

‖

‖

‖

𝑪̃𝑠 − 𝑪‖

‖

‖⊢
≤ 𝛿𝐶𝛿

𝑠
𝐴.

(b) Define 𝜮𝑟,𝑠
0 =

∑𝑟
𝑗=0 𝑪̃

𝑗
𝑠𝑫̃𝑠𝜮𝜖𝑫̃

′
𝑠(𝑪̃

′
𝑠)
𝑗 with 𝑪̃𝑠 as in Theorem 1(a). The matrix 𝜮𝑟,𝑠

0 is a banded matrix with bandwidth no larger
than 2(𝑟𝑠 + 𝑟 + 𝑠)(𝑘0 − 1) + 2𝑙0 + 1. Moreover,

‖

‖

‖

𝜮𝑟,𝑠
0 −𝜮0

‖

‖

‖⊢
≤

8𝐶𝜖𝛿𝑠𝐴
(1 − 𝛿𝐴)2

(

1 − 𝛿2𝐶 (1 + 𝛿
𝑠
𝐴)

2
)2

+
𝐶𝜖𝛿

2(𝑟+1)
𝐶

(1 − 𝛿𝐴)2(1 − 𝛿2𝐶 )
,

whenever 𝑠 is large enough such that 𝛿𝐶 (1 + 𝛿𝑠𝐴) < 1.
(c) Define 𝜮𝑟,𝑠

1 = 𝑪̃𝑠𝜮
𝑟,𝑠
0 with 𝑪̃𝑠 and 𝜮𝑟,𝑠

0 as in Theorems 1(a) and 1(b), respectively. The matrix 𝜮𝑟,𝑠
1 is a banded matrix with

bandwidth no larger than (2𝑟𝑠 + 2𝑟 + 3𝑠 + 1)(𝑘0 − 1) + 2𝑙0 + 1. Moreover,

‖

‖

‖

𝜮𝑟,𝑠
1 −𝜮1

‖

‖

‖⊢
≤

9𝐶𝜖𝛿𝑠𝐴
(1 − 𝛿𝐴)2

(

1 − 𝛿2𝐶 (1 + 𝛿
𝑠
𝐴)

2
)2

+
𝐶𝜖𝛿

2(𝑟+1)
𝐶

(1 − 𝛿𝐴)2(1 − 𝛿2𝐶 )
,

whenever 𝑠 is large enough such that 𝛿 (1 + 𝛿𝑠 ) < 1.
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(d) Take any ℎ1 ≥ 2(𝑟𝑠 + 𝑟 + 𝑠)(𝑘0 − 1) + 2𝑙0 + 1, then

‖

‖

‖

Bℎ1

(

𝜮̂0
)

−𝜮0
‖

‖

‖2
≤ 𝜖 +

16𝐶𝜖𝛿𝑠𝐴
(1 − 𝛿𝐴)2

(

1 − 𝛿2𝐶 (1 + 𝛿
𝑠
𝐴)

2
)2

+
2𝐶𝜖𝛿

2(𝑟+1)
𝐶

(1 − 𝛿𝐴)2(1 − 𝛿2𝐶 )
,

with a probability of at least 1 − P1(𝜖,𝑁, 𝑇 ) (for polynomial tail decay) or 1 − P2(𝜖,𝑁, 𝑇 ) (for exponential tail decay).
(e) Take any ℎ2 ≥ (2𝑟𝑠 + 2𝑟 + 3𝑠 + 1)(𝑘0 − 1) + 2𝑙0 + 1, then

‖

‖

‖

Bℎ2

(

𝜮̂1
)

−𝜮1
‖

‖

‖2
≤ 𝜖 +

18𝐶𝜖𝛿𝑠𝐴
(1 − 𝛿𝐴)2

(

1 − 𝛿2𝐶 (1 + 𝛿
𝑠
𝐴)

2
)2

+
2𝐶𝜖𝛿

2(𝑟+1)
𝐶

(1 − 𝛿𝐴)2(1 − 𝛿2𝐶 )
,

with a probability of at least 1 − P1(𝜖,𝑁, 𝑇 ) (for polynomial tail decay) or 1 − P2(𝜖,𝑁, 𝑇 ) (for exponential tail decay).

Explicit expressions for 𝐶1, 𝐶2, 𝐶3, and 0 ≤ 𝛿𝐶 < 1 are provided in the proofs below.
(a) The proof builds upon results from Guo et al. (2016) on banded vector autoregressions. Recall that 𝑪 = 𝑫𝑩 with

𝑫 = (𝑰𝑁 −𝑨)−1. 𝑫̃𝑠 =
∑𝑠−1
𝑗=0 𝑨

𝑗 has a bandwidth of at most 𝑠(𝑘0 − 1) + 1 and satisfies7

‖

‖

‖

𝑫̃𝑠 −𝑫‖

‖

‖⊢
=
‖

‖

‖

‖

‖

‖

𝑠−1
∑

𝑗=0
𝑨𝑗 − (𝑰𝑁 −𝑨)−1

‖

‖

‖

‖

‖

‖⊢

=
‖

‖

‖

‖

‖

‖

−
∞
∑

𝑗=𝑠
𝑨𝑗

‖

‖

‖

‖

‖

‖⊢

≤
∞
∑

𝑗=𝑠
‖𝑨‖

𝑗
⊢ ≤

𝛿𝑠𝐴
1 − 𝛿𝐴

.

The product 𝑪̃𝑠 = 𝑫̃𝑠𝑩 has a maximal bandwidth of (𝑠 + 1)(𝑘0 − 1) + 1. Since ‖𝑩‖⊢ ≤ 𝛿𝐵 and 𝛿𝐵
1−𝛿𝐴

=∶ 𝛿𝐶 < 1 (Assumption 3(b)), we
lso have

‖

‖

‖

𝑪̃𝑠 − 𝑪‖

‖

‖⊢
=
‖

‖

‖

‖

(

𝑫̃𝑠 −𝑫
)

𝑩
‖

‖

‖

‖⊢
≤ ‖

‖

‖

𝑫̃𝑠 −𝑫‖

‖

‖⊢
‖𝑩‖⊢ ≤ 𝛿𝐶𝛿

𝑠
𝐴.

(b) Iterating on the observation in footnote 7, we conclude that the bandwidth of 𝑪̃𝑟
𝑠 is at most 𝑟

[

(𝑠 + 1)(𝑘0 − 1) + 1
]

− (𝑟 − 1) =
(𝑠 + 1)(𝑘0 − 1) + 1. The bandwidth of 𝜮𝑟,𝑠

0 therefore does not exceed

2
[

𝑟(𝑠 + 1)(𝑘0 − 1) + 1
]

+ 2(𝑠(𝑘0 − 1) + 1) + (2𝑙0 + 1) − 4 = 2(𝑟𝑠 + 𝑟 + 𝑠)(𝑘0 − 1) + 2𝑙0 + 1.

e now bound ‖

‖

‖

𝜮𝑟,𝑠
0 −𝜮0

‖

‖

‖1
. Because 𝜮0 =

∑∞
𝑗=0 𝑪

𝑗𝑫𝜮𝜖𝑫′(𝑪 ′)𝑗 , it holds that

‖

‖

‖

𝜮𝑟,𝑠
0 −𝜮0

‖

‖

‖⊢
≤
‖

‖

‖

‖

‖

‖

𝑟
∑

𝑗=0

[

𝑪̃
𝑗
𝑠𝑫̃𝑠𝜮𝜖𝑫̃

′
𝑠(𝑪̃

′
𝑠)
𝑗 − 𝑪𝑗𝑫𝜮𝜖𝑫′(𝑪 ′)𝑗

]

‖

‖

‖

‖

‖

‖⊢

+
‖

‖

‖

‖

‖

‖

∞
∑

𝑗=𝑟+1
𝑪𝑗𝑫𝜮𝜖𝑫′(𝑪 ′)𝑗

‖

‖

‖

‖

‖

‖⊢

(B.1)

Decomposing the first RHS term in (B.1) as
𝑟
∑

𝑗=0

[

𝑪̃
𝑗
𝑠𝑫̃𝑠𝜮𝜖𝑫̃

′
𝑠(𝑪̃

′
𝑠)
𝑗 − 𝑪𝑗𝑫𝜮𝜖𝑫′(𝑪 ′)𝑗

]

=
𝑟
∑

𝑗=0

[(

𝑪̃
𝑗
𝑠𝑫̃𝑠 − 𝑪𝑗𝑫

)

𝜮𝜖𝑫̃
′
𝑠(𝑪̃

′
𝑠)
𝑗 − 𝑪𝑗𝑫𝜮𝜖

(

𝑫′(𝑪 ′)𝑗 − 𝑫̃
′
𝑠(𝑪̃

′
𝑠)
𝑗
)]

=
𝑟
∑

𝑗=0

(

𝑪̃
𝑗
𝑠𝑫̃𝑠 − 𝑪𝑗𝑫

)

𝜮𝜖

(

𝑫̃
′
𝑠(𝑪̃

′
𝑠)
𝑗 −𝑫′(𝑪 ′)𝑗

)

+
𝑟
∑

𝑗=0

[(

𝑪̃
𝑗
𝑠𝑫̃𝑠 − 𝑪𝑗𝑫

)

𝜮𝜖𝑫′(𝑪 ′)𝑗 − 𝑪𝑗𝑫𝜮𝜖

(

𝑫′(𝑪 ′)𝑗 − 𝑫̃
′
𝑠(𝑪̃

′
𝑠)
𝑗
)]

,

it follows that
‖

‖

‖

‖

‖

‖

𝑟
∑

𝑗=0

[

𝑪̃
𝑗
𝑠𝑫̃𝑠𝜮𝜖𝑫̃

′
𝑠(𝑪̃

′
𝑠)
𝑗 − 𝑪𝑗𝑫𝜮𝜖𝑫′(𝑪 ′)𝑗

]

‖

‖

‖

‖

‖

‖⊢

≤ 𝐶𝜖
𝑟
∑

𝑗=0

‖

‖

‖

𝑪̃
𝑗
𝑠𝑫̃𝑠 − 𝑪𝑗𝑫‖

‖

‖

2

⊢
+ 2𝐶𝜖

𝑟
∑

𝑗=0

‖

‖

‖

𝑪̃
𝑗
𝑠𝑫̃𝑠 − 𝑪𝑗𝑫‖

‖

‖⊢
‖

‖

𝑪𝑗𝑫‖

‖⊢ .

(B.2)

Furthermore, noting that
‖

‖

‖

𝑪̃
𝑗
𝑠𝑫̃𝑠 − 𝑪𝑗𝑫‖

‖

‖⊢
≤ ‖

‖

‖

𝑪̃
𝑗
𝑠 − 𝑪𝑗‖

‖

‖⊢
‖

‖

‖

𝑫̃𝑠
‖

‖

‖⊢
+ ‖

‖

𝑪𝑗
‖

‖⊢
‖

‖

‖

𝑫 − 𝑫̃𝑠
‖

‖

‖⊢
, (B.3)

7 If matrices 𝑭 1 and 𝑭 2 are banded matrices with bandwidths 𝑘1 and 𝑘2, respectively, then the product 𝑭 1𝑭 2 is again a banded matrix with a bandwidth
20

f at most 𝑘1 + 𝑘2 − 1.
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we proceed by bounding each norm in (B.3). First, expanding the matrix powers provides

‖

‖

‖

𝑪̃
𝑗
𝑠 − 𝑪𝑗‖

‖

‖⊢
=
‖

‖

‖

‖

(

𝑪̃𝑠 − 𝑪 + 𝑪
)𝑗

− 𝑪𝑗‖
‖

‖

‖⊢

=
‖

‖

‖

‖

(

(𝑪̃𝑠 − 𝑪)𝑗 + (𝑪̃𝑠 − 𝑪)𝑗−1𝑪 + (𝑪̃𝑠 − 𝑪)𝑗−2𝑪(𝑪̃𝑠 − 𝑪) +⋯ + 𝑪(𝑪̃𝑠 − 𝑪)𝑗−1 …+ 𝑪𝑗
)

− 𝑪𝑗‖
‖

‖

‖⊢

≤
𝑗
∑

𝑘=1

(

𝑗
𝑘

)

‖𝑪‖

𝑗−𝑘
⊢

‖

‖

‖

𝑪̃𝑠 − 𝑪‖

‖

‖

𝑘

⊢
=

𝑗−1
∑

𝑘=0

(

𝑗
𝑘 + 1

)

‖𝑪‖

(𝑗−1)−𝑘
⊢

‖

‖

‖

𝑪̃𝑠 − 𝑪‖

‖

‖

𝑘+1

⊢

= ‖

‖

‖

𝑪̃𝑠 − 𝑪‖

‖

‖⊢

𝑗−1
∑

𝑘=0

𝑗
𝑘 + 1

(

𝑗 − 1
𝑘

)

‖𝑪‖

(𝑗−1)−𝑘
⊢

‖

‖

‖

𝑪̃𝑠 − 𝑪‖

‖

‖

𝑘

⊢
≤ 𝛿𝐶𝛿

𝑠
𝐴𝑗

[

‖

‖

‖

𝑪̃𝑠 − 𝑪‖

‖

‖⊢
+ ‖𝑪‖⊢

]𝑗−1

≤ 𝛿𝐶𝛿
𝑠
𝐴𝑗

[

𝛿𝐶 (1 + 𝛿𝑠𝐴)
]𝑗−1

= 𝛿𝑗𝐶 𝑗𝛿
𝑠
𝐴(1 + 𝛿

𝑠
𝐴)
𝑗−1.

Next, it holds that ‖‖
‖

𝑫 − 𝑫̃𝑠
‖

‖

‖⊢
= ‖

‖

‖

∑∞
𝑗=𝑠 𝑨

𝑗‖
‖

‖⊢
≤

𝛿𝑠𝐴
1−𝛿𝐴

, ‖‖
‖

𝑫̃𝑠
‖

‖

‖⊢
≤ 1

1−𝛿𝐴
and ‖

‖

𝑪𝑗
‖

‖⊢ ≤ 𝛿𝑗𝐶 , such that we may bound (B.3) as

‖

‖

‖

𝑪̃
𝑗
𝑠𝑫̃𝑠 − 𝑪𝑗𝑫‖

‖

‖⊢
≤
𝛿𝑠𝐴𝑗𝛿

𝑗
𝐶 (1 + 𝛿

𝑠
𝐴)
𝑗

(1 + 𝛿𝑠𝐴)(1 − 𝛿𝐴)
+

𝛿𝑠𝐴𝛿
𝑗
𝐶

1 − 𝛿𝐴
≤

2𝛿𝑠𝐴𝑗𝛿
𝑗
𝐶 (1 + 𝛿

𝑠
𝐴)
𝑗

(1 − 𝛿𝐴)
. (B.4)

Plugging (B.4) into (B.2), we obtain
‖

‖

‖

‖

‖

‖

𝑟
∑

𝑗=0

[

𝑪̃
𝑗
𝑠𝑫̃𝑠𝜮𝜖𝑫̃

′
𝑠(𝑪̃

′
𝑠)
𝑗 − 𝑪𝑗𝑫𝜮𝜖𝑫′(𝑪 ′)𝑗

]

‖

‖

‖

‖

‖

‖⊢

≤
4𝐶𝜖𝛿2𝑠𝐴
(1 − 𝛿𝐴)2

𝑟
∑

𝑗=0
𝑗2𝛿2𝑗𝐶 (1 + 𝛿𝑠𝐴)

2𝑗 +
4𝐶𝜖𝛿𝑠𝐴

(1 − 𝛿𝐴)2

𝑟
∑

𝑗=0
𝑗𝛿2𝑗𝐶 (1 + 𝛿𝑠𝐴)

𝑗

≤
4𝐶𝜖𝛿2𝑠𝐴 𝛿

2
𝐶 (1 + 𝛿

𝑠
𝐴)

2

(1 − 𝛿𝐴)2
(

1 − 𝛿2𝐶 (1 + 𝛿
𝑠
𝐴)

2
)2

+
4𝐶𝜖𝛿𝑠𝐴𝛿

2
𝐶 (1 + 𝛿

𝑠
𝐴)

(1 − 𝛿𝐴)2
(

1 − 𝛿2𝐶 (1 + 𝛿
𝑠
𝐴)
)2

≤
8𝐶𝜖𝛿𝑠𝐴

(1 − 𝛿𝐴)2
(

1 − 𝛿2𝐶 (1 + 𝛿
𝑠
𝐴)

2
)2
,

(B.5)

where we have assumed that 𝑠 is sufficiently large, such that 𝛿𝐶 (1 + 𝛿𝑠𝐴) < 1, and applied standard results for geometric series,
i.e. ∑∞

𝑗=1 𝑗𝑧
𝑗 = 𝑧

(1−𝑧)2 and ∑∞
𝑗=1 𝑗

2𝑧𝑗 = 𝑧
(1−𝑧)3 for |𝑧| < 1. Next, we move to the second RHS term of (B.1), which is bounded by

‖

‖

‖

‖

‖

‖

∞
∑

𝑗=𝑟+1
𝑪𝑗𝑫𝜮𝜖𝑫′(𝑪 ′)𝑗

‖

‖

‖

‖

‖

‖⊢

≤ ‖

‖

𝜮𝜖
‖

‖⊢ ‖𝑫‖

2
⊢

∞
∑

𝑗=𝑟+1
‖𝑪‖

2𝑗
⊢ ≤

𝐶𝜖
(1 − 𝛿𝐴)2

∞
∑

𝑗=𝑟+1
𝛿2𝑗𝐶 =

𝐶𝜖𝛿
2(𝑟+1)
𝐶

(1 − 𝛿𝐴)2(1 − 𝛿2𝐶 )
. (B.6)

lugging both (B.5) and (B.6) into (B.1), results in the final bound

‖

‖

‖

𝜮𝑟,𝑠
0 −𝜮0

‖

‖

‖⊢
≤

8𝐶𝜖𝛿𝑠𝐴
(1 − 𝛿𝐴)2

(

1 − 𝛿2𝐶 (1 + 𝛿
𝑠
𝐴)

2
)2

+
𝐶𝜖𝛿

2(𝑟+1)
𝐶

(1 − 𝛿𝐴)2(1 − 𝛿2𝐶 )

thereby proving the intermediate result in part (b).
(c) We have 𝜮1 = (𝑰𝑁 −𝑨)−1𝑩𝜮0 = 𝑪𝜮0, and hence

‖

‖

‖

𝜮𝑟,𝑠
1 −𝜮1

‖

‖

‖⊢
= ‖

‖

‖

𝑪̃𝑠(𝜮
𝑟,𝑠
0 −𝜮0) + (𝑪̃𝑠 − 𝑪)𝜮0

‖

‖

‖⊢
≤ ‖

‖

‖

𝑪̃𝑠
‖

‖

‖⊢
‖

‖

‖

𝜮𝑟,𝑠
0 −𝜮0

‖

‖

‖⊢
+ ‖

‖

‖

𝑪̃𝑠 − 𝑪‖

‖

‖⊢
‖

‖

𝜮0
‖

‖⊢

≤
8𝐶𝜖𝛿𝑠𝐴

(1 − 𝛿𝐴)2
(

1 − 𝛿2𝐶 (1 + 𝛿
𝑠
𝐴)

2
)2

+
𝐶𝜖𝛿

2(𝑟+1)
𝐶

(1 − 𝛿𝐴)2(1 − 𝛿2𝐶 )
+

𝐶𝜖𝛿𝐶𝛿𝑠𝐴
(1 − 𝛿2𝐴)(1 − 𝛿

2
𝐶 )

≤
9𝐶𝜖𝛿𝑠𝐴

(1 − 𝛿𝐴)2
(

1 − 𝛿2𝐶 (1 + 𝛿
𝑠
𝐴)

2
)2

+
𝐶𝜖𝛿

2(𝑟+1)
𝐶

(1 − 𝛿𝐴)2(1 − 𝛿2𝐶 )

(B.7)

where we have used that ‖‖
‖

𝑪̃𝑠 − 𝑪‖

‖

‖⊢
≤ 𝛿𝐶𝛿𝑠𝐴 for the intermediate result (a), ‖‖

‖

𝑪̃𝑠
‖

‖

‖⊢
≤ 𝛿𝐶 (1+𝛿𝑠𝐴) < 1 since 𝑠 is taken sufficiently large,

and ‖

‖

𝜮0
‖

‖⊢ ≤
∑∞
𝑗=0

‖

‖

𝑪𝑗𝑫𝜮𝜖𝑫′(𝑪 ′)𝑗‖
‖⊢ ≤ 𝐶𝜖

(1−𝛿2𝐴)(1−𝛿
2
𝐶 )

.
(d) We have

‖

‖

‖

Bℎ1

(

𝜮̂0
)

−𝜮0
‖

‖

‖⊢
≤ ‖

‖

‖

Bℎ1

(

𝜮̂0
)

− Bℎ1

(

𝜮0
)

‖

‖

‖⊢
+ ‖

‖

‖

Bℎ1

(

𝜮0
)

− Bℎ1

(

𝜮𝑟,𝑠
0
)

‖

‖

‖⊢
+ ‖

‖

‖

Bℎ1

(

𝜮𝑟,𝑠
0
)

−𝜮0
‖

‖

‖⊢

= ‖

‖

‖

Bℎ1

(

𝜮̂0 −𝜮0
)

‖

‖

‖⊢
+ ‖

‖

‖

Bℎ1

(

𝜮0 −𝜮𝑟,𝑠
0
)

‖

‖

‖⊢
+ ‖

‖

‖

𝜮𝑟,𝑠
0 −𝜮0

‖

‖

‖⊢

≤ ‖

‖

‖

Bℎ1

(

𝜮̂0 −𝜮0
)

‖

‖

‖⊢
+ 2 ‖‖

‖

𝜮𝑟,𝑠
0 −𝜮0

‖

‖

‖⊢

(B.8)

because 𝜮𝑟,𝑠
0 is a banded matrix already and banding can only decrease the norm difference between 𝜮𝑟,𝑠

0 and 𝜮0. We consider the
‖ ̂ ‖ ‖ ̂ ‖
21

two terms in the RHS of (B.8) separately. Note that ‖
‖

𝜮 − 𝝈0‖
‖⊢

= ‖

‖

𝜮 − 𝝈0‖
‖1

. by symmetry. Then, letting 𝝃𝑡 be as defined in Lemma 3,
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1
(

i

w

F

P
(

‖

‖

‖

Bℎ1

(

𝜮̂0 −𝜮0
)

‖

‖

‖⊢
≤ 𝑥

)

= P

(

max
𝑖≤𝑗≤𝑁

𝑁∨(𝑗+ℎ1)
∑

𝑖=1∧(𝑗−ℎ1)

|

|

|

|

|

|

𝑇
∑

𝑡=2
𝜉𝑖𝑡𝜉𝑗𝑡 − E(𝜉𝑖𝑡𝜉𝑗𝑡)

|

|

|

|

|

|

≤ 𝑇𝑥

)

≥ 1 −
𝑁
∑

𝑗=1
P

( 𝑁∨(𝑗+ℎ1)
∑

𝑖=1∧(𝑗−ℎ1)

|

|

|

|

|

|

𝑇
∑

𝑡=2
𝜉𝑖𝑡𝜉𝑗𝑡 − E(𝜉𝑖𝑡𝜉𝑗𝑡)

|

|

|

|

|

|

> 𝑇𝑥

)

≥ 1 −
𝑁
∑

𝑗=1

𝑁∨(𝑗+ℎ1)
∑

𝑖=1∧(𝑗−ℎ1)
P

(

|

|

|

|

|

|

𝑇
∑

𝑡=2
𝜉𝑖𝑡𝜉𝑗𝑡 − E(𝜉𝑖𝑡𝜉𝑗𝑡)

|

|

|

|

|

|

> 𝑇𝑥
2ℎ1 + 1

)

≥

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 − (2ℎ1 + 1)𝑁
[

(

𝑏1𝑇 (1−𝛿)∕3 + (2ℎ1+1)𝑏3
𝑥

)

exp
(

− 𝑇 (1−𝛿)∕3

2𝑏21

)

+ 𝑏2(2ℎ1+1)𝑑

𝑥𝑑𝑇
𝛿
2 (𝑑−1)

]

(polynomial tails),

1 − (2ℎ1 + 1)𝑁
[

𝜅1(2ℎ1+1)
𝑥 + 2

𝜅2

(

𝑇𝑥2

(2ℎ1+1)2

)1∕7
]

exp
(

− 1
𝜅3

(

𝑇𝑥2

(2ℎ1+1)2

)1∕7
)

(exponential tails),

(B.9)

where the last inequality exploits Lemma 3. Note that the probabilities in (B.9) coincide with the probabilities defined as
−P1(𝑥,𝑁, 𝑇 ) and 1 −P2(𝑥,𝑁, 𝑇 ) in Theorem 1. Overall, if ‖‖

‖

Bℎ1

(

𝜮̂0 −𝜮0
)

‖

‖

‖⊢
≤ 𝜖 holds, then, applying intermediate result (b) to

B.8), we obtain the bound

‖

‖

‖

Bℎ1

(

𝜮̂0
)

−𝜮0
‖

‖

‖⊢
≤ 𝜖 + 2 ‖‖

‖

𝜮𝑟,𝑠
0 −𝜮0

‖

‖

‖⊢
≤ 𝜖 +

16𝐶𝜖𝛿𝑠𝐴
(1 − 𝛿𝐴)2

(

1 − 𝛿2𝐶 (1 + 𝛿
𝑠
𝐴)

2
)2

+
2𝐶𝜖𝛿

2(𝑟+1)
𝐶

(1 − 𝛿𝐴)2(1 − 𝛿2𝐶 )
.

(e) Mimicking the steps from (d), we find

‖

‖

‖

Bℎ2

(

𝜮̂1
)

−𝜮1
‖

‖

‖⊢
≤ 𝜖 + 2 ‖‖

‖

𝜮𝑟,𝑠
1 −𝜮1

‖

‖

‖⊢
≤ 𝜖 +

18𝐶𝜖𝛿𝑠𝐴
(1 − 𝛿𝐴)2

(

1 − 𝛿2𝐶 (1 + 𝛿
𝑠
𝐴)

2
)2

+
2𝐶𝜖𝛿

2(𝑟+1)
𝐶

(1 − 𝛿𝐴)2(1 − 𝛿2𝐶 )

f we use part (c) and if
{

‖

‖

‖

Bℎ2

(

𝜮̂1 −𝜮1
)

‖

‖

‖⊢
≤ 𝜖

}

holds. The probability of the latter event is 1 − P1(𝜖,𝑁, 𝑇 ) (polynomial tails) or
1 − P2(𝜖,𝑁, 𝑇 ) (exponential tails).

We now combine all these intermediate results to recover the result from the theorem. Parts (d) and (e) are both applicable since

ℎ = max{ℎ1, ℎ2} = ℎ2 = (2𝑟𝑠 + 2𝑟 + 3𝑠 + 1)(𝑘0 − 1) + 2𝑙0 + 1

≤
(

2𝑟(𝑠 + 1) + 3(𝑠 + 1)
)

(𝑘0 − 1) + 2𝑙0 + 1 ≤ (𝑠 + 1)(2𝑟 + 3)(𝑘0 − 1) + 2𝑙0 + 1.
(B.10)

Then, by intermediate results (d) and (e), it holds that
‖

‖

‖

𝑽 ℎ − 𝑽 ‖

‖

‖⊢
≤ ‖

‖

‖

Bℎ2

(

𝜮̂1
)

−𝜮1
‖

‖

‖⊢
+ ‖

‖

‖

Bℎ1

(

𝜮̂0
)

−𝜮0
‖

‖

‖⊢

≤ 2𝜖 +
34𝐶𝜖𝛿𝑠𝐴

(1 − 𝛿𝐴)2
(

1 − 𝛿2𝐶 (1 + 𝛿
𝑠
𝐴)

2
)2

+
4𝐶𝜖𝛿

2(𝑟+1)
𝐶

(1 − 𝛿𝐴)2(1 − 𝛿2𝐶 )

ith probabilities 1 − 2P1(𝜖,𝑁, 𝑇 ) and 1 − 2P2(𝜖,𝑁, 𝑇 ) in the cases of polynomial and exponential tail decay, respectively.
It remains to determine 𝑠 and 𝑟 such that 𝛿𝐶 (1 + 𝛿𝑠𝐴) < 1,

34𝐶𝜖𝛿𝑠𝐴
(1 − 𝛿𝐴)2

(

1 − 𝛿2𝐶 (1 + 𝛿
𝑠
𝐴)

2
)2

= 𝜖, and
4𝐶𝜖𝛿

2(𝑟+1)
𝐶

(1 − 𝛿𝐴)2(1 − 𝛿2𝐶 )
= 𝜖.

First, note that we can ensure 𝛿𝐶 (1 + 𝛿𝑠𝐴) = 𝐾 < 1, by choosing 𝑠 > log
(

𝛿𝐶
𝐾−𝛿𝐶

)

∕ |
|

log(𝛿𝐴)||. Then,

34𝐶𝜖𝛿𝑠𝐴
(1 − 𝛿𝐴)2

(

1 − 𝛿2𝐶 (1 + 𝛿
𝑠
𝐴)

2
)2

=
34𝐶𝜖𝛿𝑠𝐴

(1 − 𝛿𝐴)2
(

1 −𝐾2
)2

= 𝜖 ⇐ 𝑠 =
log

(

34𝐶𝜖
(1−𝛿𝐴)2(1−𝐾2)2𝜖

)

|

|

log(𝛿𝐴)||
. (B.11)

urthermore,

4𝐶𝜖𝛿
2(𝑟+1)
𝐶

(1 − 𝛿𝐴)2(1 − 𝛿2𝐶 )
= 𝜖 ⇐ 𝑟 =

log
(

4𝐶𝜖
(1−𝛿𝐴)2(1−𝛿2𝐶 )𝜖

)

2 |
|

log(𝛿𝐶 )||
− 1

2
. (B.12)

Define 𝐶1 =
34𝐶𝜖

(1−𝛿𝐴)2(1−𝐾2)2 and 𝐶2 =
4𝐶𝜖

(1−𝛿𝐴)2(1−𝛿2𝐶 )
. Plugging (B.11)–(B.12) into (B.10), we obtain the result that when

ℎ =

⎛

⎜

⎜

⎜

max
{

log
(

𝐾−𝛿𝑐
𝛿𝑐

)

, log
(

𝐶1
𝜖

)}

|

|

log(𝛿𝐴)||
+ 1

⎞

⎟

⎟

⎟

⎛

⎜

⎜

⎜

log
(

𝐶2
𝜖

)

|

|

log(𝛿𝐶 )||
+ 2

⎞

⎟

⎟

⎟

(𝑘0 − 1) + 2𝑙0 + 1,
22

⎝ ⎠ ⎝ ⎠



Journal of Econometrics 239 (2024) 105520H. Reuvers and E. Wijler

p

P

F

b

U

w
r

O

for some 𝐾 ∈ (𝛿𝑐 , 1), it holds that ‖

‖

‖

𝑽 ℎ − 𝑽 ‖

‖

‖⊢
≤ 4𝜖 with probability at least 1 − 2P1(𝜖,𝑁, 𝑇 ) and 1 − 2P2(𝜖,𝑁, 𝑇 ) in the cases of

olynomial and exponential tail decay, respectively. □

roof of Theorem 2. The proof of the theorem relies on the properties of dual norms. Recall 𝑃𝛼(𝒄) = 𝛼
∑

𝑔∈G

√

|𝑔| ‖‖
‖

𝒄𝑔
‖

‖

‖2
+(1−𝛼) ‖𝒄‖1.

Exploiting the properties of ‖⋅‖1 and ‖⋅‖2, it is straightforward to verify that 𝑃𝛼(⋅) is a norm for any 0 ≤ 𝛼 ≤ 1. For any norm ‖⋅‖,
we define its dual norm ‖⋅‖∗ through ‖𝒄‖∗ = sup𝒙≠𝟎

|𝒄′𝒙|
‖𝒙‖ . The dual-norm inequality states that

𝒄′𝒙 ≤ ‖𝒄‖∗ ‖𝒙‖ for all conformable vectors 𝒄 and 𝒙. (B.13)

or the norm 𝑃𝛼(𝒄), its dual norm 𝑃 ∗
𝛼 (𝒄) is bounded by

𝑃 ∗
𝛼 (𝒄) = sup

𝒙≠𝟎

|𝒄′𝒙|
𝑃𝛼(𝒙)

= sup
𝒙≠𝟎

|𝒄′𝒙|

𝛼
∑

𝑔∈G

√

|𝑔| ‖‖
‖

𝒙𝑔
‖

‖

‖2
+ (1 − 𝛼) ‖𝒙‖1

(𝑖)
≤ 𝛼 sup

𝒙≠𝟎

|𝒄′𝒙|
∑

𝑔∈G

√

|𝑔| ‖‖
‖

𝒙𝑔
‖

‖

‖2

+ (1 − 𝛼) sup
𝒙≠𝟎

|𝒄′𝒙|
‖𝒙‖1

(𝑖𝑖)
≤ 𝛼max

𝑔∈G

‖

‖

‖

𝒄𝑔
‖

‖

‖2
√

|𝑔|
+ (1 − 𝛼) ‖𝒄‖∞ ,

(B.14)

y convexity of the function 𝑓 (𝑥) = 𝑥−1 in step (i), and using for step (ii) both ‖𝒄‖∗1 = ‖𝒄‖∞ and

sup
𝒙≠𝟎

|

|

𝒄′𝒙|
|

∑

𝑔∈G

√

|𝑔| ‖‖
‖

𝒙𝑔
‖

‖

‖2

= sup
𝒙≠𝟎,

∑

𝑔∈G

√

|𝑔|‖‖
‖

𝒙𝑔
‖

‖

‖2
=1

|

|

|

|

|

|

∑

𝑔∈G

𝒄′𝑔𝒙𝑔
|

|

|

|

|

|

≤ sup
𝒙≠𝟎,

∑

𝑔∈G

√

|𝑔|‖‖
‖

𝒙𝑔
‖

‖

‖2
=1

∑

𝑔∈G

‖

‖

‖

‖

‖

‖

𝒄𝑔
√

|𝑔|

‖

‖

‖

‖

‖

‖2

‖

‖

‖

√

|𝑔|𝒙𝑔
‖

‖

‖2
≤ max

𝑔∈G

‖

‖

‖

𝒄𝑔
‖

‖

‖2
√

|𝑔|
.

We now start the actual proof. Recall 𝝈̂ℎ = vec
(

Bℎ
(

𝜮̂1
)′
)

, 𝑽̂ ℎ =
[

Bℎ
(

𝜮̂1
)′

Bℎ
(

𝜮̂0
)

]

, 𝑽 =
[

𝜮′
1 𝜮0

]

, and 𝑪 =
[

𝑨 𝑩
]

.
Exploiting standard properties of vec(⋅), we find

𝝈̂ℎ − 𝑽̂ (𝑑)
ℎ 𝒄 = vec

(

Bℎ
(

𝜮̂1
)′ − 𝑽̂ ℎ𝑪 ′

)

= vec

⎛

⎜

⎜

⎜

⎜

⎝

[

Bℎ
(

𝜮̂1
)

−𝜮1

]′
−
[

𝑽̂ ℎ − 𝑽
]

𝑪 ′ +
[

𝜮′
1 − 𝑽 𝑪 ′]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
=𝐎, see (5)

⎞

⎟

⎟

⎟

⎟

⎠

= vec
(

Bℎ
(

𝜮̂1
)′ −𝜮′

1

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜟̂𝛴

−
[

𝑽̂ (𝑑)
ℎ − 𝑽 (𝑑)

]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝜟̂𝑉

𝒄 = 𝜟̂𝛴 − 𝜟̂𝑉 𝒄.

(B.15)

sing (B.15), we rewrite

‖

‖

‖

𝝈̂ℎ − 𝑽̂ (𝑑)
ℎ 𝒄̂‖‖

‖

2

2
=
‖

‖

‖

‖

[

𝝈̂ℎ − 𝑽̂ (𝑑)
ℎ 𝒄

]

−
[

𝑽̂ (𝑑)
ℎ (𝒄̂ − 𝒄)

]

‖

‖

‖

‖

2

2

= ‖

‖

‖

𝝈̂ℎ − 𝑽̂ (𝑑)
ℎ 𝒄‖‖

‖

2

2
+ ‖

‖

‖

𝑽̂ (𝑑)
ℎ (𝒄̂ − 𝒄)‖‖

‖

2

2
− 2 (𝒄̂ − 𝒄)′ 𝑽̂ (𝑑)′

ℎ
(

𝜟̂𝛴 − 𝜟̂𝑉 𝒄
)

.

Recalling the objective function L𝛼(𝒄; 𝜆) =
‖

‖

‖

𝝈̂ℎ − 𝑽̂ (𝑑)
ℎ 𝒄‖‖

‖

2

2
+ 𝜆𝑃𝛼(𝒄) and noting that L𝛼(𝒄̂; 𝜆) ≤ L𝛼(𝒄; 𝜆) by construction, it follows

that

‖

‖

‖

𝑽̂ (𝑑)
ℎ (𝒄̂ − 𝒄)‖‖

‖

2

2
+ 𝜆𝑃𝛼 (𝒄̂) ≤ 2 (𝒄̂ − 𝒄)′ 𝑽̂ (𝑑)′

ℎ
(

𝜟̂𝛴 − 𝜟̂𝑉 𝒄
)

+ 𝜆𝑃𝛼 (𝒄)

≤ 2𝑃𝛼 (𝒄̂ − 𝒄)𝑃 ∗
𝛼

(

𝑽̂ (𝑑)′
ℎ

(

𝜟̂𝛴 − 𝜟̂𝑉 𝒄
)

)

+ 𝜆𝑃𝛼 (𝒄)

≤ 𝑃𝛼 (𝒄̂ − 𝒄)
[

2𝑃 ∗
𝛼

(

𝑽̂ (𝑑)′
ℎ 𝜟̂𝛴

)

+ 2𝑃 ∗
𝛼

(

𝑽̂ (𝑑)′
ℎ 𝜟̂𝑉 𝒄

)]

+ 𝜆𝑃𝛼 (𝒄) ,

(B.16)

here we used the dual-norm inequality (see (B.13)) and the triangle property of (dual) norms in the second and third inequality,
espectively. Define the sets

H1(𝑥) =
{

2𝑃 ∗
𝛼

(

𝑽̂ (𝑑)′
ℎ 𝜟̂𝛴

)

≤ 𝑥
}

and H2(𝑥) =
{

2𝑃 ∗
𝛼

(

𝑽̂ (𝑑)′
ℎ 𝜟̂𝑉 𝒄

)

≤ 𝑥
}

. (B.17)

n the set H1(
𝜆
4 ) ∩ H2(

𝜆
4 ), we can scale (B.16) by a factor 2 to obtain

‖ ̂ (𝑑)(𝒄̂ − 𝒄)‖
2
+ 2𝜆𝑃 𝒄̂ ≤ 𝜆𝑃 (𝒄̂ − 𝒄) + 2𝜆𝑃 (𝒄). (B.18)
23
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We subsequently manipulate 𝑃𝛼(𝒄̂) and 𝑃𝛼 (𝒄̂ − 𝒄). Using the reverse triangle inequality, we have

𝑃𝛼(𝒄̂) = 𝛼
∑

𝑔∈G

√

|𝑔| ‖‖
‖

𝒄̂𝑔
‖

‖

‖2
+ (1 − 𝛼) ‖𝒄̂‖1

≥ 𝛼
∑

𝑔∈G𝑆

√

|𝑔|
[

‖

‖

‖

𝒄𝑔
‖

‖

‖2
− ‖

‖

‖

𝒄̂𝑔 − 𝒄𝑔
‖

‖

‖2

]

+ 𝛼
∑

𝑔∈G𝑆𝑐

√

|𝑔| ‖‖
‖

𝒄̂𝑔
‖

‖

‖2
+ (1 − 𝛼)

[

‖

‖

𝒄𝑆‖‖1 − ‖

‖

𝒄̂𝑆 − 𝒄𝑆‖‖1 + ‖

‖

𝒄̂𝑆𝑐‖‖1
]

= 𝑃𝛼,𝑆 (𝒄) + 𝑃𝛼,𝑆𝑐 (𝒄̂ − 𝒄) − 𝑃𝛼,𝑆 (𝒄̂ − 𝒄) ,

(B.19)

here G𝑆 and G𝑆𝑐 are defined in Lemma 1. Simple rewriting provides

𝑃𝛼 (𝒄̂ − 𝒄) = 𝛼
∑

𝑔∈G

√

|𝑔| ‖‖
‖

𝒄̂𝑔 − 𝒄𝑔
‖

‖

‖2
+ (1 − 𝛼) ‖

‖

𝒄̂𝑆 − 𝒄𝑆‖‖1 + 𝛼
∑

𝑔∈G𝑆𝑐

√

|𝑔| ‖‖
‖

𝒄̂𝑔
‖

‖

‖2
+ (1 − 𝛼) ‖

‖

𝒄̂𝑆𝑐‖‖1

= 𝑃𝛼,𝑆 (𝒄̂ − 𝒄) + 𝑃𝛼,𝑆𝑐 (𝒄̂ − 𝒄) .
(B.20)

ombining results (B.18)–(B.20) yields

2 ‖‖
‖

𝑽̂ (𝑑)
ℎ (𝒄̂ − 𝒄)‖‖

‖

2

2
+ 𝜆𝑃𝛼,𝑆𝑐 (𝒄̂ − 𝒄) ≤ 3𝜆𝑃𝛼,𝑆 (𝒄̂ − 𝒄), (B.21)

nd 𝒄̂ − 𝒄 is thus a member of the set C𝑁𝑐 (G , 𝑆) as defined in Lemma 1.
In combination with Lemma 2, thus requiring H1(

𝜆
4 ) ∩ H2(

𝜆
4 ) ∩ V

(

𝜙0
2

)

to hold, we conclude

2 ‖‖
‖

𝑽̂ (𝑑)
ℎ (𝒄̂ − 𝒄)‖‖

‖

2

2
+ 𝜆𝑃𝛼(𝒄̂ − 𝒄) = 2 ‖‖

‖

𝑽̂ (𝑑)
ℎ (𝒄̂ − 𝒄)‖‖

‖

2

2
+ 𝜆𝑃𝛼,𝑆 (𝒄̂ − 𝒄) + 𝜆𝑃𝛼,𝑆𝑐 (𝒄̂ − 𝒄)

(𝑖)
≤ 4𝜆𝑃𝛼,𝑆 (𝒄̂ − 𝒄)

(𝑖𝑖)
≤ 16 ‖‖

‖

𝑽̂ (𝑑)
ℎ (𝒄̂ − 𝒄)‖‖

‖2

(

𝜔̄𝛼𝜆
𝜙0

)

(𝑖𝑖𝑖)
≤ ‖

‖

‖

𝑽̂ (𝑑)
ℎ (𝒄̂ − 𝒄)‖‖

‖

2

2
+

64𝜔̄2
𝛼𝜆

2

𝜙2
0

,
(B.22)

where step (i) follows from (B.21), step (ii) is implied by 𝑃𝛼,𝑆 (𝒄̂ − 𝒄) ≤
4𝜔̄0

‖

‖

‖

‖

𝑽̂ (𝑑)
ℎ (𝒄̂−𝒄)

‖

‖

‖

‖2
𝜙0

for 𝒄̂ − 𝒄 ∈ C𝑁𝑐 (G , 𝑆) (Lemma 2), and step (iii)
ses the elementary inequality 16𝑢𝑣 ≤ 𝑢2+64𝑣2 (i.e. manipulating (𝑢−8𝑣)2 ≥ 0). A straightforward rearrangement of (B.22) provides
he inequality of Theorem 2.

It remains to determine a lower bound on the probability of H1(
𝜆
4 ) ∩ H2(

𝜆
4 ) ∩ V

(

𝜙0
2

)

. We rely on the elementary inequality

P
(

H1(
𝜆
4 ) ∩ H2(

𝜆
4 ) ∩ V

(

𝜙0
2

))

≥ 1 − P
(

H1(
𝜆
4 )
𝑐
)

− P
(

H2(
𝜆
4 )
𝑐
)

− P
(

V
(

𝜙0
2

)𝑐)
to bound the individual probabilities.

We start with P
(

H1(
𝜆
4 )
𝑐
)

= P
(

2𝑃 ∗
𝛼

(

𝑽̂ (𝑑)′
ℎ 𝜟̂𝛴

)

> 𝜆
4

)

≤ P
(

‖

‖

‖

𝑽̂ (𝑑)′
ℎ 𝜟̂𝛴

‖

‖

‖∞
> 𝜆

8

)

. The last inequality is true because continuing from
(B.14), we have

𝑃 ∗
𝛼 (𝒄) ≤ 𝛼max

𝑔∈G

‖

‖

‖

𝒄𝑔
‖

‖

‖2
√

|𝑔|
+ (1 − 𝛼) ‖𝒄‖∞ ≤ 𝛼max

𝑔∈G

√

|𝑔| ‖‖
‖

𝒄𝑔
‖

‖

‖∞
√

|𝑔|
+ (1 − 𝛼) ‖𝒄‖∞ = ‖𝒄‖∞ (B.23)

for any vector 𝒄. Subsequently, we have

P
(

‖

‖

‖

𝑽̂ (𝑑)′
ℎ 𝜟̂𝛴

‖

‖

‖∞
> 𝜆

8

)

= P
(

‖

‖

‖

‖

[

(𝑽̂ (𝑑)
ℎ − 𝑽 (𝑑)) + 𝑽 (𝑑)

]′
𝜟̂𝛴

‖

‖

‖

‖∞
> 𝜆

8

)

≤ P
(

‖

‖

‖

𝑽̂ ℎ − 𝑽 ‖

‖

‖1
‖

‖

‖

𝜟̂𝛴
‖

‖

‖∞
+ 𝐶𝑉

‖

‖

‖

𝜟̂𝛴
‖

‖

‖∞
> 𝜆

8

)

≤ P
(

‖

‖

‖

𝑽̂ ℎ − 𝑽 ‖

‖

‖

2

⊢
+ 𝐶𝑉

‖

‖

‖

𝑽̂ ℎ − 𝑽 ‖

‖

‖⊢
> 𝜆

8

)

≤ P
(

‖

‖

‖

𝑽̂ ℎ − 𝑽 ‖

‖

‖⊢
> 𝜆1∕2

4

)

+ P
(

‖

‖

‖

𝑽̂ ℎ − 𝑽 ‖

‖

‖⊢
> 𝜆

16𝐶𝑉

)

,

(B.24)

xploiting block-diagonality of 𝑽̂ (𝑑)
ℎ − 𝑽 (𝑑) and 𝑽 (𝑑) such that ‖

‖

‖

𝑽̂ (𝑑)
ℎ − 𝑽 (𝑑)‖

‖

‖1
= max1≤𝑖≤𝑁

‖

‖

‖

𝑽̂ 𝑖,ℎ − 𝑽 𝑖
‖

‖

‖1
≤ ‖

‖

‖

𝑽̂ ℎ − 𝑽 ‖

‖

‖⊢
and ‖

‖

‖

𝑽 (𝑑)‖
‖

‖1
≤

𝑽 ‖⊢ ≤ 𝐶𝑉 (explicitly assumed in Theorem 2). Bounds for the final RHS terms in (B.24) are available from Theorem 1.
Second, we have

P
(

H2

(𝜆
4

)𝑐)

≤ P
(

‖

‖

‖

𝑽̂ (𝑑)′
ℎ 𝜟̂𝑉 𝒄

‖

‖

‖∞
> 𝜆

8

)

≤ P
(

‖

‖

‖

‖

𝑽̂ (𝑑)′
ℎ

[

𝑽̂ (𝑑)
ℎ − 𝑽 (𝑑)

]

‖

‖

‖

‖∞
> 𝜆

8 ‖𝒄‖∞

)

≤ P
(

‖

‖

‖

𝑽̂ ℎ − 𝑽 ‖

‖

‖1
‖

‖

‖

𝑽̂ ℎ − 𝑽 ‖

‖

‖∞
+ 𝐶𝑉

‖

‖

‖

𝑽̂ ℎ − 𝑽 ‖

‖

‖∞
> 𝜆

8 ‖𝒄‖∞

)

≤ P
(

‖

‖

‖

𝑽̂ ℎ − 𝑽 ‖

‖

‖⊢
> 𝜆1∕2

4

)

+ P
(

‖

‖

‖

𝑽̂ ℎ − 𝑽 ‖

‖

‖⊢
> 𝜆

16𝐶𝑉

)

,

(B.25)

where the last line relies on the union bound and the fact that ‖𝒄‖∞ < 1 (implied by Assumption 1). Hence, the sets H1

(

𝜆
4

)𝑐
and

H
(

𝜆
)𝑐

admit the same probability bound.
24
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f

a

S
T

Finally, P
(

V
(

𝜙0
2

)𝑐)
= P

(

‖

‖

‖

𝑽̂ ℎ − 𝑽 ‖

‖

‖1
> 𝜙0

2

)

≤ P
(

‖

‖

‖

𝑽̂ ℎ − 𝑽 ‖

‖

‖⊢
> 𝜙0

2

)

. Combining all previous results, we conclude

P
(

H1

(𝜆
4

)

∩ H2

(𝜆
4

)

∩ V

(

𝜙0
2

))

≥ 1 − 2P
(

‖

‖

‖

𝑽̂ ℎ − 𝑽 ‖

‖

‖⊢
> 𝜆1∕2

4

)

− 2P
(

‖

‖

‖

𝑽̂ ℎ − 𝑽 ‖

‖

‖⊢
> 𝜆

16𝐶𝑉

)

− P
(

‖

‖

‖

𝑽̂ ℎ − 𝑽 ‖

‖

‖⊢
>
𝜙0
2

)

≥ 1 − 5P
(

‖

‖

‖

𝑽̂ ℎ − 𝑽 ‖

‖

‖⊢
> 6𝑓 (𝜆, 𝜙0)

)

,

(B.26)

where 𝑓 (𝜆, 𝜙0) = min
(

𝜆1∕2

24 ,
𝜆

96𝐶𝑉
, 𝜙012

)

. The proof is completed by evaluating the final probability in (B.26) using Theorem 1. □

Proof of Corollary 1. First, we derive the conditions under which the set on which the performance bound in Theorem 2 holds
occurs with probability converging to one. Under Assumption 2(b1), along with the remaining assumptions in Theorem 2, this
probability is given by 1 − P1(𝑓 (𝜆, 𝜙0), 𝑁, 𝑇 ), where we recall from Theorem 1 that

P1(𝑓 (𝜆, 𝜙0), 𝑁, 𝑇 ) = (2ℎ(𝑓 (𝜆, 𝜙0)) + 1)𝑁
(

𝑏1𝑇
(1−𝛿)∕3 +

[2ℎ(𝑓 (𝜆, 𝜙0)) + 1]𝑏3
𝑓 (𝜆, 𝜙0)

)

exp

(

−𝑇
(1−𝛿)∕3

2𝑏21

)

+ (2ℎ(𝑓 (𝜆, 𝜙0)) + 1)𝑁
𝑏2[2ℎ(𝑓 (𝜆, 𝜙0)) + 1]𝑑

𝑓 (𝜆, 𝜙0)𝑑𝑇
𝛿
2 (𝑑−1)

,
(B.27)

or some 0 < 𝛿 < 1 and 𝑓 (𝜆, 𝜙0) = min
(

𝜆1∕2

24 ,
𝜆

96𝐶𝑣
, 𝜙012

)

. Given that 𝜆 = 𝑂(𝑇 −𝑞𝜆 ) with 𝑞𝜆 > 0, it follows immediately that

𝑓 (𝜆, 𝜙0) = min
(

𝜆1∕2

24
, 𝜆
96𝐶𝑉

,
𝜙0
12

)

= 𝑂 (𝑇 −𝑞𝜆 ) (B.28)

nd, recalling the definition of ℎ
(

𝑓 (𝜆, 𝜙0)
)

in (4),

ℎ
(

𝑓 (𝜆, 𝜙0)
)

= 𝑂
(

log(𝑇 )2𝑇 𝑞𝑘
)

. (B.29)

ince these are polynomial rates in 𝑇 , it follows that the first RHS-term in (B.27) converges to zero exponentially in 𝑇 for any 𝛿 < 1.
he second RHS-term, however, converges to zero at most at a polynomial rate, such that

P1(𝑓 (𝜆, 𝜙0), 𝑁, 𝑇 ) = 𝑂

(

(2ℎ(𝑓 (𝜆, 𝜙0)) + 1)𝑁[ℎ
(

𝑓 (𝜆, 𝜙0)
)

+ 1]𝑑

𝜆𝑑𝑇
𝛿
2 (𝑑−1)

)

= 𝑂
(

log(𝑇 )2(𝑑+1)𝑇 𝑞𝑁+(𝑑+1)𝑞𝑘+𝑑𝑞𝜆−
𝛿(𝑑−1)

2

)

.

(B.30)

From (B.30), it follows that P1(𝑓 (𝜆, 𝜙0), 𝑁, 𝑇 ) → 0 as 𝑇 → ∞ if

𝑞𝑁 + (𝑑 + 1)𝑞𝑘 + 𝑑𝑞𝜆 −
𝛿(𝑑 − 1)

2
< 0 ⇒ 𝑞𝜆 <

𝛿(𝑑 − 1)
2𝑑

−
(𝑑 + 1)𝑞𝑘

𝑑
−
𝑞𝑁
𝑑

In a similar fashion, we derive the conditions under which P2(𝑓 (𝜆, 𝜙0), 𝑁, 𝑇 ) → 0, by noting that

P2(𝑓 (𝜆, 𝜙0), 𝑁, 𝑇 ) = (2ℎ(𝑓 (𝜆, 𝜙0)) + 1)𝑁
⎡

⎢

⎢

⎣

𝜅1[2ℎ(𝑓 (𝜆, 𝜙0)) + 1]
𝑓 (𝜆, 𝜙0)

+ 2
𝜅2

(

𝑇𝑓 (𝜆, 𝜙0)2

[2ℎ + 1]2

)

1
7 ⎤
⎥

⎥

⎦

× exp
⎛

⎜

⎜

⎝

− 1
𝜅3

(

𝑇𝑓 (𝜆, 𝜙0)2

[2ℎ(𝑓 (𝜆, 𝜙0)) + 1]2

)

1
7 ⎞
⎟

⎟

⎠

(B.31)

converges to zero exponentially fast in 𝑇 if 𝑇𝑓 (𝜆,𝜙0)2

[2ℎ(𝑓 (𝜆,𝜙0))+1]2
diverges at a polynomial rate in 𝑇 . Making use of (B.28) and (B.29), it

follows that
𝑇𝑓 (𝜆, 𝜙0)2

[2ℎ(𝑓 (𝜆, 𝜙0)) + 1]2
= 𝑂

(

log(𝑇 )−4𝑇 1−2𝑞𝜆−2𝑞𝑘
)

,

which translates to the condition 1 − 2𝑞𝜆 − 2𝑞𝑘 > 0, or 𝑞𝜆 <
1
2 − 𝑞𝑘. This establishes conditions (i) and (ii) in Corollary 1.

We proceed by deriving the order of the performance bound in Theorem 2. Noting that
∑

𝑔∈G𝑆

√

|𝑔| ≤ |

|

G𝑆 || max
𝑔∈G𝑆

√

|𝑔| = 𝑂
(

𝑇 𝑞𝑔+𝑞𝑁 ∕2
)

,

it follows that

𝜔̄ = 𝑂
(

(1 − 𝛼)𝑇 𝑞𝑔+𝑞𝑁 ∕2 + 𝛼𝑇 𝑞𝑆∕2
)

.

Then, by Theorem 2,

‖

‖

‖

𝑽̂ (𝑑)
ℎ (𝒄̂ − 𝒄)‖‖

‖

2

2
≤

4𝜔̄2
𝛼𝜆

2

2
= 𝑂

(

(1 − 𝛼)𝑇 2𝑞𝑔+𝑞𝑁−2𝑞𝜆 + 𝛼𝑇 𝑞𝑆−2𝑞𝜆
)
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r
C

P
‘

E

v
h

U
a

W

a

R

W

w
𝑃

A

and

(1 − 𝛼)
∑

𝑔∈G

√

|𝑔| ‖‖
‖

𝒄̂𝑔 − 𝒄𝑔
‖

‖

‖2
+ 𝛼 ‖𝒄̂ − 𝒄‖1 ≤

4𝜔̄2
𝛼𝜆

𝜙2
0

= 𝑂
(

(1 − 𝛼)𝑇 2𝑞𝑔+𝑞𝑁−𝑞𝜆 + 𝛼𝑇 𝑞𝑆−𝑞𝜆
)

,

on a set with probability 1 −P1(𝑓 (𝜆, 𝜙0), 𝑁, 𝑇 ) or 1 −P2(𝑓 (𝜆, 𝜙0), 𝑁, 𝑇 ), depending on whether Assumption 2(b1) or 2(b2) applies,
espectively. Since we have shown that both P1(𝑓 (𝜆, 𝜙0), 𝑁, 𝑇 ) → 0 and P2(𝑓 (𝜆, 𝜙0), 𝑁, 𝑇 ) → 0 under the conditions imposed in
orollary 1, the proof is complete. □

roof of Theorem 3. Set 𝜷∗ = (𝜷′
1,… , 𝜷′

𝐾 )
′, 𝑼 (𝑑) =

[

𝑾 ∗(𝑑)
1 ⋯ 𝑾 ∗(𝑑)

𝐾

]

, and 𝑸(𝑑) =
[

𝑽 ∗(𝑑) 𝑼 (𝑑)] (and similar quantities with
‘hats’’). The residuals entering the 𝐿2 component of the SPLASHX objective function are

𝝈̂∗−𝑽̂ ∗(𝑑)𝒄 −
𝐾
∑

𝑘=1
𝑾̂ ∗(𝑑)

𝑘 𝜷𝑘 = 𝝈̂∗ −
[

𝑽̂ ∗(𝑑) 𝑼̂ (𝑑)
]

[

𝒄
𝜷∗

]

= 𝝈∗ −
[

𝑽 ∗(𝑑) 𝑼 (𝑑)] 𝒒
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝐎

+
[

𝝈̂∗ − 𝝈∗]

⏟⏞⏞⏟⏞⏞⏟
∶=𝜟̂1

−
[

𝑽̂ ∗(𝑑) − 𝑽 ∗(𝑑)]

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
∶=𝜟̂2

𝒄 −
[

𝑼̂ (𝑑) − 𝑼 (𝑑)]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
∶=𝜟̂3

𝜷∗

= 𝜟̂1 − 𝜟̂2𝒄 − 𝜟̂3𝜷∗.

(B.32)

xploiting the previously defined notation and (B.32), we have

‖

‖

‖

𝝈̂∗ − 𝑽̂ ∗(𝑑)𝒄̂ −
𝐾
∑

𝑘=1
𝑾̂ ∗(𝑑)

𝑘 𝜷̂𝑘
‖

‖

‖

2

2

= ‖

‖

‖

𝝈̂∗ − 𝑸̂(𝑑)𝒒̂‖‖
‖

2

2
=
‖

‖

‖

‖

{

𝝈̂∗ − 𝑸̂(𝑑)𝒒
}

−
{

𝑸̂(𝑑)(𝒒̂ − 𝒒
)

}

‖

‖

‖

‖

2

2

= ‖

‖

‖

𝝈̂∗ − 𝑸̂(𝑑)𝒒‖‖
‖

2

2
+ ‖

‖

‖

𝑸̂(𝑑)(𝒒̂ − 𝒒
)

‖

‖

‖

2

2
− 2(𝒒̂ − 𝒒)′𝑸̂(𝑑)′ (𝜟̂1 − 𝜟̂2𝒄 − 𝜟̂3𝜷∗) .

(B.33)

We subsequently adjust the penalty function 𝑃𝛼(𝒄) to incorporate the penalty on the coefficients in front of the exogenous
ariables. Define the index set 𝑔𝑘 such that 𝒒𝑔𝑘 = 𝜷𝑘 (𝑘 = 1… , 𝐾) and enlarge G to G ∗ = G ∪

⋃𝐾
𝑘=1 𝑔𝑘. As |

|

𝜷𝑘|| = |

|

𝑔𝑘|| = 𝑁 , we
ave

𝑃𝛼(𝒄) +
𝐾
∑

𝑘=1
(1 − 𝛼)

√

𝑁 ‖

‖

𝜷𝑘‖‖2 + 𝛼 ‖‖𝜷𝑘‖‖1 = (1 − 𝛼)
∗
∑

𝑔∈G

√

|𝑔| ‖‖
‖

𝒒𝑔
‖

‖

‖2
+ 𝛼 ‖𝒒‖1 =∶ 𝑃𝛼(𝒒).

sing this newly defined norm 𝑃𝛼(𝒒), a more concise notation for the SPLASHX objective function is L ∗
𝛼 (𝒒; 𝜆) =

‖

‖

‖

𝝈̂∗−𝑸̂(𝑑)𝒒‖‖
‖

2

2
+𝜆𝑃𝛼(𝒒)

nd its dual norm 𝑃 ∗
𝛼 (𝒒) satisfies 𝑃 ∗

𝛼 (𝒒) ≤ ‖𝒒‖∞ (see (B.23) in the main text). From L ∗
𝛼 (𝒒̂; 𝜆) ≤ L ∗

𝛼 (𝒒; 𝜆), it follows that

‖

‖

‖

𝑸̂(𝑑)(𝒒̂ − 𝒒
)

‖

‖

‖

2

2
+ 𝜆𝑃𝛼(𝒒̂) ≤ 2(𝒒̂ − 𝒒)′𝑸̂(𝑑)′ (𝜟̂1 − 𝜟̂2𝒄 − 𝜟̂3𝜷∗) + 𝜆𝑃𝛼(𝒒)

≤ 𝑃𝛼(𝒒̂ − 𝒒)
[

2𝑃 ∗
𝛼

(

𝑸̂(𝑑)′𝜟̂1

)

+ 2𝑃 ∗
𝛼

(

𝑸̂(𝑑)′𝜟̂2𝒄
)

+ 2𝑃 ∗
𝛼

(

𝑸̂(𝑑)′𝜟̂3𝜷∗
)]

+ 𝜆𝑃𝛼(𝒒)

≤ 𝑃𝛼(𝒒̂ − 𝒒)
[

2 ‖‖
‖

𝑸̂(𝑑)′𝜟̂1
‖

‖

‖∞
+ 2 ‖‖

‖

𝑸̂(𝑑)′𝜟̂2𝒄
‖

‖

‖∞
+ 2 ‖‖

‖

𝑸̂(𝑑)′𝜟̂3𝜷∗‖
‖

‖∞

]

+ 𝜆𝑃𝛼(𝒒).

(B.34)

e subsequently define the following three sets:

H ∗
1 (𝑥) =

{

2 ‖‖
‖

𝑸̂(𝑑)′𝜟̂1
‖

‖

‖∞
≤ 𝑥

}

, H ∗
2 (𝑥) =

{

2 ‖‖
‖

𝑸̂(𝑑)′𝜟̂2𝒄
‖

‖

‖∞
≤ 𝑥

}

nd

H ∗
3 (𝑥) =

{

2 ‖‖
‖

𝑸̂(𝑑)′𝜟̂3𝜷
‖

‖

‖

∗

∞
≤ 𝑥

}

.

escaling (B.34) by a factor 2 and on H ∗
1 ( 𝜆6 ) ∩ H ∗

2 ( 𝜆6 ) ∩ H ∗
3 ( 𝜆6 ), we get

2 ‖‖
‖

𝑸̂(𝑑)(𝒒̂ − 𝒒
)

‖

‖

‖

2

2
+ 2𝜆𝑃𝛼(𝒒̂) ≤ 𝜆𝑃𝛼(𝒒̂ − 𝒒) + 2𝜆𝑃𝛼(𝒒). (B.35)

e first manipulate the term 𝑃𝛼(𝒒̂) in the LHS of (B.35). As in (B.19) of the main paper, we get

𝑃𝛼(𝒒̂) ≥ 𝑃𝛼,𝑆∗ (𝒒) + 𝑃𝛼,𝑆∗𝑐 (𝒒̂ − 𝒒) − 𝑃𝛼,𝑆∗ (𝒒̂ − 𝒒),

here 𝑆∗ is the index sets of all nonzero coefficients in 𝒒. For the term 𝑃𝛼(𝒒̂ − 𝒒) in the RHS of (B.35), if follows from (B.20) that
𝛼̃ (𝒒̂ − 𝒒) = 𝑃𝛼,𝑆∗ (𝒒̂ − 𝒒) + 𝑃𝛼,𝑆∗𝑐 (𝒒̂ − 𝒒). We obtain

2 ‖‖
‖

𝑸̂(𝑑)(𝒒̂ − 𝒒
)

‖

‖

‖

2

2
+ 𝜆𝑃𝛼,𝑆∗𝑐 (𝒒̂ − 𝒒) ≤ 3𝜆𝑃𝛼,𝑆∗ (𝒒̂ − 𝒒). (B.36)

ccordingly, with 𝑁∗ = 𝑁𝑐 +𝑁𝐾,

(𝒒̂ − 𝒒) ∈ C ∗ (G , 𝑆) ∶=
{

𝜟 ∈ R𝑁∗
∶ 𝑃 ∗𝑐 (𝜟) ≤ 3𝑃 ∗ (𝜟)

}

.
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F

A

Lemma 1 now goes through with 𝜔̄∗
𝛼 as in Theorem 3. For applicability of Lemma 2, we define V ∗(𝑥) =

{

‖

‖

‖

𝑸̂−𝑸‖

‖

‖2
≤ 𝑥

}

and assume

V ∗(
𝜙∗0
2 ). Derivations identical to those in (B.22) prove the main inequality of Theorem 3.

To derive the probability of the inequality being true, we need the probability of the occurrence of the event H ∗
1 ( 𝜆6 ) ∩H ∗

2 ( 𝜆6 ) ∩

H ∗
3 ( 𝜆6 ) ∩ V ∗(

𝜙∗0
2 ). This probability is no smaller than

1 − P
(

H ∗
1 ( 𝜆6 )

𝑐
)

− P
(

H ∗
2 ( 𝜆6 )

𝑐
)

− P
(

H ∗
3 ( 𝜆6 )

𝑐
)

− P
(

V ∗(
𝜙∗0
2 )𝑐

)

, (B.37)

and all probabilities in (B.37) can be retraced to probabilities involving ‖𝑸̂−𝑸‖⊢. That is, bounding terms as in (B.24)–(B.25), we
find

P
(

H ∗
1 ( 𝜆6 )

𝑐
)

= P
(

‖

‖

‖

𝑸̂(𝑑)′𝜟̂1
‖

‖

‖∞
> 𝜆

12

)

≤ P
(

‖

‖

‖

𝑸̂ −𝑸‖

‖

‖

2

⊢
+ 𝐶𝑄

‖

‖

‖

𝑸̂ −𝑸‖

‖

‖⊢
> 𝜆

12

)

≤ P

(

‖

‖

‖

𝑸̂ −𝑸‖

‖

‖⊢
> 𝜆1∕2

√

24

)

+ P
(

‖

‖

‖

𝑸̂ −𝑸‖

‖

‖⊢
> 𝜆

24𝐶𝑄

)

,
(B.38)

P
(

H ∗
2 ( 𝜆6 )

𝑐
)

= P
(

‖

‖

‖

𝑸̂(𝑑)′𝜟̂2𝒄
‖

‖

‖∞
> 𝜆

12

)

≤ P
(

‖

‖

‖

‖

𝑸̂(𝑑)′ [𝑸̂(𝑑) −𝑸(𝑑)
]

‖

‖

‖

‖∞
> 𝜆

12

)

≤ P

(

‖

‖

‖

𝑸̂ −𝑸‖

‖

‖⊢
> 𝜆1∕2

√

24

)

+ P
(

‖

‖

‖

𝑸̂ −𝑸‖

‖

‖⊢
> 𝜆

24𝐶𝑄

)

,
(B.39)

and

P
(

H ∗
3 ( 𝜆6 )

𝑐
)

= P
(

‖

‖

‖

𝑸̂(𝑑)′𝜟̂3𝜷∗‖
‖

‖∞
> 𝜆

12

)

≤ P
⎛

⎜

⎜

⎝

‖

‖

‖

𝑸̂ −𝑸‖

‖

‖⊢
> 𝜆1∕2

√

24𝐶𝛽

⎞

⎟

⎟

⎠

+ P
(

‖

‖

‖

𝑸̂ −𝑸‖

‖

‖⊢
> 𝜆

24𝐶𝑄𝐶𝛽

) (B.40)

or (B.39) and (B.40), Assumption 1*(a)–(b) and Assumption 1*(c) are needed to guarantee ‖𝒄‖1 ≤ 1 and ‖

‖

𝜷∗
‖

‖1 ≤ 𝐶𝛽 , respectively.

lso, P
(

V ∗(
𝜙∗0
4 )𝑐

)

= P
(

‖

‖

‖

𝑸̂ −𝑸‖

‖

‖2
>

𝜙∗0
2

)

≤ P
(

‖

‖

‖

𝑸̂ −𝑸‖

‖

‖⊢
>

𝜙∗0
2

)

. Given these bounds, (B.37) translates to

P
(

H ∗
1 ( 𝜆6 ) ∩ H ∗

2 ( 𝜆6 ) ∩ H ∗
3 ( 𝜆6 ) ∩ V ∗(

𝜙∗0
2 )

)

≥ 1 − 7P
(

‖

‖

‖

𝑸̂ −𝑸‖

‖

‖⊢
> 6𝑓 ∗(𝜆, 𝜙∗

0)
)

,

where 𝑓 ∗(𝜆, 𝜙∗
0) = min

{

𝜆1∕2

12
√

6
, 𝜆
144𝐶𝑄

, 𝜆1∕2

12
√

6𝐶𝛽
, 𝜆
144𝐶𝑄𝐶𝛽

,
𝜙∗0
12

}

.

All that remains is a lower bound for P
(

‖

‖

‖

𝑸̂ −𝑸‖

‖

‖⊢
> 𝑥

)

. We instead derive an upper bound for P
(

‖

‖

‖

𝑸̂ −𝑸‖

‖

‖⊢
≤ 𝑥

)

as follows

P

(

‖

‖

‖

𝑸̂ −𝑸‖

‖

‖⊢
≤ 𝑥

)

= P
(

max
{

‖

‖

‖

𝑸̂ −𝑸‖

‖

‖1
, ‖‖
‖

𝑸̂ −𝑸‖

‖

‖∞

}

≤ 𝑥
)

≥ P
(

(𝐾 + 2)𝑁 ‖

‖

‖

𝑸̂ −𝑸‖

‖

‖𝑚𝑎𝑥
≤ 𝑥

)

= 1 − P
(

‖

‖

‖

𝑸̂ −𝑸‖

‖

‖𝑚𝑎𝑥
> 𝑥

(𝐾 + 2)𝑁

)

≥ 1 − P

(

⋃

1≤𝑖≤(𝐾+1)𝑁,1≤𝑗≤(𝐾+2)𝑁

|

|

|

[

𝑸̂ −𝑸
]

𝑖𝑗
|

|

|

> 𝑥
(𝐾 + 2)𝑁

)

≥ 1 −
(𝐾+1)𝑁
∑

𝑖=1

(𝐾+2)𝑁
∑

𝑗=1
P

(

|

|

|

|

|

|

𝑇
∑

𝑡=2
𝜉𝑖𝑡𝜉𝑗𝑡 − E(𝜉𝑖𝑡𝜉𝑗𝑡)

|

|

|

|

|

|

> 𝑇𝑥
(𝐾 + 2)𝑁

)

≥

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 − (𝐾 + 1)(𝐾 + 2)𝑁2
[

(

𝑏1𝑇 (1−𝛿)∕3 + (𝐾+2)𝑁𝑏3
𝑥

)

exp
(

− 𝑇 (1−𝛿)∕3

2𝑏21

)

+ 𝑏2(𝐾+2)𝑑𝑁𝑑

𝑥𝑑𝑇
𝛿
2 (𝑑−1)

]

(polynomial tails),

1 − (𝐾 + 1)(𝐾 + 2)𝑁2
[

𝜅1(𝐾+2)𝑁
𝑥 + 2

𝜅2

(

𝑇𝑥2

(𝐾+2)𝑁

)1∕7
]

exp
(

− 1
𝜅3

(

𝑇𝑥2

(𝐾+2)2𝑁2

)1∕7
)

(exponential tails),

,

where 𝜉𝑖𝑡 denotes a generic element of an autocovariance matrix (as in Lemma 3). In accordance with Theorem 3, these RHS
probabilities are equivalent to 1 − P∗

1 (𝑥,𝑁, 𝑇 ) (polynomial tails) and 1 − P∗
2 (𝑥,𝑁, 𝑇 ) (exponential tails). □

Appendix C. Supplementary data
27

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2023.105520.
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