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a b s t r a c t

In this paper we propose the Single-equation Penalized Error Correction Selector (SPECS)
as an automated estimation procedure for dynamic single-equation models with a large
number of potentially (co)integrated variables. By extending the classical single-equation
error correction model, SPECS enables the researcher to model large cointegrated
datasets without necessitating any form of pre-testing for the order of integration or
cointegrating rank. Under an asymptotic regime in which both the number of parameters
and time series observations jointly diverge to infinity, we show that SPECS is able to
consistently estimate an appropriate linear combination of the cointegrating vectors that
may occur in the underlying DGP. In addition, SPECS is shown to enable the correct
recovery of sparsity patterns in the parameter space and to possess the same limiting
distribution as the OLS oracle procedure. A simulation study shows strong selective
capabilities, as well as superior predictive performance in the context of nowcasting
compared to high-dimensional models that ignore cointegration. An empirical applica-
tion to nowcasting Dutch unemployment rates using Google Trends confirms the strong
practical performance of our procedure.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we propose the Single-equation Penalized Error Correction Selector (SPECS) as a tool to perform
automated modelling of a potentially large number of time series of unknown order of integration. In many economic
applications, datasets will contain possibly (co)integrated time series, which has to be taken into account in the statistical
analysis. Traditional approaches include modelling the full system of time series as a vector error correction model
(VECM), estimated by methods such as maximum likelihood estimation (Johansen, 1995), or transforming all variables to
stationarity before performing further analysis. However, both methods have considerable drawbacks when the dimension
of the dataset increases.

While the VECM approach allows for flexible modelling of potentially cointegrated series, these estimators suffer from
the curse of dimensionality due to the large number of parameters to estimate. In practice they therefore quickly become
difficult to interpret and computationally intractable on even moderately sized datasets. As such, to reliably apply such
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full-system estimators requires non-trivial a priori choices on the relevance of specific variables to keep the dimension
manageable. Moreover, often one only has a single variable of interest, and estimating the parameter-heavy full system
is not necessary.

On the other hand, the alternative strategy of prior transformations to stationarity is more easily compatible with single
variables of interest and larger dimensions, but requires either a priori knowledge of the order of integration of individual
variables, or pre-testing for unit roots, which is prone to errors in particular if the number of variables is large (cf. Smeekes
and Wijler, 2020). Additionally, this approach ignores the presence of cointegration among the variables, which may have
detrimental effects on the subsequent analysis.

SPECS is a form of penalized regression designed to sparsely estimate a conditional error correction model (CECM). We
demonstrate that SPECS possesses the oracle property as defined in Fan and Li (2001); in particular, SPECS simultaneously
allows for consistent estimation of the non-zero coefficients and the correct recovery of sparsity patterns in the single-
equation model. It therefore provides a fully data-driven way of selecting the relevant variables from a potentially large
dataset of (co)integrated time series. Moreover, due to the flexible specification of the single-equation model, SPECS is
able to take into account cointegration in the dataset without requiring any form of pre-testing for unit roots or testing
for the cointegrating rank, and can thus be applied ‘‘as is’’ to any dataset containing an (unknown) mix of stationary
and integrated time series. As a companion to this paper, an R package is made available that implements a fast and
asy-to-interpret algorithm for SPECS estimation, and provides immediate access to the dataset used in the empirical
pplication.1
Single-equation error correction models are frequently employed in tests for cointegration (e.g. Engle and Granger,

987; Phillips and Ouliaris, 1990; Boswijk, 1994; Banerjee et al., 1998) as well as in forecasting applications (e.g. Engle and
oo, 1987; Chou et al., 1996), but require a weak exogeneity assumption for asymptotically efficient inference (Johansen,
992). Weak exogeneity entails the existence of a single cointegrating vector that only appears in the marginal equation
or the variable of interest. If this assumption holds, our procedure can be interpreted as an alternative to cointegration
esting in the ECM framework (Boswijk, 1994; Palm et al., 2010). However, weak exogeneity may not be realistic in
arge datasets and we provide detailed illustrations of the implications of failure of this assumption and demonstrate
hat absent of weak exogeneity our procedure consistently estimates a linear combination of the true cointegrating
ectors. While this impedes inference on the cointegrating relations, when the main aim of the model is nowcasting or
orecasting, our procedure remains theoretically justifiable and provides empirical researchers with a simple and powerful
ool for automated analysis of high-dimensional non-stationary datasets. In addition, for modelling a single variable of
nterest using a large set of potential regressors, SPECS provides a variable selection mechanism, allowing the researcher
o discard variables that are irrelevant for this particular analysis. Our simulation results demonstrate strong selective
apabilities in both low and high dimensions. Furthermore, a simulated nowcasting application highlights the importance
f incorporating cointegration in the data as our proposed estimators obtain higher nowcast accuracies in comparison
o a penalized autoregressive distributed lag (ADL) model. This finding is confirmed in an empirical application, where
PECS is employed to nowcast Dutch unemployment rates with the use of a dataset containing Google Trends series.
The use of penalized regression in time series analysis has gained in popularity, with a wide range of variants showing

romising performance in applications (see Smeekes and Wijler, 2018b, for a recent overview). Recent literature has also
een the development of methods for analysing high-dimensional (co)integrated time series.
Kock (2016) proposes the adaptive lasso to estimate an augmented Dickey–Fuller regression. While this univariate

odel is inherently different from ours, it provides an insightful demonstration of how the lasso may be used as an
lternative to testing for non-stationarity, parallelling our suggestion to consider SPECS as an alternative for cointegration
esting under the assumption of weak exogeneity.

For VECM systems, Wilms and Croux (2016) propose a penalized maximum likelihood approach, with shrinkage
erformed on the cointegrating vectors, the coefficients regulating the short-run dynamics and the covariance matrix.
hile their method is shown to obtain forecast gains relative to the traditional Johansen method, no theoretical results

re provided. Liao and Phillips (2015) provide an automated method of joint rank selection and parameter estimation with
he use of an adaptive penalty and derive oracle properties in a fixed-dimensional framework. Next to this theoretical
imitation on its applicability to large datasets, practical implementation is further complicated due to reliance on the
igenvalue decomposition of an asymmetric matrix, which introduces complex values into the corresponding objective
unction. As noted by Liang and Schienle (2019, p. 424), this results in a non-standard harmonic function optimization
roblem. Liang and Schienle (2019) propose joint parameter estimation and rank determination by employing a penalty
hat makes use of the QR-decomposition of the long-run coefficient matrix. This method possesses oracle-like properties
nder a high-dimensional asymptotic regime, but it requires the availability of an initial OLS estimator, thereby preventing
pplications on datasets in which the number of variables exceeds, or is close to, the number of available time series
bservations. Additionally, estimation of the long-run and short-run dynamics is performed sequentially rather than
imultaneously, necessitating a two-step procedure.
In a single-equation setting, Lee et al. (2018) derive fixed-dimensional oracle properties for the adaptive lasso applied to

redictive regressions where the regressors are allowed to be of mixed orders of integration. However, as a consequence

1 https://cran.r-project.org/web/packages/specs/index.html.

https://cran.r-project.org/web/packages/specs/index.html


S. Smeekes and E. Wijler / Journal of Econometrics 221 (2021) 247–276 249

a
D
b
λ

t
I
w
i

2

N

2

z

w

w
T

A
E

of their model formulation in which all variables enter in levels, their estimator appears to be susceptible to spurious
regression when the regressors are not cointegrated.

Finally, outside the penalized regression framework, Zhang et al. (2019) propose an eigenvalue decomposition to
estimate the cointegrating space in the presence of any integer and fractional order of integration of the variables.
However, the estimation procedure proposed by Zhang et al. does not perform variable selection, nor does it provide
explicit estimates of the transient dynamics in a VECM. Onatski and Wang (2019) develop a novel inference procedure for
the cointegrating rank in high dimensions. Similar to the Johansen procedure, their test is based on the squared canonical
correlations, for which they derive the limit spectral distribution under joint asymptotics with the use of arguments from
random matrix theory.

Our proposed method provides several contributions to this existing literature. First, our theoretical results are derived
in a high-dimensional framework where the number of parameters is allowed to grow with the sample size. This requires
non-standard theoretical results on bounds of the smallest eigenvalue of a matrix of (co)integrated regressors, similar to
those in Zhang et al. (2019), which are further developed in this paper. Second, unlike many of the penalized regression
methods surveyed above, the practical implementation of SPECS is straightforward for large datasets, including cases
where the number of parameters is larger than the time dimension. Third, our method completely removes the need for
pre-testing for the order of integration or cointegrating rank, and is not sensitive to spurious regression. Fourth, to the
best of our knowledge, our paper is the first to explicitly allow for the presence of deterministic components in the theory,
a crucial feature for many applications.

The paper is structured as follows. In Section 2 we discuss the data generating process. Section 3 describes the SPECS
estimator. The main theoretical results of the paper are presented in Section 4. Section 5 contains several simulation
studies, followed by an empirical application in Section 6. We conclude in Section 7. The main proofs and preliminary
lemmas needed for them are contained in Appendix A, while contains results on minimum eigenvalue bounds. Finally,
Appendix C contains supplementary material on proofs of preliminary lemmas and additional theorems, as well as further
details on the empirical application.

A word on notation. For any an N-dimensional vector x, ∥x∥p =

(∑N
i=1 x

p
i

)1/p
denotes the ℓp-norm, while for any matrix

D with N columns, ∥D∥p = maxx∈RN
∥Dx∥p
∥x∥p

is the corresponding induced norm and ∥D∥F denotes the Frobenius norm. For

n index set S ⊂ {1, . . . ,N}, let xS be the vector containing the elements of x corresponding to S. Similarly, for a matrix
with N rows, DS is the sub-matrix containing the rows of D indexed by S. The orthogonal complement of D is denoted
y D⊥, such that D′

⊥
D = 0. When D is a square matrix, we denote its N ordered eigenvalues by λ1(D) ≥ · · · ≥ λN (D) and

min(D) and λmax(D) denote the minimum and maximum eigenvalue, respectively. Furthermore, we use D ≻ 0 to denote
hat the matrix is positive definite. A vector of ones of length N is denoted by ιN and the N-dimensional identity matrix by

N . We use
p

→ (
d

→) to denote convergence in probability (distribution) and d
= denotes equivalence in distribution. Finally,

e frequently make use of an arbitrary positive and finite constant K whose value may change throughout the paper, but
s always independent of the time and cross-sectional dimensions.

. The high-dimensional error correction model

In this section we first discuss the data generating process for the vector time series along with the assumptions made.
ext we transform the multivariate model to a single equation describing our variable of interest.

.1. Data generating process

Assume one is interested in modelling a single variable of interest, say yt , based on an N-dimensional time series
t = (yt , x′

t ) observed at t = 1, . . . , T . Let z t be described by

z t = µ + τt + ζt , (1)

ith the stochastic component given by

∆ζt = AB′ζt−1 +

p∑
j=1

ΦΦΦ j∆ζt−j + ϵt , (2)

here A and B are (N × r)-dimensional matrices containing the adjustment rates and cointegrating vectors, respectively.
he innovations ϵt = (ϵ1,t , ϵ′

2,t )
′ satisfy the following assumptions:

ssumption 1. The sequence of innovations {ϵt}t≥1 is an N-dimensional martingale difference sequence (m.d.s.) with
(ϵtϵ′

t ) = ΣΣΣϵ . Furthermore, we assume that

(1) There exists an m > 2, such that max1≤i≤N,1≤t≤T E
⏐⏐ϵi,t ⏐⏐2m ≤ Km, and

(2) There exist constants φmin, φmax > 0, such that φmin ≤ λmin (ΣΣΣϵ) < λmax (ΣΣΣϵ) ≤ φmax.
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This assumption implies that ϵt is a martingale difference sequence with at least (a bit more than) four moments
xisting. The eigenvalue bounds in the second part place some restrictions on the dependence among the elements of ϵt ,

ruling out for instance a strong common factor affecting all errors. However, a wide range of contemporaneous dependence
structures, such as spatial dependence, is still allowed.

The model can be rewritten into a VECM form by substituting (1) into (2) to obtain

∆z t = AB′ (z t−1 − µ − τ(t − 1)) + τ ∗
+

p∑
j=1

ΦΦΦ j∆z t−j + ϵt , (3)

where τ ∗
= (I −

∑p
j=1 ΦΦΦ j)τ. From this representation, it can directly be observed that the presence of a constant in (1)

results in a constant within the cointegrating relationship if B′µ ̸= 0. Furthermore, the linear trend in (1) appears as a
constant in the differenced series and may additionally appear as a trend within the cointegrating vector if B′τ ̸= 0, the
latter implying that the equilibrium error B′z t is a trend stationary process.

The following assumption asserts that the process is (at most) I(1), and the Granger Representation Theorem (e.g.
Johansen, 1995, p. 49) can be applied.

Assumption 2. Define A(z) := (1 − z)IN − AB′z −
∑p

j=1 ΦΦΦ j(1 − z)z j.

(1) The determinantal equation |A(z)| has all roots on or outside the unit circle.
(2) A and B are N × r matrices with 1 ≤ r ≤ N and rank(A) = rank(B) = r .
(3) The ((N − r) × (N − r)) matrix A′

⊥

(
IN −

∑p
j=1 ΦΦΦ j

)
B⊥ is invertible.

Assumption 2 enables (3) to be written as a vector moving average (VMA) process

z t = Cst + µ + τt + C (L)ϵt + Cz0, (4)

where C = B⊥

(
A′

⊥

(
IN −

∑p
j=1 ΦΦΦ j

)
B⊥

)−1 A′

⊥
, st =

∑t
s=1 ϵs, C (L)ϵt is a stationary linear process and z0 are initial values.

Without loss of generality, we assume henceforth that z0 = 0.
We need a further restriction on the dependence in the VMA representation in the form of the following assumption,

which ensures norm-summability of the coefficients in the Beveridge–Nelson decomposition.

Assumption 3. There exists a K < ∞ such that C in (4) satisfies ∥C∥∞ ≤ K . In addition, the matrix lag polynomial C (L)
s given by C (z) =

∑
∞

l=0 C lz l and satisfies
∑

∞

l=0 l ∥C l∥∞ ≤ K .

.2. Single-equation representation

The number of parameters to estimate in (3) is at least 2Nr + N2p, such that the system quickly grows too large to
accurately estimate based on traditional methods. As we assume a single variable yt is of interest, we therefore instead
onsider the lighter parameterized single-equation model for yt . To ensure that the variables modelling the variation in
t remain exogenous, we orthogonalize the errors driving the single-equation model, say ϵy,t , from the errors driving the

marginal equations of the endogenous variables xt . This is achieved by decomposing ϵ1,t into its best linear prediction
based on ϵ2,t and the corresponding orthogonal prediction error. To this end, partition the covariance matrix of ϵt as

ΣΣΣϵ =

[
E(ϵ1,t )2 E(ϵ1,tϵ′

2,t )
E(ϵ1,tϵ2,t ) E(ϵ2,tϵ′

2,t )

]
=

[
σ11 σ ′

21

σ21 ΣΣΣ22

]
, (5)

such that we obtain

ϵ1,t = (0, σ ′

21ΣΣΣ
−1
22 )ϵt +

(
1, −σ ′

21ΣΣΣ
−1
22

)
ϵt = ϵ̂1,t + ϵy,t . (6)

Define π0 = ΣΣΣ−1
22 σ21. Then, writing out (6) in terms of the observable time series results in the single-equation model

∆yt =
(
1, −π′

0

)⎛⎝AB′(z t−1 − µ − τ(t − 1)) + τ∗
+

p∑
j=1

ΦΦΦ ′

j∆z t−j

⎞⎠+ π′

0∆xt + ϵy,t

= δ′z t−1 + π′wt + µ0 + τ0(t − 1) + ϵy,t ,

(7)

where δ′
=
(
1, −π′

0

)
AB′, π = (π′

0, . . . ,π
′
p)

′ with π′

j = (1, −π′

0)ΦΦΦ j for j = 1, . . . , p, µ0 = (1, −π′

0)
(
−AB′µ + τ∗

)
and

τ0 = (1, −π′

0)τ
∗. Note that δ is a vector of length N , whereas π is a vector of length M = N(p + 1) − 1. Additionally,

wt = (∆x′
t , ∆z ′

t−1, . . . , ∆z ′
t−p)

′ and ϵy,t = (1 − π′

0)ϵt . Finally, we write the single-equation model in matrix notation as

∆y = Z−1δ + Wπ + ιTµ0 + tτ0 + ϵy = Vγ + Dθ + ϵy, (8)

where Z−1 = (z0, . . . , zT−1)′, W = (wt , . . . ,wT )′, t = (0, . . . , T − 1)′, V = (Z−1,W ), D = (ιT , t), γ = (δ′, π′)′ and
θ = (µ0, τ0)′.
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Remark 1. The single-equation model may similarly be derived under the assumption of normal errors. In this framework,
y,t has the conditional normal distribution from which (7) can be obtained (cf. Boswijk, 1994). A benefit of assuming
ormality is that, under the additional assumption of weak exogeneity, the OLS estimates based on (7) are optimal in
he mean-squared sense. However, the assumption of normality is unnecessarily restrictive when the, perhaps overly,
mbitious goal of complete and correct specification is abandoned.

emark 2. An additional benefit of the conditional error-correction model, as opposed to the predictive regressions
specified in levels considered in Lee et al. (2018), is that the former avoids spurious regression. In the case where all
variables in z t are integrated of order one and independent of one another, the left-hand side of (8) would remain
stationary. Intuitively, any ‘‘best fitting’’ linear combination between the stationary component ∆yt and (z ′

t−1, w
′
t )

′ would
eek to minimize the contribution of the variables in z t , as their stochastically trending nature substantially inflates the
itting error. This behaviour is well-documented for the fixed-dimensional OLS estimator – cf. Boswijk (1994, A.9) in which
ˆOLS turns out to be superconsistent – and carries over to SPECS in high-dimensions.

In general, the implied cointegrating vector δ in the single-equation model for yt contains a linear combination of
he cointegrating vectors in B with their weights being given by

(
1, −π′

0

)
A. Since the marginal equations of xt contain

nformation about the cointegrating relationship, efficient estimation within the single-equation model is only attained
nder an assumption of weak exogeneity. Johansen (1992) shows that sufficient conditions for weak exogeneity to hold
re (i) normality of ϵt , (ii) rank(AB′) = 1, i.e. there is a single cointegrating N-dimensional cointegrating vector β, and
iii) the vector of adjustment rates takes on the form α = (α1, 0′)′. However, these conditions are rather restrictive
hen considering high-dimensional economic datasets that are likely to possess multiple cointegrating relationships
nd complex covariance structures across the errors. Therefore, we opt to derive our results without assuming weak
xogeneity, while acknowledging that direct interpretation of the estimated cointegrating vector will only be valid in the
resence of weak exogeneity. Furthermore, we believe that whether the potential loss of asymptotic efficiency in our more
arsimonious single-equation model translates to inferior performance in finite samples ultimately remains an empirical
uestion.
As we consider sparse estimation of this single-equation model, let us briefly touch upon the required sparsity. For

easuring the sparsity, we work directly in the single-equation representation.2 Let Sδ = {i|δi ̸= 0} denote the index set
f the non-zero elements in δ, with its cardinality denoted by |Sδ|, and let Sπ be defined accordingly for π. In addition, let

r∗ denote the dimension of the cointegration space of zSδ ,t , i.e. the number of independent linear stationary combinations
of zSδ ,t (cf. Remark 3), and define sδ = |Sδ|−r∗ and sπ = |Sπ |+r∗ as the number of ‘‘effective’’ relevant non-stationary and
stationary variables, respectively. Our estimation goal will then be to obtain estimates of Sδ and Sπ , as well as estimate
δSδ and πSπ . To obtain consistency, we need the following assumptions on the amount of sparsity.

ssumption 4. Assume that (1) sδ = o(T 1/4); (2) sπ = o(
√
T ) and (3) max{sδ,

√
sπ } = o(γmin

√
T ), where γmin = min{|γi| :

i ̸= 0}.

Parts (1) and (2) put restrictions on how fast the number of relevant parameters is allowed to grow. The ‘‘effective’’
umber of relevant stationary variables (sπ ) is allowed to grow faster than the ‘‘effective’’ number of integrated variables
sδ), as a result of the collinearity induced by the stochastic trends (cf. Remark 4). Part (3) puts an additional restriction on
he number of relevant coefficients as a function of the smallest non-zero coefficient. Clearly, if all coefficients are assumed
o be fixed, (3) is not binding. In fact, one can allow γmin to shrink at a rate up to T−1/4 before it becomes binding. This
ssumption may therefore be interpreted as determining the fastest rate at which the population coefficients are allowed
o decrease, as a function of T , sδ and sπ , to still ensure it can be consistently picked up by our estimation method.

.3. Rotations and bounds on eigenvalues

Bounds on eigenvalues play a crucial role in establishing consistency properties of lasso-type penalized regression
ethods. However, due the mixed integrated nature of our data, where parts of the regressors are stationary, and other
arts are only stationary after rotation, the object of our assumptions is not the sample covariance matrix directly, but
nstead a carefully transformed version. Under Assumptions 1–3, it is then possible to ensure eigenvalue conditions on
he sample covariance matrices. Before we can state the assumption, we must therefore establish some further notation
nd rotations to be used later.
Let γ = (δ′, π′)′ and Sγ its active set. Without loss of generality, we partition the data matrix as V = (V Sγ ,V Scγ ), with

Sγ = (Z−1,Sδ ,W Sπ ) representing the time series carrying non-zero coefficients in the population single-equation model,

2 In absence of weak exogeneity, it may not be directly obvious how we obtain a sparse single-equation model from the VECM. We therefore
provide a more detailed discussion of the interpretation of sparsity absent of weak exogeneity in Section 4.3.1. In this section we just take the
single-equation model directly as starting point.
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henceforth referred to as the set of relevant variables. In the presence of cointegration, it follows from (4) that the relevant
lagged levels can be written as

zSδ ,t = C Sδ st + µSδ + τSδ t + uSδ ,t , C Sδ = B⊥,Sδ

⎛⎝A′

⊥

⎛⎝IN −

p∑
j=1

ΦΦΦ j

⎞⎠B⊥

⎞⎠−1

A′

⊥
(9)

where B⊥,Sδ is an (|Sδ| × (N − r))-dimensional matrix containing the rows of B⊥ indexed by Sδ and uSδ ,t = C Sδ (L)ϵt . The
eft null space of B⊥,Sδ , defined as B∗

=
{
x ∈ R|Sδ || B′

⊥,Sδx = 0
}
, contains the linear combinations that convert zSδ ,t to a

tationary process. Accordingly, we also refer to this null space as the cointegrating space of zSδ ,t . By construction, δSδ ∈ B∗,
uch that this cointegrating space is non-empty whenever δ ̸= 0. In this case, we define BSδ as a (|Sδ| × r∗)-dimensional
asis matrix of B∗, with r∗

≤ |Sδ| representing the dimension of the cointegrating space.3
Similarly, we define BSδ ,⊥ as a basis matrix of the left null-space of BSδ , i.e. a (|Sδ| × (|Sδ| − r∗))-dimensional matrix of

ull column rank with the property that B′

Sδ ,⊥BSδ = 0. Then, we are able to define a Q -transformation that decomposes
he reduced system into a stationary and non-stationary contribution as

Q =

⎡⎢⎣ B′

Sδ 0
0 I |Sπ |

B′

Sδ ,⊥ 0

⎤⎥⎦ , Q−1
=

[
BSδ

(
B′

SδBSδ

)−1 0 BSδ ,⊥
(
B′

Sδ ,⊥BSδ ,⊥
)−1

0 I |Sπ | 0

]
. (10)

or the case δ = 0, we define Q = I |Sπ |. Post-multiplication of the data matrix by Q ′ gives

V Sγ Q
′
=
[
Z−1,SδBSδ W Sπ Z−1,SδBSδ ,⊥

]
(11)

hich we refer to as the Q -transformed version of V Sγ . The first sπ = |Sπ | + r∗ columns of (11), corresponding to
Z−1,SδBSδ ,W Sπ ), contain independent stationary linear combinations of the variables that are relevant to ∆yt in the single-
quation model. The remaining sδ = |Sδ|−r∗ columns, given by Z−1,SδBSδ ,⊥, contain all linearly independent combinations
hat are integrated of order one.

emark 3. We may interpret r∗ as the ‘‘effective’’ cointegration rank, where ‘‘effective’’ relates to variable of interest yt .
ssentially, we remove all variables not relevant to yt in the long-run (those indexed by Scδ ) and then reconstruct a VECM
rom the remaining variables, which now has rank r∗.

Finally, we construct a transformed version of the sample covariance matrix based on V Sγ , which plays a crucial role
n the development of our theory. First, to regress out the deterministic components of the observed time series in (3),
e define the matrix M = IT −D

(
D′D

)−1 D′.4 Then, after rotating by Q and regressing out the deterministic components
y M , the stationary and non-stationary components are scaled via the matrix ST = diag(

√
T I sπ , T

√
sδ
I sδ ). Hence, our

transformed sample covariance matrix is defined as

Σ̂ΣΣ = S−1
T QV ′

Sγ MV Sγ Q
′S−1

T =

[
Σ̂ΣΣ11 Σ̂ΣΣ12

Σ̂ΣΣ21 Σ̂ΣΣ22

]
, (12)

with Σ̂ΣΣ11 =
1
T

[B′

SδZ
′

−1,SδMZ−1,SδBSδ B′

SδZ
′

−1,SδMW Sπ

W ′

Sπ MZ−1,SδBSδ W ′

Sπ MW Sπ

]
(13)

nd Σ̂ΣΣ22 =
sδ
T2

B′

Sδ ,⊥Z
′

−1,SδMZ−1,SδBSδ ,⊥. We can now state the eigenvalue assumptions.

Assumption 5. Assume that, on a set with probability converging to 1 as T ,N, p → ∞, there exists a constant φ > 0,
such that infx∈Rsπ

x′Σ̂ΣΣ11x
x′x ≥ φ and infx∈Rsδ

x′Σ̂ΣΣ22x
x′x ≥ φ.

The first part of Assumption 5 applies to stationary data and is known to hold when the minimum eigenvalue of the
orresponding population covariance matrix is bounded away from zero (e.g. Medeiros and Mendes, 2016, Section B.2).
he second part, however, applies to integrated variables and requires arguments that are unique to the non-stationary
etting. In particular, we note the necessity of applying a scaling by sδ

T2
, rather than the usual 1

T2
one may expect from

the fixed-dimensional literature, cf. Remark 4. In , we show several cases under which Assumption 5 is satisfied.

Remark 4. As an illustration of the problems with adopting the usual scaling by T−2, consider the simple example of
an s-dimensional white noise sequence ut

i.i.d.
∼ N (0, I s) and define ht =

∑t
j=1 uj. Then, in Lemma B.2 in we show that

3 The matrix BSδ is not uniquely defined. However, in most instances, including those contained in the current work, identification of the span
of BSδ is sufficient.
4 Note that D may vary depending on the deterministic specification of the model; setting D = (ιT , t) allows for both a non-zero constant and

linear trend, while simply setting M = I may be desired (although not required) when it is believed that µ = τ = 0.
T
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P
(
λmin

(
1
T2
∑T

t=1 hth′

t

)
> φ

)
→ 0, as s, T → ∞, regardless of their relative rates. Hence, even in this simple case we

cannot assume that the minimum eigenvalue is bounded away from zero if we stick to the T−2 scaling.

Remark 5. There are several noteworthy instances in which λmin

(
Σ̂ΣΣ22

)
is bounded away from zero with arbitrarily

high probability without the need for Assumption 5. Assume that the dimension of the orthogonal complement of the
cointegrating space in the subset of relevant non-stationary variables converges to a finite constant, i.e. sδ → K . Then,
based on a standard functional central limit theorem,

Σ̂ΣΣ22
d

→ KB′

Sδ ,⊥C Sδ

(∫ 1

0
B̃(r)B̃

′

(r)dr
)
C ′

SδBSδ ,⊥
d
=

∫ 1

0
B∗(r)B∗′(r)dr,

here B̃(r) is an sδ-dimensional Gaussian process, described in the proof of Lemma A.2 in Phillips and Hansen (1990), and
∗(r) is simply the linearly transformed version. By the same lemma, it follows that

∫ 1
0 B∗(r)B∗′(r)dr is positive-definite

lmost surely. Then, for any ϵ > 0, we may choose φ(ϵ) > 0 such that

P
(
λmin

(
Σ̂ΣΣ22

)
≤ φ(ϵ)

)
→ P

(
λmin

(∫ 1

0
B∗(r)B∗′(r)dr

)
≤ φ(ϵ)

)
≤ ϵ.

straightforward case in which sδ remains finite is to simply assume that the number of relevant integrated variables
tays finite, i.e. |Sδ| ≤ K . However, a more general example occurs when the dimension of the cointegrating space of zSδ ,t
iverges at the rate |Sδ|. This occurs in the case of a non-stationary factor model with stationary idiosyncratic components,
s proposed by Banerjee et al. (2014). Further illustrations are provided in Remark 10.

. The single-equation penalized error correction selector

Despite the dimension reduction obtained from moving towards a single-equation representation, regularization
emains a necessity in high dimensions. The single-equation model (7) contains a total of N(p + 2) + 1 parameters,
ompared to the 2N(r + 1) + N2p parameters in the full-system VECM in (3), resulting in a substantial reduction in
imensionality. However, the dimension may still grow large when either: (1) the number of potentially relevant variables
s large or (ii) when the number of lagged differences required to appropriately model the short-run dynamics is large.
herefore, we consider the use of ℓ1-regularization to enable estimation in high dimensions.
The resulting estimator, henceforth referred to as the Single-equation Penalized Error Correction Selector (SPECS), is

efined as the minimizer of the following objective function:

GT (γ, θ) = ∥∆y − Vγ − Dθ∥2
2 + λI

N+M∑
i=1

ωi |γi| + λG ∥δ∥2 , (14)

here M = (N+1)p−1 refers to the number of transformed variables in wt , i.e. the length of π. We denote the minimizers
f (14) by

(
γ̂, θ̂

)
. The group penalty, regulated by λG, serves to promote exclusion of the lagged levels as a group when

here is no cointegration present in the data. In this case, the model is effectively estimated in differences and corresponds
o a conditional model derived from a vector autoregressive model specified in differences. The individual ℓ1-penalties,
egulated by λI , serve to enforce sparsity in the coefficient vectors δ and π respectively.

The penalty of each coefficient γi is weighted by ωi to enable simultaneous estimation and selection consistency of the
oefficients. Therefore, SPECS resembles a sparse group lasso (e.g. Simon et al., 2013) with adaptive weighting, applied to
he conditional error correction model. The weights ωi in (14) are typically derived from an initial estimation procedure
uch as OLS (if the number of variables is small enough), ridge, or lasso. In particular, let γ̂I denote initial estimates
btained for γ using one of the aforementioned methods. The weights can then be constructed as ωi =

⏐⏐γ̂I,i
⏐⏐−k for some

> 0. As the coefficients of the irrelevant variables tend to zero, this will ‘‘blow up’’ the weights for these coefficients,
aking them unlikely to be selected in the final estimation. On the other hand, the weights of the relevant coefficients
onverge to a positive constant leaving them unaffected. This wedge between the weights of relevant and irrelevant
oefficients is exactly needed to achieve selection consistency. As demonstrated by Zou (2006), under such assumptions
n the weights, the adaptive lasso attains simultaneous selection and estimation consistency, without the necessity for the
ather stringent irrepresentable condition in Zhao and Yu (2006).5 To maintain generality we work with general weights
ithout specifying how they are obtained, and therefore define appropriate assumptions directly on these weights. In
ection 4.2 we then return to weight construction and propose a feasible way to construct weights that are theoretically
hown to satisfy our assumptions.

5 In fact, as the adaptive lasso can be written as a regular lasso on a transformed design matrix, the irrepresentable condition, while still needed,
operates on this transformed design matrix and becomes a weighted irrepresentable condition. This condition is then in turn implied by appropriate
assumptions on the weights. In this paper we directly take this route rather than going via an irrepresentable condition. Section 7.5 of Bühlmann
and Van De Geer (2011) provides details on the links between these assumptions.
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Assumption 6. Assume that the weights and regularization penalties satisfy:

1. ωSγ ,max = op(T ξ ) for some ξ > 0, where ωS,max = max{ωi : i ∈ S}.

2. λI = o
(

(sδ+
√
sπ )T1/2−ξ

√
sδ+sπ

)
and λG = o(

√
T ).

3. Let ωS,min = min{ωi : i ∈ S}. Then

ω−1
Sc
δ
,min = op

(
min

{
(sδ + sπ )−1/2T−1/2−ξN−1/2, λI (sδ +

√
sπ )−1T−1N−1/2}) ,

ω−1
Scπ ,min = op

(
min

{
(sδ + sπ )−1/2T−ξ (Np)−1/2, λI (sδ +

√
sπ )−1(TNp)−1/2}) .

Part (1) puts an upper bound on the rate at which the weights corresponding to the relevant variables diverge. Part
2) restricts the maximum admissible growth rate of the penalty. Exceeding this rate would in an excess of shrinkage
ias that impedes estimation consistency. Finally, part (3) states that the weights of the irrelevant variables – interacting
ith the penalty parameter λI – grow sufficiently fast in order to guarantee that irrelevant variables are removed from
he model with probability converging to one. The required minimum growth rate of the penalty parameter is inversely
elated to the growth rate of the weights of the irrelevant variables; faster diverging weights require less penalization to
dentify irrelevant variables.

emark 6. The only restriction that Assumption 6 imposes on the growth rate of the group penalty is that λG√
T

→ 0,
which is necessary for preventing shrinkage bias induced by the group penalty from impeding estimation consistency.
Since λG = 0 is an admissible value, it follows that the theoretical results presented in the following section apply to the
minimizer of G∗

T (γ, θ) = ∥∆y − Vγ − Dθ∥2
2 + λI

∑N+M
i=1 ωi |γi| as well, as long as the remaining conditions are satisfied.

emark 7. Note that the deterministic components θ are left unpenalized in (14), as their inclusion in the model is
esirable to enable identification of the limiting distribution of the estimators. Similar to the classical Frisch–Wraugh–
ovell Theorem, Yamada (2017) show that the inclusion of unpenalized components is equivalent to performing the
stimation after regressing out those components. In other words, we may define M = IT − D

(
D′D

)−1 D′ such that γ̂
ay equivalently be defined as

γ̂ = argmin
γ

∥M (∆y − Vγ)∥2
2 + λI

N+M∑
i=1

ωi |γi| + λG ∥δ∥2 .

f one believes that the trend or constant is zero, one may reflect this knowledge in the construction of M , with the
onvention that M = IT when µ = τ = 0.

Two common data-driven ways to select the tuning parameters λI and λG are using cross-validation and information
riteria. As standard K -fold cross-validation does not respect the time order of the data, we instead consider a time series
ross-validation (TSCV) scheme as proposed by e.g. Hyndman and Athanasopoulos (2018) and Wilms et al. (2017), where
or different values of λ = (λI , λG)′ the model is estimated on the first part of the sample, and its prediction for the next
bservation is recorded. The sample is then recursively moved forward towards the end, and the λ with the lowest mean
quared prediction error is selected. We refer to Smeekes and Wijler (2018b) for details on the implementation and a
omparison with traditional K -fold cross-validation.
While cross-validation works well for prediction (Chetverikov et al., 2016), it tends to generally select fairly low penalty

evels and therefore includes many variables. An alternative way to select λ is using information criteria, where we find
he value of λ as

λ̂IC = argmin
λ

ln
(
1
T

∆y − V γ̂(λ) − Dθ̂

2
2

)
+

CT d̂f (λ)
T

,

where γ̂(λ) and θ̂(λ) denote the minimizers of GT (γ, θ) in (14) for a particular value of λ. In addition, d̂f (λ) is an
stimate of the degrees of freedom and CT is the criterion-specific penalty; for the latter we use the Bayesian Information
riterion (Schwarz, 1978, BIC) with CT = ln(T ).
Zou et al. (2007) show that for the (adaptive) lasso the number of non-zero coefficients is an appropriate estimate for

he degrees of freedom for model selection using information criteria. For group lasso penalties, estimating the degrees of
reedom is more complicated. Yuan and Lin (2006) propose a heuristic rule, but this requires the least squares estimator
hich is not available for large N . Alternative rules are provided by Breheny and Huang (2009) and Vaiter et al. (2012)
mong others, but none are theoretically valid in our setting. For this reason we propose a simple, heuristic rule where
e set d̂f (λ) equal to the number of non-zero coefficients. Essentially this means we ignore the strength of the group

penalty on the complexity of the model as long as the group is selected, thereby overestimating df (λ). As a consequence,
e will only choose non-zero values of λG if they either improve the fit directly or result in setting the whole group to
ero without affecting the fit too much. This is an intentional choice, consistent with our theoretical treatment of the
roup penalty. As discussed in Remark 6, the group penalty is not necessary and consistency can be achieved even with

= 0, and can therefore be seen as an optional add-on penalty.
G
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Finally, we note that in practice both methods require the respective objective function to be minimized for a two-
imensional grid of values for λ. By choosing the lower and upper bounds of the grid carefully, one can ensure that the
elected tuning parameters satisfy the assumptions listed in the next subsection. Of course, even though this ensures the
heoretical validity of the selection method, its practical performance can still vary considerably. Therefore we investigate
he practical performance of BIC and TSCV in the simulations and empirical application respectively.

. Theoretical results

In this section we derive the asymptotic properties of SPECS, describe the construction of the weights and discuss
mplications for particular model specifications.

.1. Asymptotic properties

The first result that we pursue is that of selection consistency, i.e. the ability of an estimation procedure to select the
orrect set of relevant variables with probability converging to one. In fact, Zhao and Yu (2006) define a stronger property
eferred to as sign consistency, which additionally requires the procedure to identify the correct signs of the non-zero
oefficients with probability converging to one. In the following theorem, we derive sign consistency of SPECS.

heorem 1. Under Assumptions 1–6, as T ,N, p, → ∞ it holds that P
(
sign

(
γ̂
)

= sign (γ)
)

→ 1.

Theorem 1 provides an asymptotic justification for implementing SPECS as a high-dimensional variable selection
device. Furthermore, selection consistency is a crucial property when one aims to obtain interpretable solutions or
even utilize the estimator as an alternative to classical tests for cointegration. An example of a traditional test for
cointegration is the ECM-test by Banerjee et al. (1998) which looks at the t-ratio of the ordinary least squares coefficient
of the lagged dependent variable. Alternatively, Boswijk (1994) proposes to test for the joint significance of the least
squares coefficients of all lagged variables with a Wald-type test. In our case, one could interpret exclusion of the lagged
levels of the dependent variable, or the lagged levels of all variables, as evidence against the presence of cointegration.
However, as discussed, an assumption of weak exogeneity is necessary when the aim is a direct interpretation of the
estimated cointegration vector. Notwithstanding this caveat, selection consistency offers valuable insights when viewed
as a screening mechanism that excludes irrelevant variables even in the absence of weak exogeneity. Moreover, since the
set of variables included is strictly smaller than the time series dimension, it is possible to apply a traditional consistent
estimator to the selected set of variables (e.g. Belloni and Chernozhukov, 2013). However, ideally SPECS would contain
desirable properties that omit the need of a second estimation procedure. For this reason, we establish the simultaneous
consistency of the estimated coefficients in the following theorem.

Theorem 2. Let ST = diag
(√

T I sπ , T
√
sδ
I sδ
)
and Q as defined in (10). Under the same assumptions as in Theorem 1, it holds

that
STQ ′−1 (γ̂Sγ − γSγ

)
2 = Op

(
sδ +

√
sπ
)
.

The estimation consistency derived in Theorem 2 does not place any restrictions on the relative growth rates of T ,N, p,
because it relies solely on high-level assumptions stated in the preceding section. However, when we derive sufficient
conditions for the eigenvalue assumptions in Assumption 5 in and provide a feasible method to construct weights that
satisfy Assumption 6 in Section 4.2, these restrictions do appear. We refer to Section 4.3.3 for an explicit discussion.

Remark 8. As an immediate consequence of Theorem 2, we have
γ̂Sγ − γSγ


2 = Op

(
sδ+

√
sπ

√
T

)
, such that SPECS attains

√
T -consistency when sδ and sπ remain finite. To see this, note that by the assumption on sδ , it holds that T

√
sδ

≥
√
T for

sufficiently large T . Then,STQ ′−1 (γ̂Sγ − γSγ

)
2 ≥

√
T
Q ′−1 (γ̂Sγ − γSγ

)
2 .

Moreover, since the basis matrices BSδ and BSδ ,⊥ are not uniquely defined, we may impose a normalization such that
∥Q ∥2 ≤ 1. Then,γ̂Sγ − γSγ


2 =

Q ′Q ′−1 (γ̂Sγ − γSγ

)
2 ≤ ∥Q ∥2

Q ′−1 (γ̂Sγ − γSγ

)
2 ≤

Q ′−1 (γ̂Sγ − γSγ

)
2 ,

such that
STQ ′−1 (γ̂Sγ − γSγ

)
2 ≥

√
T
γ̂Sγ − γSγ


2.

As a corollary to Theorem 2, it is possible to establish a relationship between the limit distribution of SPECS and the
OLS estimator based on the subset of relevant variables.

Corollary 1. Define the OLS oracle estimator as γ̂OLS,Sγ = argminγ

M(∆y − V Sγ γ)
2
2. Then, with ξ > 0 as in Assumption 6,

under the same assumptions as Theorem 1 it holds thatSTQ ′−1 (γ̂Sγ − γ̂OLS,Sγ

)
2 = op

(
λI (

√
sδ +

√
sπ )

T 1/2−ξ

)
. (15)
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The oracle results in Corollary 1, combined with the sign consistency from Theorem 1, are suggestive of a post-selection
nferential procedure. In particular, one may implement a two-step estimation procedure in which SPECS is used to
erform variable selection in the first step and a regular OLS regression is performed on the selected variables in the
econd step. Then, after strengthening part 2 of Assumption 6 to λI = o

(
T1/2−ξ

√
sδ+

√
sπ

)
, Corollary 1 seems to validate the use of

the regular OLS distribution for this two-step estimator, essentially ignoring the variable selection from the first stage. For
example, in the case where

⏐⏐Sγ

⏐⏐ remains finite, one could use the standard fixed-dimensional results (e.g. Boswijk, 1994) to
perform inference. However, such a post-selection inferential procedure should be treated with caution, as it is well known
that the selection step impacts the sampling properties of the estimator (see Leeb and Pötscher, 2005). The convergence
results of many selection procedures, SPECS included, hold pointwise only, i.e. the finite-sample distributions do not
converge uniformly over the parameter space to their asymptotic distribution. The practical implication is that for certain
values in the parameter space, relying on the oracle properties for post-selection test statistics may provide strongly
misleading results. While developing a valid post-selection inference procedure to, for example, test for cointegration is
certainly of interest, the field of valid post-selection inference is, despite its rapid development, still in its infancy. None of
the currently existing methods, such as those considered in Berk et al. (2013), Van de Geer et al. (2014), Lee et al. (2016)
or Chernozhukov et al. (2018), can easily be adapted to – let alone validated in – our setting. Developing such a method
therefore requires a full new theory which is outside the scope of the current paper.

4.2. Initial estimates

In this section, we provide the reader with a directly implementable method to construct weights that satisfy
Assumption 6. As discussed in Section 3, we construct the weights as ωi =

⏐⏐γ̂I,i
⏐⏐−k. For our initial estimator we focus

here on the ridge estimator, from which we can derive results for OLS as a special case, and comment on the lasso later
on in the section.

Note that the power k gives one the flexibility to adjust how big the wedge between relevant and irrelevant variables is.
To illustrate, assume that γ̂I,i = γi+Op

(
T−a

)
for all i. Then, it is clear that ωi = Op(1) when γi ̸= 0 and ωi = Op

(
T ka
)
when

γi = 0. Therefore, larger values of k will increase the rate at which the weights corresponding to the irrelevant variables
diverge. Based on this principle, the availability of a consistent initial estimator allows us to construct weights that satisfy
the conditions in Assumption 6. However, while the idea of adjusting divergence rates through imposing varying values
of k seems theoretically attractive, large values of k result in substantial amplification of finite-sample estimation error.
As a result, the finite-sample performance of the lasso becomes unstable for large k, such that in practice one may want
to set the value for k as low as theoretically admissible.

Regardless of the choice of k, the basic ingredient for good adaptive weights is a consistent initial estimator. Therefore,
we derive the consistency of the ridge estimator. Recall that the ridge estimator is defined as the minimizer of the
following objective function:

GR(γ, θ) := ∥∆y − Vγ − Dθ∥2
2 + λR ∥γ∥

2
2 . (16)

The properties of the ridge estimator are well-studied in the stationary setting (e.g Hastie et al., 2008, Section 3.4.1).
However, to the best of our knowledge, no explicit results are available in the high-dimensional non-stationary case
considered here.

In order to derive consistency of the ridge estimator, we redefine the transformed sample covariance matrix from
Section 2.3 and the corresponding bound on its minimum eigenvalue. Let Nδ = N − r , Mπ = M + r and define the new
scaling and rotation matrices as SR = diag

(√
T IMπ , T

√
Nδ

INδ

)
and

Q R =

⎡⎢⎣
(
B′B
)−1/2 B′ 0
0 IM(

B′

⊥
B⊥

)−1/2 B′

⊥
0

⎤⎥⎦ ,

espectively. The new transformed sample covariance matrix, based on the full dataset, is given by

Σ̂ΣΣR = S−1
R Q RV

′MVQ RS
−1
R =

[
Σ̂ΣΣR,11 Σ̂ΣΣR,12

Σ̂ΣΣR,21 Σ̂ΣΣR,22

]
, (17)

ith Σ̂ΣΣR,11 =
1
T

[
B′Z ′

−1MZ−1B B′Z ′

−1MW
W ′MZ−1B W ′MW

]
, and Σ̂ΣΣR,22 =

Nδ

T2
B′

⊥
Z ′

−1MZ−1B⊥. Then, we extend the minimum eigenvalue

ound in Assumption 5 to (17) as follows.

ssumption 7. Assume that, on a set with probability converging to 1 as T ,N, p → ∞, there exists a constant φR > 0,
uch that inf x′Σ̂ΣΣR,11x

≥ φ and inf x′Σ̂ΣΣR,22x
≥ φ .
x∈RMπ x′x R x∈RNδ x′x R
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We now derive the convergence rate of the ridge estimator under a further restriction on the growth rates of N,M .
The consistency of the ridge estimator is given in the following theorem.

Theorem 3. Assume that Nδ

T1/4
→ 0, Mπ√

T
→ 0, and λR = O

(
(Nδ+

√
Mπ )

√
T

√
|Sδ |+|Sπ |

)
. Then, under Assumptions 1–3 and 7, it holds thatSRQ ′−1

R

(
γ̂R − γ

)
2 = Op

(
Nδ +

√
Mπ

)
.

Similar to Remark 8, it follows from Theorem 3 that
γ̂R − γ


2 = Op

(
Nδ+

√
Mπ√

T

)
. Based on the assumption that Nδ

T1/4
→ 0

nd Mπ√
T

→ 0 in Theorem 3, it follows directly that
γ̂R − γ


2 = op(1), and therefore ridge can be used to construct weights

that satisfy our Assumption 6. The exact values of k that are needed theoretically vary depending on the number of (total
and relevant) variables in the dataset; we return to this issue in Section 4.3.3.

The attentive reader may note that the admissible growth rates of Nδ,Mπ in Theorem 3 are the same as those initially
assumed on the subsets of relevant variables, i.e. sδ, sπ , in Theorem 1. The restriction imposed on the number of stochastic
trends, Nδ

T1/4
→ 0, corresponds closely to that of Corollary 2.1 in Liang and Schienle (2019), who consider (co)integrated

processes as well and roughly require that N
T1/4−ν → 0 for some ν > 0. The growth rate of the total number of (implied)

stationary variables is restricted to Mπ√
T

→ 0. While this may seem limited in comparison to the admissible (near)
exponential growth in the stationary setting with i.i.d. Gaussian errors (e.g. Kock and Callot, 2015, Thm 3), we stress that
our time series framework is more general, allowing not only for integrated processes, but also substantial dependence
in the stationary component. Regarding the latter, our assumptions closely match those in the second row of Table 6
of Medeiros and Mendes (2016) with ζ = 1, where our allowed growth rates are only slightly slower.

Ideally, we would like to allow for faster rates of divergence for the set of the irrelevant variables. A prospective
strategy to attain this, would be to implement the lasso as an initial estimator, the consistency of which may be derived
with the use of a compatibility condition (see for example Bühlmann and Van De Geer, 2011, Ch. 6). While desirable,
deriving the validity of an appropriate compatibility condition is a considerable task. In addition to the difficulty of
showing the theoretical validity of a compatibility condition in the non-stationary setting considered here, the use of a
compatibility condition is further complicated by the fact that the stochastic trends asymptotically dominate the variation.
More specifically, in order to attain a non-singular limit matrix, a rotation similar to Q is required that separates the
stationary and non-stationary components in the full dataset. The standard compatibility condition would have to be
adjusted in a non-trivial manner to account for such a rotation. Consequently, we leave the development of a suitable
compatibility condition to future research, and instead focus on the ridge estimator under the more stringent growth rates
on the number of variables. In the simulations we explore settings beyond these restrictive assumptions, and our adaptive
weights continue to function in this case as well. We therefore conjecture that the suitability of the ridge estimator can
be extended to a more general setting.

Remark 9. Theorem 3 imposes no minimum growth rate of the penalty term λR in (16). Therefore, in the case where
+ N < T , the choice λR = 0 is both theoretically admissible and computationally feasible, such that consistency of the
LS estimator follows as a by-product of our result. Similarly, under the conditions imposed in Theorem 3, the lasso can
lso be shown to be a consistent initial estimator. In particular, Assumption 7 allows for the derivation of a minimum
igenvalue bound for the sample covariance matrix of the full data set, which enables application of standard proofs of
onsistency that are familiar from the fixed-dimensional setting. Due to space consideration, we refrain from providing a
ull proof on this conjecture, but refer the interested reader to Theorem 3.1 in Liao and Phillips (2015), the proof of which
ay be adjusted to fit the current setting.

.3. Implications for particular model specifications

To fully appreciate the theoretical results in the preceding section, a detailed understanding of the generality provided
y the set of imposed assumptions is helpful. For example, as the results are derived without requiring weak exogeneity,
ur set of assumptions allows for the presence of stationary variables in the data. However, in the absence of weak
xogeneity, model interpretation becomes non-standard and the notion of sparsity carries non-trivial annotations.
herefore, in this section we elaborate on several relevant model specifications to demonstrate the flexibility of the
ingle-equation model and highlight the practical implications of variable selection in such a general framework.

.3.1. Sparsity and weak exogeneity
The benefit of ℓ1-regularized estimation stems from its ability to identify sparse parameter structures. However, the

oncept of sparsity in the conditional models here considered merits additional clarification, as the potential absence of
eak exogeneity obscures standard interpretability. Accordingly, in this section we comment on the interplay between
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weak exogeneity and sparsity and provide several illustrative examples of sparse DGPs. For simplicity of illustration, we
assume in this and the following section that µ = τ = 0.

In Section 2 we argue that the coefficients regulating the long-run dynamics in the conditional model are generally
derived from linear combinations of the cointegrating vectors in the VECM representation (3). By decomposing the matrix
with adjustment rates as A = (α1,A′

2)
′, we obtain the explicit construction δ = B(α1−A′

2ΣΣΣ
−1
ϵ,22σϵ,21). Hence, it follows that

δi = 0 if the sparsity condition β′

i

(
α1 − A′

2ΣΣΣ
−1
ϵ,22σϵ,21

)
= 0 is satisfied, where βi is the ith row of B. While this condition

may hold in a variety of non-trivial ways, specific cases of interest that lead to sparsity in δ can be derived. For example,
an integrated variable xi,t that does not cointegrate with any of the variables in the system (βi = 0), will carry a zero
coefficient in the derived single-equation long-run equilibrium.

As a more general example, assume that the researcher observes the N-dimensional time series z t = (z ′

1,t , z
′

2,t )
′
=

(yt , x′
t )

′, from time t = 1, . . . , T , where z1,t = (yt , x′

1,t )
′ is an N1-dimensional time series and z2,t is an N2-dimensional

time series. Moreover,[
∆z1,t
∆z2,t

]
=

[
ΠΠΠ11 ΠΠΠ12
ΠΠΠ21 ΠΠΠ22

][
z1,t−1
z2,t−1

]
+

p∑
j=1

[
ΦΦΦ j,11 ΦΦΦ j,12
ΦΦΦ j,21 ΦΦΦ j,22

][
∆z1,t−j
∆z2,t−j

]
+

[
ϵ1,t
ϵ2,t

]

= ΠΠΠz t−1 +

p∑
j=1

ΦΦΦ j∆z t−j + ϵt .

(18)

n addition, assume that ΣΣΣϵ = E
(
ϵtϵ

′
t

)
satisfies Assumption 1 and can be decomposed as

ΣΣΣϵ =

[
ΣΣΣϵ,11 0
0 ΣΣΣϵ,22

]
, with ΣΣΣϵ,11 =

[
σ1,11 σ ′

1,21

σ1,21 ΣΣΣ1,22

]
. (19)

hen, the quantities appearing in the single-equation model in (7) take on the form

π0 =

[
ΣΣΣ−1

1,22 0

0 ΣΣΣ−1
ϵ,22

][
σ1,21

0

]
=

[
π0,1

0

]
,

δ =

[
ΠΠΠ ′

11 ΠΠΠ ′

21

ΠΠΠ ′

12 ΠΠΠ ′

22

][
1

−π0

]
=

[
ΠΠΠ ′

11

ΠΠΠ ′

12

][
1

−π0,1

]
=

[
δ1

δ2

]
,

πj =

[
ΦΦΦ ′

j,11 ΦΦΦ ′

j,21

ΦΦΦ ′

j,12 ΦΦΦ ′

j,22

][
1

−π0

]
=

[
ΦΦΦ ′

j,11

ΦΦΦ ′

j,12

][
1

−π0,1

]
=

[
πj,1

πj,2

]
.

(20)

he definitions in (20) demonstrate that, under the restriction that the errors driving z1,t and z2,t are uncorrelated, sparsity
n the single-equation model arises when (a subset of) z2,t does not Granger-Cause z1,t . For example, in the extreme case
here ΠΠΠ12 = 0 and ΦΦΦ12 = 0, we have δ2 = 0 and πj,2 = 0, respectively. Consequently, then the single-equation model

reads as

∆yt = δ′z t−1 + π′

0∆xt +

p∑
j=1

π′

j∆z t−j + ϵy,t

= δ′

1z1,t−1 + π′

0,1∆x1,t +

p∑
j=1

π′

1,j∆z1,t−j + ϵy,t .

(21)

As an interesting special case, consider the decomposition in (18) in which z2,t = ϵ2,t is scalar-valued with E(ϵ2,tϵ1,t ) =

0. Then, it is straightforward to see that π12 = π21 = 0, π22 = −1 and, consequently, δN = 0. This finding highlights
that stationary variables result in sparsity in δ only when they are fully exogenous, as said variables may enter the
implied cointegrating vector through their correlation structure with the other variables in the system. This further
demonstrates the difficulty of direct interpretation of δ without imposing additional restrictions on the DGP. From a
prediction perspective, however, the model’s ability to include stationary variables through their correlation structure is
clearly a desirable feature.

Finally, we consider a DGP in which ΣΣΣϵ follows a Toeplitz structure with σϵ,ij = ρ|i−j|. After partitioning ΣΣΣϵ as in (5),
we can rewrite

σϵ,21 =

⎡⎢⎣ ρ1

...

ρN−1

⎤⎥⎦ =

⎡⎢⎣ ρ0 . . . ρN−2

...
. . .

...

ρN−2 . . . ρ0

⎤⎥⎦
⎡⎢⎢⎣

ρ1

0
...

⎤⎥⎥⎦ = ΣΣΣϵ,22π0, (22)
0
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thus showing that π0 = ΣΣΣ−1
ϵ,22σϵ,21 = (ρ, 0, . . . , 0)′.6 As δ′

= (1, −π′

0)AB
′, this implies that only the long-run equilibria

that occur in the equations for ∆yt or its cross-sectionally neighbouring variable will be part of the linear combination in
he derived the single-equation model. Consequently, any variables in the dataset that are not contained in the equilibria
ccurring in these equations will induce sparsity in δ.

.3.2. Mixed orders of integration
One of the most prominent benefits of SPECS is the ability to model potentially non-stationary and cointegrated data

ithout the need to adopt a pre-testing procedure with the aim of checking, and potentially correcting, for the order of
ntegration or to decide on the appropriate cointegrating rank of the system. The assumptions under which our theory
s developed are compatible with a wide variety of DGPs, including settings where the dataset contains an arbitrary mix
f I(1) and I(0) variables. The researcher simply transforms the dataset according to (7) and SPECS provides consistent
stimation of the parameters and identification of the correct implied sparsity pattern. The purpose of this section is to
emonstrate this feature by means of some illustrative examples.
The central idea underlying the above feature is that a single-equation model can be derived from any system admitting

finite order VECM representation. In a VECM system containing variables with mixed orders of integration, however,
ach stationary variable adds an additional trivial cointegrating vector. Such a vector corresponds to a unit vector that
quals 1 on the index of the stationary variable. For illustrative purposes, we consider the following general example.
efine z t = (z ′

1,t , z
′

2,t )
′, where z1,t ∼ I(0) and z2,t ∼ I(1) and possibly cointegrated. Let the dimensions of z1,t and z2,t be

N1 and N2 respectively. Then, z t admits the representation[
∆z1,t
∆z2,t

]
=

[
−IN1 0
0 ΠΠΠ22

][
z1,t−1
z2,t−2

]
+ ΦΦΦ(L)∆z t−1 + ϵt = AB′z t−1 + ΦΦΦ(L)∆z t−1 + ϵt , (23)

here ΦΦΦ(L) corresponds to a p-dimensional matrix lag polynomial by Assumption 2 and ϵt satisfies the conditions in
ssumption 1. As long as the design of (23) conforms to Assumptions 2 and 3, our main results apply to this setting and
oth selection and estimation consistency is maintained. For the extreme case in which all variables are integrated of
rder one, but none are cointegrated, we define A = B = 0. Clearly, it follows that δ = 0, such that the single-equation

model can be seen as a conditional model obtained from a VAR specified in differences. In the other extreme case, when
the levels of all variables in the VECM are weakly stationary, decomposition (23) would simply lead to a VECM in which
−A = B = IN , thereby enabling the results in Section 4.1 to carry through.7

4.3.3. Rates of convergence
We conclude our theoretical analysis with a detailed illustration of the attainable rates of convergence in different

asymptotic frameworks. The rates of convergence of γ̂R and γ̂ , as well as the specific construction of the initial weights,
re dependent on the growth rates of N, p, r, |Sδ| and |Sπ |. Because of the trade-off between the admissible dimension and
he rate of convergence, the choice of the desired asymptotic framework is likely dependent on the specific application. For
xample, typical macro-economic applications are characterized by short panel datasets which would require a framework
n which the cross-sectional dimension grows as fast as theoretically admissible. On the other hand, in applications with
large number of time series observations, such as forecasting based on high-frequency data, the assumption that the
umber of (potentially) relevant variables grows slow relative to the available time periods seems reasonable. Therefore,
o aid interpretation of our results, we provide an overview with different asymptotic frameworks and the corresponding
enalty parameters, weight constructions and convergence rates of the initial estimator in Table 1. The weights for δi and

j are constructed as ωi =

⏐⏐⏐δ̂R,i⏐⏐⏐−kδ
and ωN+j =

⏐⏐π̂R,j
⏐⏐−kπ .

The first row of Table 1 corresponds to the classic fixed-dimensional case. It is reassuring that, similar to the OLS
stimator, SPECS obtains

√
T -convergence, with the additional benefit of allowing for consistent recovery of the sparsity

attern. In fact the next three rows highlight that when N , p or r diverge, while the number of relevant variables remains
fixed, SPECS maintains its

√
T -convergence as long as the penalty weights kδ and kπ are adjusted appropriately. In the

ifth row, we allow the number of relevant stationary variables, i.e. |Sπ | to diverge as well. This setting may be preferred
hen the integrated time series remain persistent after being transformed to stationarity by differencing. We observe
hat consistency is maintained, although even sharper weights are required and the rate of convergence has reduced to
3/8. In the sixth row we additionally allow the number of relevant non-stationary variables, i.e. |Sδ|, to increase, whereas

the number of cointegrating vectors remains fixed. The increased number of non-zero coefficients corresponding to non-
stationary variables reduces the rate of convergence to T 1/4. Interestingly, in the last row we let the dimension of the
cointegrating subspace r grow at the same rate. As illustrated in Remark 10, this setting naturally occurs when the data
is modelled by a non-stationary factor model with idiosyncratic components. In this framework, the number of stochastic
trends driving the subset of relevant variables, i.e. sδ , remains fixed, which positively affects the convergence rate of SPECS.

6 It is straightforward to show that this property carries over to covariance matrices with a block-diagonal Toeplitz structure, with each block
ΣΣΣ (k)

ϵ having the form σ
(k)
i,j = ρ

|i−j|
(k) . The number of non-zero elements in the resulting vector π0 will equal the number of blocks in the covariance

matrix.
7 When all variables are stationary, SPECS can also be shown to consistently estimate the parameters based on the well-documented properties

of the adaptive lasso in stationary time series settings, such as those considered in Medeiros and Mendes (2016) and Masini et al. (2019).
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Table 1
Dimensions, Penalties, Weights and convergence rates.
N p r |Sδ | |Sπ | kδ kπ λR, λI

γ̂ − γ

2

Fixed Fixed Fixed Fixed Fixed 2 1 KT 2/5 Op
(
T−1/2

)
T 1/4 Fixed Fixed Fixed Fixed 3 1 KT 2/5 Op

(
T−1/2

)
T 1/4 T 1/4 Fixed Fixed Fixed 3 2 KT 2/5 Op

(
T−1/2

)
T 1/4 T 1/4 T 1/4 Fixed Fixed 3 2 KT 2/5 Op

(
T−1/2

)
T 1/4 T 1/4 T 1/4 Fixed T 1/4 4 2 KT 2/5 Op

(
T−3/8

)
T 1/4 T 1/4 Fixed T 1/4 T 1/4 4 2 KT 2/5 Op

(
T−1/4

)
T 1/4 T 1/4 T 1/4 T 1/4 T 1/4 4 2 KT 2/5 Op

(
T−3/8

)
This table displays possible settings for the weights (kδ, kπ ) and penalty parameters (λI , λR) that satisfy
Assumption 6 under a variety of asymptotic frameworks (N, r, p, |Sδ | , |Sπ |). The convergence rate of
SPECS is displayed in the last column.

We consider the theoretical results presented in this section to be of a double nature. On the one hand, it is reassuring
hat consistent estimation remains feasible in growing dimensions and that suitable weights are available. On the other
and, we acknowledge that the required restrictions on the growth rate of the number of variables seem to caution against
pplication of penalized regression in very high-dimensional settings. However, it is worth noting that the restrictions
n N and p largely result from the use of ridge regression as an initial estimator. Indeed, the availability of a novel
ompatibility condition could justify the use of the lasso as an initial estimator and will allow for generalization of our
heoretical results to even higher dimensional asymptotic frameworks. We consider this an interesting avenue for future
esearch.

emark 10. The VECM (18) can be rewritten into a non-stationary factor model with stationary idiosyncratic components,
imilar to Banerjee et al. (2014). Based on the VMA representation of z t in (4), with C a matrix of reduced rank, we can
ewrite the process as

z t = Cst + µ + τt + ut = ΛΛΛf t + µ + τt + ut , (24)

here ΛΛΛ = B⊥

(
A′

⊥

(
I −

∑p
j=1 ΦΦΦ j

)
B⊥

)−1, f t = A′

⊥
st and ut = C (L)ϵt + z0. This representation is particularly relevant in

elation to the growth rate of Nδ = N − r . Typically, the theory for consistent estimation of (24) is derived under the
ssumption that the Nδ factors remain fixed, while letting both N and T go to infinity. Hence, in this framework, noting
hat sδ ≤ Nδ , the assumptions that sδ

T1/4
→ 0 and Nδ

T1/4
→ 0 in Theorems 1–3 are automatically satisfied. Consequently, the

onvergence rates of the initial and final estimators are given by
γ̂R − γ


2 = Op

(√
Mπ

T

)
and

γ̂ − γ

2 = Op

(√
sπ
T

)
.

5. Simulations

In this section we analyse the selective capabilities and predictive performance of SPECS by means of simulations. We
estimate the single-equation model according to the objective function (14) with the following settings for the penalty
rates:

1. Ordinary Least Squares (OLS: λG = 0, λI = 0),
2. Autoregressive Distributed Lag (ADL: λG = 0, λI > 0, ωi = ∞ for i = 1, . . . ,N),
3. SPECS - no group penalty (SPECS1: λG = 0, λI > 0),
4. SPECS - group penalty (SPECS2: λG > 0, λI > 0).8

The OLS estimator is only included when feasible according to the dimension of the model to estimate and we additionally
include a penalized autoregressive distributed lag model (ADL) with all variables entering in first differences. The latter
model can be interpreted as the conditional model one would obtain when ignoring cointegration in the data and
specifying a VAR in differences as a model for the full system. The resulting conditional model is the same as the CECM
that we consider, but with the built-in restriction δ = 0.

We estimate the solutions for a grid of penalty values and construct the weights from an initial ridge estimator as
proposed in Section 4.2. For ADL and SPECS1, we consider 100 possible values for λI and choose the final model based on
the BIC criterion. Alternatively, for SPECS2, the model selection takes place over a two-dimensional grid consisting of 100
values for λI and 10 possible values for λG, with model selection again being based on the BIC criterion. The weights are
defined by ωi =

⏐⏐γ̂R,i
⏐⏐−k, where k = 2 for i ∈ {1, . . . ,N} and k = 1 for i ∈ {N + 1, . . . ,N + M}.

8 As a helpful reminder, the reader may relate the subscript to the number of penalty categories included in the estimation; SPECS1 only contains
an individual penalty whereas SPECS contains both a group penalty and individual penalty.
2
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Table 2
Simulation design for the first study (Dimensionality and weak exogeneity).
Low dimension A B δ

WE a ·

[
1

09×1

] [
ι̃

05×1

]
a · B

No WE a · B
[

ι̃ 05×1
05×1 ι̃

]
(1 + ρ)a ·

[
ι̃

05×1

]
High dimension A B δ

WE a ·

[
1

049×1

] [
ι̃

045×1

]
a · B

No WE a · B

⎡⎢⎣ ι̃ 05×1 05×1
05×1 ι̃ 05×1
05×1 05×1 ι̃

035×1 035×1 035×1

⎤⎥⎦ (1 + ρ)a ·

[
ι̃

045×1

]

Notes: The low-dimensional (high-dimensional) design corresponds to a system with N = 10 (N = 50)
unique time series and N ′

= 31 (N ′
= 151) parameters to estimate. Furthermore, ι̃ = (1, −ι′4)

′ and
a = −0.5, −0.45, . . . , 0 regulates the adjustment rate towards the equilibrium.

We consider three different settings under which we analyse the performance of our estimators; the first setting aims
to analyse the effects of dimensionality and weak exogeneity, the second setting explores the effect of the variables’ orders
of integration and the third setting considers the performance in non-sparse settings. Each setting is described in detail
below.

5.1. Dimensionality and weak exogeneity

In the first part of our simulation study we focus on the effects of dimensionality and weak exogeneity on a
(co)integrated dataset. Our simulation DGP takes the form

∆z t = AB′z t−1 + ΦΦΦ1∆z t−1 + ϵt , (25)

with t = 1, . . . , T = 100, ϵt ∼ N (0, ΣΣΣ) and σij = 0.8|i−j|. Furthermore, ΦΦΦ1, the coefficient matrix regulating the short-
un dynamics is generated as 0.4 · IN , where N varies depending on the specific DGP considered. Based on this DGP, the
ingle-equation model takes on the form

∆yt = δ′z t−1 + π′

0∆xt + π′

1∆z t−1 + ϵy,t ,

ith π0 and π1 as defined in (7). We consider a total of four different settings, corresponding to different combinations
f (i) dimensionality (low/high) and (ii) weak exogeneity (present/absent). The corresponding parameter settings and
mplied cointegrating vector δ are given in Table 2.

We measure the selective capabilities based on three metrics. The pseudo-power of the models measures the ability to
ppropriately pick up the presence of cointegration in the underlying DGP. For the OLS procedure we perform the Wald
est proposed by Boswijk (1994). When the OLS fitting procedure is unfeasible due to the high-dimensionality, we perform
he Wald test on the subset of variables included after fitting SPECS1 and refer to this approach as Wald-PS (where PS
stands for post-selection). Despite the caveats of oracle-based post-selection inference discussed after Corollary 1, the
inclusion of Wald-PS still offers valuable insights regarding the performance one may expect of such a procedure in light
of the aforementioned limitation. SPECS is used as an alternative to this cointegration test by simply checking whether
at least one of the lagged levels is included in the model. The percentage of trials in which cointegration is found is then
reported as the pseudo-power.

Second, for each trial the Proportion of Correct Selection (PCS) measures the proportion of correctly selected variables,
while the Proportion of Incorrect Selection (PICS) describes, as the name may suggest, the proportion of incorrectly
selected variables. They are given by

PCS =

⏐⏐{j : γ̂j ̸= 0
}

∩
{
j : γj ̸= 0

}⏐⏐⏐⏐{j : γj ̸= 0
}⏐⏐ ; PICS =

⏐⏐{j : γ̂j ̸= 0
}

∩
{
j : γj = 0

}⏐⏐⏐⏐{j : γj = 0
}⏐⏐ .

The PCS and PICS are calculated for SPECS1 and SPECS2 and averaged over all trials.
Finally, we consider the predictive performance in a simulated nowcasting application, where we implicitly assume

that the information on the latest realization of xT arrives before the realization of yT . These situations frequently occur
in practice, see Giannone et al. (2008) and the references therein for an overview as well as the empirical application
considered in Section 6. Due to the construction of the single-equation model, in which contemporaneous values of the
conditioning variables contribute to the contemporaneous variation in the dependent variable, our proposed method
is particularly well-suited to this application. For any of the considered fitting procedures, the nowcast is given by
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Fig. 1. Pseudo-Power, Proportion of Correct Selection (PCS), Proportion of Incorrect Selection (PICS) and Root Mean Squared Nowcast Error (RMSNE)
for Low- and High-Dimensional specifications. The adjustment rate multiplier a is on the horizontal axis.

ŷT = δ̂′zT−1 + π̂′∆xT + φ̂′∆zT−1, where by construction δ̂ = 0 in the ADL model. For each method we record the root
mean squared nowcast error (RMSNE) relative to the OLS oracle procedure fitted on the relevant variables.

Fig. 1 visually displays the evolution of our performance metrics over a range of values for a, representing increasingly
aster rates of adjustment towards the long-run equilibrium. The first row of plots shows near-perfect performance of
PECS over all metrics. The pseudo-size is slightly lower than the size of the Wald test when the latter is controlled at 5%,
hereas the pseudo-power quickly approaches one. Following expectations, the pseudo-size for SPECS2 is slightly lower

as a result of the additional group penalty. Focusing on the selection of variables, we find that for faster adjustment rates,
SPECS is able to exactly identify the sparsity pattern with very high frequency, as demonstrated by the PCS approaching
100% and the PICS staying near 0%. Furthermore, the MSNE obtained by our methods is close to the OLS oracle method and
is substantially lower than the MSNE obtained by the ADL model for faster adjustment rates, while being almost identical
absent of cointegration. The picture remains qualitatively similar when moving away from weak exogeneity while staying
in a low-dimensional framework, although the gain in predictive performance over the ADL has decreased somewhat. We
postulate that the ADL may benefit from a bias–variance tradeoff, given that the correctly specified single-equation model
is sub-optimal in terms of efficiency absent of weak exogeneity compared to a full system estimator. Nonetheless, SPECS
is clearly preferred.

The performance in the high-dimensional setting is displayed in rows 3 and 4 of Fig. 1. When the conditioning variables
are weakly exogenous with respect to the parameters of interest, the selective capabilities remain strong. The pseudo-
power demonstrates the attractive prospect of using our method as an alternative to cointegration testing, especially when
taking into consideration that the traditional Wald test is infeasible in the current setting. In addition, the nowcasting
performance remains far superior to that of the misspecified ADL. The last row depicts the performance absent of weak
exogeneity. In this setting, exact identification of the implied cointegrating vector occurs less frequently, which seems
to negatively impact the nowcasting performance. However, the misspecified ADL is still outperformed, despite the
deterioration in the selective capabilities of our method.

5.2. Mixed orders of integration

We next analyse the performance of SPECS on datasets containing variables with mixed orders of integration. The aim
of this section is to gain an understanding of the relative performance of SPECS when not all time series are (co)integrated
and to compare the performance of SPECS to traditional approaches that rely on pre-testing. The latter goal is attained
by adding an additional penalized ADL model to the comparison, namely one in which the data is first corrected for
non-stationarity based on a pre-testing procedure in which an Augmented Dickey–Fuller (ADF) test is performed on the
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Table 3
Simulation design for the second study (Mixed orders of integration).
Mixed order A B δ

y ∼ I(0)

⎡⎢⎣ 1 0 01×24
015×1 aB∗ 015×24
010×1 010×3 010×24
024×1 024×3 I24

⎤⎥⎦
⎡⎢⎣ −b 0 01×24
015×1 B∗ 015×24
010×1 010×3 010×24
024×1 024×3 −B24×24

⎤⎥⎦
⎡⎣ −1

−ρaι̃
044×1

⎤⎦

y ∼ I(1)

⎡⎣ aB∗ 015×25
010×3 010×25
025×3 I25

⎤⎦ ⎡⎣ B∗ 015×25
010×3 010×25

025×3 −B̃25×25

⎤⎦ (1 + ρ)a ·

[
ι̃

045×1

]
,

Notes: see notes in Table 2. Additionally, we define b = 1 (b ∼ U(0, 0.2)) and B̃ as a diagonal matrix with bii = 1
(bii ∼ U(0, 0.2)) in the absence (presence) of persistence, and B∗

= (13×3 ⊗ ι̃).

individual series. We refer to this procedure as the ADL-ADF model. Based on the general DGP (25), we distinguish four
different cases, corresponding to (i) different orders of the dependent variable (I(0)/I(1)) and (ii) different degrees of
persistence in the stationary variables (low/high). The choice to include varying degrees of persistence is motivated by the
conjecture that the performance of the pre-testing procedure incorporated in the ADL-ADF model may deteriorate when
the degree of persistence increases, which in turn translates to a decrease in the overall performance of the procedure.

The parameter settings for the varying DGPs, displayed in Table 3, are chosen such that they allow for a subset of
stationary variables in the system. In particular, we first consider a scenario in which the dependent variable itself admits a
stationary autoregressive representation in levels. In addition, based on their cross-sectional ordering, the first 15 variables
after y are cointegrated based on three cointegrating vectors, the next 10 variables are non-cointegrated random walks,
and the last 24 variables all admit a stationary autoregressive structure in levels. The degree of persistence in the stationary
variables is regulated by the diagonal matrix B̃ in B, with elements bii = 1 in the low persistence case and bii ∼ U(0, 0.2) in
the high persistence case. It can be seen from the last column in Table 3, that in line with the stationarity of the dependent
variable, the first element in δ will always be equal to −1, whereas an additional five-dimensional cointegrating vector
enters the single-equation model for positive values of a. For the scenario in which the dependent variable is integrated of
order one, the first 15 variables (including y) are all cointegrated based on three cointegrating vectors, the next 10 variables
are non-cointegrated random walks, whereas the last 15 variables all admit a stationary autoregressive representation.
The persistence in the stationary variables is regulated similar to the previous case. Now, however, it is clear from the last
column in Table 3 that δ ̸= 0 only if a > 0, such that lagged levels only enter the single-equation when y is cointegrated
with its neighbouring variables. We display the performance of the models in Fig. 2.

In the first row of Fig. 2, corresponding to y ∼ I(0) and low persistence, SPECS correctly selects the lagged dependent
variable in all simulation trials, such that the pseudo-power is always 1. Interestingly, PCS also seems constant around
35%. Upon closer inspection, we find that SPECS chooses an alternative representation of the single-equation model in
which the contribution of the non-trivial cointegrating vector seems to be absorbed in the lagged level of the dependent
variable. While the resulting model differs from the implied oracle model, which is indeed accurately estimated by the OLS
oracle procedure, the model choice seems motivated by a favourable bias–variance trade-off. In line with this conjecture,
the nowcast performance of SPECS occasionally exceeds the OLS oracle procedure’s where a larger number of parameters
is estimated. The standard ADL nowcasts are again inferior, whereas the ADL-ADF model seems to benefit from correct
identification of the stationarity of the dependent variable, which is particularly relevant given that the dependent variable
itself is a main component in the optimal forecast. However, the nowcast accuracy of SPECS is almost identical to that
of the ADL-ADF model, a finding that we interpret as reassuring and confirmatory of our claim that SPECS may be used
without any pre-testing procedure. Moreover, the absence of strong persistence in the stationary variables idealizes the
results of the ADL-ADF procedure.

In typical macroeconomic applications many time series that are considered as I(0) display much slower mean
reversion and, consequently, are more difficult to correctly identify as being stationary.9 Accordingly, in row 2 we display
the result for a DGP where the stationary variables display more persistent behaviour. The performance of SPECS remains
largely unaffected, whereas the nowcasting performance of the ADL-ADF model deteriorates drastically. We stress the
relevance of this result, given that the estimation of ADL models after pre-testing for non-stationarity is fairly common
practice. Somewhat surprisingly, the ADL model in differences nowcasts almost as well as SPECS here. Overall, however,
the nowcast accuracy of SPECS remains the highest and, equally important, most stable across all specifications.

Continuing the analysis of mixed order datasets, rows 3 and 4 of Fig. 2 display the results for DGPs where the dependent
variable is generated as being integrated of order one. The pseudo-power plot clearly reflects that δ ̸= 0 only when a > 0.
Furthermore, while SPECS performs well at removing the irrelevant variables, the relevant variables are not all selected
correctly, resulting in somewhat lower values for the PCS metric. Nevertheless, the nowcast performance remains superior
to that of the ADL model, especially in the presence of cointegration with fast adjustment rates.

9 For example, the ten time series in the popular Fred-MD dataset which McCracken and Ng (2016) propose to be I(0), i.e. the series corresponding
to a tcode of one, all display strong persistence or near unit root behaviour, with the smallest estimated AR(1) coefficient exceeding 0.86.
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Fig. 2. Pseudo-Power, Proportion of Correct Selection (PCS), Proportion of Incorrect Selection (PICS) and Root Mean Squared Nowcast Error (RMSNE)
for four Mixed Order specifications. The adjustment rate multiplier a is on the horizontal axis.

5.3. Non-sparse data generating processes

To avoid idealizing the results through a choice of DGPs that suits our estimator, this section considers the performance
of the penalized regression estimators in two different non-sparse settings. First, we consider an explicitly constructed
VECM that contains many small, but non-zero coefficients. Second, we consider a DGP that contains a non-stationary
factor structure on which the single-equation model is likely misspecified.

The non-sparse VECM is generated according to (25) with B = I3 ⊗ ι̃, where ι̃ = (1, −ι′4)
′, and A = aB for

a = 0, −0.05, . . . ,−0.5. Hence, N = 15 and the total number of parameters to estimate (including a constant and linear
trend) is N(p + 2) + 1 = 46. A major difference with Section 5.1 is that we do not generate the covariance matrix of the
errors as a Toeplitz-matrix, the latter being a crucial driver of sparsity in the preceding sections. Instead, we implement the
procedure detailed in Chang (2004, p. 277–278), in which we generate a (N ×N) matrix U with uij ∼ U(0, 1) to construct
the orthonormal matrix H = U

(
U ′U

)−1/2, and generate a set of N eigenvalues, λ1, . . . , λN , where λ1 = 0.01, λN = 1 and
λ2, . . . , λN−1 ∼ U(0.1, 1) to construct ΛΛΛ = diag(λ1, . . . , λN ). We then construct the covariance matrix as ΣΣΣ = HΛΛΛH ′. At
each simulation trial, we generate a new ΣΣΣ such that the results cannot be attributed to a specific random draw of the
covariance matrix. Based on this construction, π0, as defined below (7), and δ are non-sparse vectors with small elements;
even in the setting with the strongest cointegration, i.e. a = −0.5, the median magnitude of the coefficients in δ across
all trials is only 0.12. As before, we set T = 100 and perform 1000 simulation trials.

The results are displayed in Fig. 3, which contain a number of interesting results. Unsurprisingly, all estimators obtain a
substantially lower (pseudo-)power in the current framework. The ℓ1-regularized estimators seem more sensitive to this
than the traditional Wald estimator considered in Boswijk (1994). In line with the weak power, we observe that the PCS
for both SPECS1 and SPECS2 is low, with on average only 0.75 out of 15 variables being included in levels.10 Appropriate
inference in the current setting is a difficult task and direct application of SPECS without alteration does not seem to be a
feasible strategy. The development of a uniformly valid post-selection inference procedure, such as the desparsified lasso
of Van de Geer et al. (2014), may alleviate some of these issues. While we consider this an interesting avenue of research,
it is outside the scope of the current paper.

While these results may seem discouraging, the results on the nowcast accuracy display a different story. The mean-
squared nowcast errors, relative to the OLS oracle procedure, are almost always below one and are similar for the SPECS
and penalized ADL estimators. This highlights that the signal of the long-run component is so weak, that the estimation
of a misspecified model which ignores cointegration benefits from a favourable bias–variance tradeoff. Therefore, the

10 The PICS is zero for all a > 0, simply because the DGP is non-sparse, and is omitted accordingly.
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Fig. 3. Pseudo-Power, Proportion of Correct Selection (PCS), Proportion of Incorrect Selection (PICS) and Root Mean Squared Nowcast Error (RMSNE).
The adjustment rate multiplier a is on the horizontal axis.

Table 4
Nowcasting performance on a DGP with a non-stationary factor.

Root Mean Squared Nowcast Error

SPECS1 SPECS2 SPECS1 - OLS

No dynamics 1.07 1.11 0.99
Dynamics 1.02 1.02 1.01

conclusion remains that SPECS obtains superior predictive performance relative to methods that ignore cointegration
when the long-run component provides a strong signal, without sacrificing performance absent of cointegration or in the
presence of very weak cointegration.

The second, and final, DGP that we consider contains a non-stationary factor structure and corresponds to setting III
in Palm et al. (2011, p. 92). We allow for contemporaneous correlation and dynamic structures in both the error processes
driving the ‘‘observable’’ data and the idiosyncratic component in the factor structure. The DGP is given by z t = λft + ωt ,
here z t is a (50 × 1) time series process, ft is a single scalar factor and

ft = φft−1 + ζt , ωi,t = θiωi,t−1 + vi,t .

urthermore,

vt = A1vt−1 + ϵ1,t + B1ϵ1,t−1, ζt = α2ζt−1 + ϵ2,t + β2ϵ2,t−1,

where ϵ1,t ∼ N (0, ΣΣΣ), with ΣΣΣ again generated as in Chang (2004), and ϵ2,t ∼ N (0, 1).
The comparison focuses exclusively on the nowcasting performance for a setting without dynamics (A1 = B1 = 0 and

α2 = β2 = 0) and a setting with dynamics (α2 = β2 = 0.4) in which the construction of A1 and B1 is analogous to Palm
et al. (2011, p. 93). We report the RMSNEs of SPECS relative to the ADL in Table 4. Given that the single-equation model
is misspecified in this setup, it is unreasonable to expect SPECS to outperform. Indeed, we observe that the RMSNEs are
all very close to one and, while in most cases the ADL model performs slightly better, the difference seems negligible.
Hence, the risk of using SPECS to estimate a misspecified model in the sense considered here, does not seem to be higher
than the use of the alternative ADL model, whereas the relative merits of SPECS when applied to a wide range of correctly
specified models are evident from the first part of the simulations.

6. Empirical application

Inspired by Choi and Varian (2012), we consider nowcasting Dutch unemployment with SPECS based on Google Trends
data. Google Trends are time series consisting of normalized indices depicting the volume of search queries entered in
Google, originating from a certain geographical area. The Dutch unemployment rates are made available by Statistics
Netherlands, an autonomous administrative body focusing on the collection and publication of statistical information.
These rates are published on a monthly basis with new releases being made available on the 15th of each new month.
This misalignment of publication dates clearly illustrate a practically relevant scenario where improvements upon forward
looking predictions of Dutch unemployment rates may be obtained by utilizing contemporaneous Google Trends series.

We collect a novel dataset containing seasonally unadjusted Dutch unemployment rates from the website of Statistics
Netherlands11 and a set of manually selected Google Trends time series containing unemployment related search queries,
such as ‘‘Vacancy’’, ‘‘Resume’’ and ‘‘Unemployment Benefits’’. The dataset comprises of monthly observations ranging from

11 http://statline.cbs.nl/StatWeb/publication/?VW=T&DM=SLEN&PA=80479eng&LA=EN.

http://statline.cbs.nl/StatWeb/publication/?VW=T&DM=SLEN&PA=80479eng&LA=EN
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Table 5
Mean-Squared Nowcast Error relative to the ADL model for varying number of lagged differences
p.
p # of parameters ADL-ADF SPECS1 SPECS2
1 262 1.27 0.99 1.07
3 436 1.06 0.82* 0.88
6 697 0.90 0.90 0.84*

*Denotes rejection by the Diebold–Mariano test at a 10% significance level.

anuary 2004 to December 2017. While the full dataset contains 100 unique search queries, a number of these contain
eros for large sub-periods, indicating insufficient search volumes for those particular series. Consequently, we remove
ll series that are perfectly correlated over any sub-period consisting of 20% of the total sample.12
The benchmark model we consider is an ADL model fitted to the differenced data. In detail, let yt and xt be the scalar

nemployment rate and the vector of Google Trends series observed at time t , respectively, and define z t = (yt , x′
t )

′. The
enchmark ADL estimator fits

∆yt = π′

0∆xt +

p∑
j=1

π′

j∆z t−j + µ0 + τ0(t − 1) + ϵt .

owever, this estimator ignores the order of integration of individual time series by differencing the whole dataset, while
t is common practice to transform individual series to stationarity based on a preliminary test for unit roots. Hence, similar
o Sections 5.2 and 5.3, we include an additional ADL model where the decision to difference is based on a preliminary
DF test and refer to this method as ADL-ADF.13 Finally, SPECS estimates

∆yt = δ′z t−1 + π′

0∆xt +

p∑
j=1

π′

j∆z t−i + µ0 + τ0(t − 1) + ϵt .

ll tuning parameters are obtained by time series cross-validation and we use k = 1.1 based on a preliminary analysis.14
he first nowcast is made by fitting the models on a window containing the first two-thirds of the complete sample,
.e. t = 1, . . . , Tc with Tc = ⌈

2
3T⌉, based on which the nowcast for ∆yTc+1 is produced. This procedure is repeated by

olling the window forward by one observation until the end of the sample is reached, producing a total of 54 pseudo
ut-of-sample nowcasts. Table 5 reports the MSNE relative to the ADL model for p = 1, 3, 6.
The ADL-ADF estimator does not perform better than the regular ADL model for p = 1, 3, indicating that the potential

for errors in pre-testing might lead to unfavourable results. SPECS performs well and is able to obtain smaller mean-
squared nowcast errors than the ADL benchmark across almost all specifications, with the combination SPECS2 and
p = 1 being the exception. Moreover, for SPECS1 (p = 3) and SPECS2 (p = 6), we find the differences in MSNE to
be significant at the 10% level according to the Diebold–Mariano test. The overall (unreported) MSNE is lowest for the
SPECS1 estimator based on p = 3 lagged differences. Given that the addition of lagged levels to the models improves the
nowcast performance, the premise of cointegrating relationships between Dutch unemployment rates and Google Trends
series seems likely. To further explore the presence of cointegration among our time series we group our variables in five
categories; (1) Application Training, (2) General, (3) Job Search, (4) Recruitment Agencies (RA) and (5) Social Security.
We narrow down our focus to the nowcasts of models with three lagged difference included, p = 3, estimated by
SPECS1. In Fig. 4 we visually display the share of nowcasts in which the lagged levels of each variable are included in the
estimated model. In addition, it depicts the selection stability of those variables, where a green colour indicates that given
variables are included in the respective nowcast, and red vice versa. The figure also displays the actual unemployment
rates compared to the nowcasted values.

Fig. 4 highlights that only few variables are consistently selected for all nowcasts, although in each category we can
distinguish some variables that are included at higher frequencies. The variable whose lagged levels are always selected is
‘‘Vakantiebaan’’, which is a search query for a temporary job during the summer holiday. We postulate that this variable
is selected by SPECS to account for seasonality in the Dutch unemployment rates. In an unreported exercise we estimate
the model with the addition of a set of eleven unpenalized dummies representing different months of the year. While
the variable ‘‘Vakantiebaan’’ is never selected, the mean squared nowcast error increases substantially. Hence, we opt to
adhere to our standard model under the caveat that for at least one of the lagged levels included, seasonality effects
rather than cointegration seem a more appropriate explanation for its inclusion. Other frequently included variables
are queries for vacancies (‘‘uwv.vacatures’’, 78%), unemployment (‘‘werkloos’’, 76%) and social benefits (‘‘ww uitkering’’,

12 We have made the dataset available in the specs R package (https://cran.r-project.org/web/packages/specs/index.html).
13 We note that none of the time series were found to be integrated of order 2. The outcome of the ADF test is reported for each time series in
he online Appendix C.4.
14 Comparing the nowcast accuracy for varying k ∈ [0, 4], we found the highest accuracy for k = 1.1.

https://cran.r-project.org/web/packages/specs/index.html
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Fig. 4. Top-left: Selection frequency, measured as the percentage of all nowcasts the variable was selected. Bottom-left: Selection stability with green
ndicating a variable was included in the nowcast model and red indicating exclusion. Right: Actual versus predicted unemployed labour force (ULF)
n levels and differences. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

2%), where the stated percentages indicate the proportion of nowcast models in which the respective variables are
elected. Furthermore, the last bar represents the frequency in which the lagged level of the Dutch unemployment rate
s selected, which occurs for 43 out of 54 nowcasts (80%). The frequent selection of the lagged level of unemployment
ates in conjunction with the other lagged levels is indicative of the presence of cointegration among unemployment and
oogle Trends series. However, we do not attach any structural meaning to the found equilibria based on the difficulty
f interpretation when one does not assume the presence of weak exogeneity.
In an attempt to gain insights into the temporal stability of our estimator, we visually display the selection stability in

he bottom-left part of Fig. 4. Generally, we see that for the early and later period of the sample very few time series enter
he model in levels, whereas for the middle part of the sample the majority of variables are selected. The exact reason
or these patterns to occur is unknown and raises questions on the stability of Google trends as informative predictors of
utch unemployment rates. Standard feasible explanations concern structural instability in the DGP, seasonality effects or
ata idiosyncrasies. However, there are additional peculiarities specific to the use of Google trends such as normalization,
ata hubris and search algorithm dynamics, all of which might result in unstable performance (cf. Lazer et al., 2014). Since
he focus of this application is on the relative performance between our estimator and a common benchmark model, rather
han on a structural analysis of the relation between Google Trends and unemployment rates, we leave this issue aside
s it is outside the scope of the paper. Instead, we focus on the relative empirical performance of our methods, which,
otwithstanding the aforementioned caveats, we deem convincingly favourable for SPECS. Finally, on the right of Fig. 4 we
isplay the realized and predicted unemployment rates in levels and differences. Both the penalized ADL model and SPECS
eem to follow the actual unemployment rates with reasonable accuracy, with the largest nowcast errors occurring in the
irst half of 2014. Prior to this period the unemployment rates had been steadily rising in the aftermath of the economic
ecession, whereas 2014 marks the start of a recovery period. Given that the models are fit on historical data, it is natural
hat the estimators overestimate the unemployment rate shortly after the start of the economic recovery. Perhaps not
ntirely coincidental, the start of the period over which the majority of lagged levels are included by SPECS coincides
ith this recovery period as well, thereby hinting towards structural instability in the DGP as a plausible cause for the
bserved selection instability.

. Conclusion

In this paper, we propose the use of SPECS as an automated approach for sparse single-equation error correction
odelling in high-dimensional settings. SPECS is an intuitive estimator that applies penalized regression to a conditional
rror-correction model. We show that SPECS possesses the oracle property and is able to consistently select the long-
un and short-run dynamics in the underlying DGP. These results are derived with the aid of a novel bound on the
inimum eigenvalue of the sample covariance matrix containing integrated process, which may be of independent

nterest. Additionally, in pursuit of suitable weights that aid in the identification of the subset of relevant variables, we
erive the consistency of the ridge estimator applied to the same model and demonstrate how ridge regression may be
sed to construct these weights.
We document favourable finite sample performance of SPECS by means of simulations and an empirical application. The

imulation exercise confirms strong selective and predictive capabilities in both low and high dimensions with convincing
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gains over a benchmark penalized ADL model that ignores cointegration in the dataset. Furthermore, the simulation results
demonstrate that the selective capabilities of SPECS remain adequate absent of weak exogeneity and the nowcasting
performance remains superior to the benchmark. Finally, we consider an empirical application in which we nowcast
the Dutch unemployment rate with the use of Google Trends series. Across all three different dynamic specifications
considered, SPECS attains higher nowcast accuracy, thus confirming the findings from our simulation study. As a result,
we believe that our proposed estimator, which is easily implemented with readily available tools at a low computational
cost, offers a valuable tool for practitioners by enabling automated model estimation on relatively large and potentially
non-stationary datasets and, most importantly, allowing to take into account potential (co)integration without requiring
pre-testing procedures.

Finally, we highlight several important sources through which the assumptions and asymptotic framework may be
generalized further. Sharper and more direct eigenvalue bounds can be utilized to cast SPECS into an even higher-
dimensional setting. Similarly, a suitable compatibility condition can be used to validate the lasso as an initial estimator,
resulting in improved weights and, again, a less restrictive asymptotic framework. These topics remain subject to our
continuing investigation.

Appendix A. Main proofs

Before presenting the proofs, we start by defining several quantities of interest, some of which are simply repeated for
the sake of convenience. First, recall that, under the assumption that z0 = 0, the moving average representation of the
bserved time series is given by

z t = Cst + µ + τt + C (L)ϵt , Z−1 = S−1C ′
+ ιTµ

′
+ tτ ′

+ E−1C ′(L), (26)

here S−1 = (s0, . . . , sT−1)′, C = B⊥

(
A′

⊥

(
IN −

∑p
j=1 ΦΦΦ j

)
B⊥

)−1 A′

⊥
, t = (0, . . . , T − 1)′ and E−1 = (ϵ0, . . . , ϵT−1)′.

urthermore, by the Beveridge–Nelson decomposition C (z) = C (1) + (1 − z)C∗(z), where C∗(z) =
∑

∞

l=0 C
∗

l with
∗

l = −
∑

∞

k=l+1 C l. Assumption 3 implies that,
∞∑
l=0

C∗

l


∞

=

∞∑
l=0


∞∑

k=l+1

C l


∞

≤

∞∑
l=0

∞∑
k=l+1

∥C l∥∞ =

∞∑
l=1

l ∥C l∥∞ < ∞,

property that is used to bound several quantities of interest in the proofs of our theoretical results. Letting M =

IT − D
(
D′D

)−1 D′, we define

Z̃−1 = MZ−1 = MS−1C ′
+ ME−1C ′(L) = S̃−1C ′

+ Ẽ−1C ′(L),

where Z̃−1 =
(
z̃0, . . . , z̃T−1

)′, and S̃−1, Ẽ−1 admitting a similar decomposition. From this representation, one can derive
the stationary processes

B′z̃ t = B′C (L)ϵ̃t = Cβ (L)ϵ̃t , and ∆z̃ t = C ϵ̃t + (1 − L)C (L)ϵ̃t = C∆(L)ϵ̃t .

etting Ĩ = (0 · ιN−1, IN−1), we get the moving average representation

w̃t =

⎡⎢⎢⎢⎣
∆x̃t

∆z̃ t−1

...

∆z̃ t−p

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
ĨC∆(L)

C∆(L)L
...

C∆(L)Lp

⎤⎥⎥⎥⎥⎦ ϵ̃t = Cw(L)ϵ̃t , W̃ = ẼCw′(L), (27)

here Ẽ = (ϵ̃1, . . . , ϵ̃T )′. An additional useful representation follows from partitioning the data as MV = (V 1,V 2), where
V 1 =

(
Z̃−1,Sδ , W̃ Sπ

)
contains the relevant variables. In congruence with Section 2.3, the (|Sδ| × r∗)-dimensional matrix

Sδ is defined as a basis matrix for the cointegration space of zSδ ,t and BSδ ,⊥ is an (|Sδ| × |Sδ| − r∗)-dimensional matrix
for its left null space, i.e. B′

Sδ ,⊥BSδ = 0. Moreover, without loss of generality, we assume that the columns of BSδ ,⊥ are
standardized to have unit L1-norms. The Q -transformation is defined in (10) and the Q -transformed data are given by
(11). Denote the tth row of V 1Q ′ by vt =

(
v′

1,t , v
′

2,t

)′, where

v1,t =

[
B′

Sδ z̃Sδ ,t−1

w̃Sπ ,t

]
=

[B′

SδC Sδ (L)L
Cw
Sπ (L)

]
ϵ̃t =: Cv(L)ϵ̃t ,

v2,t = B′

Sδ ,⊥z̃Sδ ,t−1 = B′

Sδ ,⊥C Sδ s̃t−1 + B′

Sδ ,⊥C Sδ (L)ϵ̃t−1.

Let sπ = |Sπ | + r∗ and sδ = |Sδ| − r∗ and define the scaling matrix ST = diag
(√

T I sπ , T
√
sδ
I sδ
)
. Then, we define the

appropriately scaled sample covariance matrix as Σ̂ΣΣ = S−1
T

(∑T
t=1 vtv

′
t

)
S−1
T =

[
Σ̂ΣΣ11 Σ̂ΣΣ12

Σ̂ΣΣ21 Σ̂ΣΣ22

]
. Based on these quantities,

we proceed to describe a set of lemmas and propositions that are required for the proofs of the main theorems in this
paper.
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A.1. Preliminary lemmas

In this section, we list a set of preliminary results that are used in the proofs of our main theorems in Appendix A.2.
The proofs of all lemmas are delegated to the supplementary Appendix C.1. The first result will simplify the calculations
on the stochastic components after regressing out D.

Lemma A.1. Let A and B denote arbitrary deterministic matrices of dimensions (NA × dA) and (NB × dB), respectively, with
A∥1 ≤ K and ∥B∥1 ≤ K. Define two martingale difference sequences {ϵw

j }
∞

j=∞
and {ϵu

j }
∞

j=∞
of dimensions NA and NB,

respectively, where each sequence satisfies Assumption 1. Any form of dependence between these two sequences is allowed
and they may correspond to each other. Next, define a stationary (T × NA) matrix W = (w1, . . . ,wT )′ with wt = Cw(L)ϵw

t−l,
here Cw(L) is an (NA × NA)-dimensional matrix lag polynomial satisfying

∑
∞

l=0

Cw
l


∞
. Similarly, let U = (u1, . . . , uT )′

ith ut = Cu(L)ϵut−l, where Cu(L) is an (NB × NB)-dimensional matrix lag polynomial satisfying
∑

∞

l=0

Cu
l


∞
. Define the

T × NA)-dimensional partial sum matrix S−1 = (0, s1, . . . , sT−1)′ with st =
∑T−1

j=1 ϵw
j . Then, letting P = IT − M ,

(1)
A′S ′

−1MS−1A

2 ≤

A′S ′

−1S−1A

2 and

B′U ′MUB

2 ≤

B′U ′UB

2 ,

(2)
A′S ′

−1PUB

F = Op

(√
dAdBT

)
(3)

A′W ′PUB
 F = Op

(√
dAdB

)
.

The second result describes a set on which SPECS obtains its selection consistency.

Lemma A.2. Let γSγ = (δ′

Sδ
, π′

Sπ )
′ denote the

⏐⏐Sγ

⏐⏐-dimensional vector containing all non-zero coefficients and ω =

(ω1, . . . , ωN+M )′. Furthermore, define s1 as the subgradient of
γ̂1 and s2 =

(
s̃′

2, 0′
)′, where s̃2 is the subgradient of

δ̂
2
.

Then, P
(
sign

(
γ̂
)

= sign(γ)
)

≥ P(AT ∩ BT ), where

AT =

|Sγ |⋂
i=1

{⏐⏐⏐[(V ′

1V 1
)−1 V ′

1ϵy

]
i

⏐⏐⏐ <
⏐⏐γSγ ,i

⏐⏐− λI

2

⏐⏐⏐[(V ′

1V 1
)−1

ΩΩΩ1s1,Sγ
]
i

⏐⏐⏐− λG

2

⏐⏐⏐[(V ′

1V 1
)−1 s2,Sγ

]
i

⏐⏐⏐} ,

BT =

⏐⏐⏐Scγ ⏐⏐⏐⋂
i=1

{⏐⏐[V ′

2MV ϵy
]
i

⏐⏐ <
λI

2

[(
ΩΩΩ2ι −

⏐⏐⏐V ′

2V 1
(
V ′

1V 1
)−1

ΩΩΩ1s1,Sγ
⏐⏐⏐)]

i
−

λG

2

⏐⏐⏐[V ′

2V 1
(
V ′

1V 1
)−1 s2,Sγ

]
i

⏐⏐⏐} ,

with ΩΩΩ1 = diag(ωSγ ), ΩΩΩ2 = diag(ωScγ ), and MV = IT − V 1
(
V ′

1V 1
)−1 V ′

1.

Next, we derive bounds on the empirical process that frequently appears throughout the proofs.

Lemma A.3. Under Assumptions 1–3, the stochastic order of the empirical process isS−1
T QV ′

1ϵy

2 = Op

(
sδ +

√
sπ
)
. (28)

Pursuing a minimum eigenvalue bound on Σ̂ΣΣ , we show that its off-diagonal blocks converge to zero.

Lemma A.4. Under Assumptions 1–4, it holds that
Σ̂ΣΣ12


2

p
→ 0 as T , sδ, sπ → ∞.

Combining Assumption 5 with Lemma A.4, we obtain the following immediate result.

Lemma A.5. Under Assumptions 1–5, there exists a constant φ∗ > 0, such that, as T , sδ, sπ → ∞, P
(
λ1

(
Σ̂ΣΣ

)
≥ φ∗

)
→ 1.

Finally, Lemmas A.3 and A.5 have natural counterparts based on the full dataset.

Lemma A.6. Let Σ̂ΣΣR be as defined in (17). Recall the definitions Nδ = N − r, Mπ = M + r and assume that Nδ

T1/4
→ 0 and

Mπ√
T

→ 0. Then, under Assumptions 1–3 and 7,

1. P
(
λmin

(
Σ̂ΣΣR

)
≥ φR

)
→ 1, as T ,Nδ,Mπ → ∞, and

2.
S−1

R Q RV
′Mϵy


2 = Op

(
Nδ +

√
Mπ

)
.

A.2. Proofs of Theorems 1 and 2

In this section we present the proofs of Theorems 1 and 2. The proofs of Theorem 3 and Corollary 1 are delegated to
he Supplementary Appendix C.2.
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Proof of Theorem 1. Based on Lemma A.2, it suffices to show that P(AT ∩ BT ) → 1 as T ,N → ∞ or, equivalently, that
P(A c

T ) → 0 and P(Bc
T ) → 0. Thus, we start by deriving that P(A c

T ) → 0.
Recall the definitions of ST = diag

(√
T I sπ , T

√
sδ
I sδ
)
and define Q as in (10), with ∥Q ∥∞ ≤ 1 by the normalization on

BSδ and BSδ ,⊥. Then, for T large enough, we may write the set A c
T as

A c
T =

|Sγ |⋃
i=1

{⏐⏐⏐[Q ′S−1
T

(
S−1
T QV ′

1V 1Q ′S−1
T

)−1 S−1
T QV ′

1ϵy

]
i

⏐⏐⏐
≥
⏐⏐γSγ ,i

⏐⏐− λI

2

⏐⏐⏐[Q ′S−1
T

(
S−1
T QV ′

1V 1Q ′S−1
T

)−1 S−1
T QΩΩΩ1s1,Sγ

]
i

⏐⏐⏐
−

λG

2

⏐⏐⏐[Q ′S−1
T

(
S−1
T QV ′

1V 1Q ′S−1
T

)−1 S−1
T Q s2,Sγ

]
i

⏐⏐⏐}

=

|Sγ |⋃
i=1

{⏐⏐⏐[Q ′S−1
T Σ̂ΣΣ

−1
S−1
T QV ′

1ϵy

]
i

⏐⏐⏐
≥
⏐⏐γSγ ,i

⏐⏐− λI

2

⏐⏐⏐[Q ′S−1
T Σ̂ΣΣ

−1
S−1
T QΩΩΩ1s1,Sγ

]
i

⏐⏐⏐− λG

2

⏐⏐⏐[Q ′S−1
T Σ̂ΣΣ

−1
S−1
T Q s2,Sγ

]
i

⏐⏐⏐}
⊆

{Q ′S−1
T Σ̂ΣΣ

−1
S−1
T QV ′

1ϵy


2

≥ min
1≤i≤|Sγ |

⏐⏐γSγ ,i
⏐⏐− λI

2

Q ′S−1
T Σ̂ΣΣ

−1
S−1
T QΩΩΩ1s1,Sγ


2
−

λG

2

Q ′S−1
T Σ̂ΣΣ

−1
S−1
T Q s2,Sγ


2

}

(29)

e proceed by bounding the three quantities in (29) separately. First, by Assumption 4(1), sδ
T ≤

1
√
T

⇒
S−1

T


2 =

1
√
T
for

large enough T . Moreover, letting s = (sδ + sπ ),S−1
T QΩΩΩ1s1,Sγ


2 ≤

S−1
T


2 ∥Q ∥2 ∥ΩΩΩ1∥2

s1,Sγ 2 ≤

√
s

T 1/2−ξ
.

Then, by Assumption 5, it holds thatQ ′S−1
T Σ̂ΣΣ

−1
S−1
T QV ′

1ϵy


2

≤
S−1

T


2 ∥Q ∥2

Σ̂ΣΣ−1

2

S−1
T QV ′

1ϵy

2 ≤

S−1
T QV ′

1ϵy

2

√
Tφ

(30)

n a set with probability converging to one. Furthermore, on the same set,Q ′S−1
T Σ̂ΣΣ

−1
S−1
T QΩΩΩ1s1,Sγ


2

≤
S−1

T Q

2

Σ̂ΣΣ−1

2

S−1
T QΩΩΩ1s1,Sγ


2 ≤

√
s

φT 1−ξ
(31)Q ′S−1

T Σ̂ΣΣ
−1

S−1
T Q s2,Sγ


2

≤
S−1

T Q
2
2

Σ̂ΣΣ−1

2

s2,Sγ 2 ≤
1

φT
(32)

Based on (30) and (31), we obtain probability bounds for A c
T as follows:

P
(
A c

T

)
≤ P

(S−1
T QV ′

1ϵy

2

√
Tφ

≥ |γmin| −
λI

√
s

2φT 1−ξ
−

λG

2φT

)
+ o(1)

= P
(S−1

T QV ′

1ϵy

2 ≥ φ |γmin|

√
T −

λI
√
s

2T 1/2−ξ
−

λG

2φ
√
T

)
+ o(1).

(33)

Then, to establish that P
(
A c

T

)
→ 0, by Lemma A.3 it suffices that |γmin|

√
T

sδ+
√
sπ

→ ∞, |γmin|T1−ξ

λI
√
s → ∞ and |γmin|T

λG
→ ∞. The

irst condition corresponds to part (3) of Assumption 4. For the second and third condition, it follows from part (2) of
ssumption 6 that, for sufficiently large T ,

|γmin| T 1−ξ

λI
√
s

≥

(
sδ +

√
sπ
)
T 1/2−ξ

λI
√
s

→ ∞, and
|γmin| T

λG
≥

(
sδ +

√
sπ
)√

T
λG

→ ∞,

Next, we show that P
(
Bc

T

)
→ 0. It follows from Lemma A.2 that Bc

T = Bc
z,T ∪ Bc

w,T , where

B
c
z,T =

|Scδ |⋃
i=1

{⏐⏐⏐z̃ ′

Sc
δ
,iMV ϵy

⏐⏐⏐ ≥
λI

2
ωSc

δ
,i −

λI

2

⏐⏐⏐z̃ ′

Sc
δ
,iV 1

(
V ′

1V 1
)−1

ΩΩΩ1s1,Sγ
⏐⏐⏐− λG

2

⏐⏐⏐z̃ ′

Sc
δ
,iV 1

(
V ′

1V 1
)−1 s2,Sγ

⏐⏐⏐}

B
c
w,T =

|Scπ |⋃{⏐⏐⏐w̃′

Scπ ,iMV ϵy

⏐⏐⏐ ≥
λI

ωScπ ,i −
λI
⏐⏐⏐w̃′

Scπ ,iV 1
(
V ′

1V 1
)−1

ΩΩΩ1s1,Sγ
⏐⏐⏐− λG

⏐⏐⏐w̃′

Scπ ,iV 1
(
V ′

1V 1
)−1 s2,Sγ

⏐⏐⏐}
(34)
i=1
2 2 2



S. Smeekes and E. Wijler / Journal of Econometrics 221 (2021) 247–276 271

w

b

T

c

and z̃Sc
δ
,i and w̃Scπ ,i represent the ith columns of Z̃−1,Sc

δ
and W̃ Scπ , respectively. For Bc

z,T , note that

Bc
z,T ⊆

{Z̃ ′

−1,Sc
δ
MV ϵy


2

≥
λI

2
ωSc

δ
,min −

λI

2

Z̃ ′

−1,Sc
δ
V 1
(
V ′

1V 1
)−1

ΩΩΩ1s1,Sγ

2

−
λG

2

Z̃ ′

−1,Sc
δ
V 1
(
V ′

1V 1
)−1 s2,Sγ


2

}
.

(35)

We proceed by bounding each individual term in (35). First, on a set with probability converging to 1,Z̃ ′

−1,Sc
δ
MV ϵy


2

≤

Z̃ ′

−1,Sc
δ
ϵy


2
+

Z̃ ′

−1,Sc
δ
V 1
(
V ′

1V 1
)−1 V ′

1ϵy


2

≤

Z̃ ′

−1,Sc
δ
ϵy


2
+

Z̃−1,Sc
δ


2

√
φ

S−1
T QV ′

1ϵy

2 ,

(36)

here the last inequality follows from the fact thatV 1
(
V ′

1V 1
)−1 V ′

1ϵy


2

=

(
ϵ′

yV 1
(
V ′

1V 1
)−1 V ′

1ϵy

)1/2
=

(
ϵ′

yV 1Q ′S−1
T

(
S−1
T QV ′

1V 1Q ′S−1
T

)−1 S−1
T QV ′

1ϵy

)1/2
=

(S−1
T QV ′

1V 1Q ′S−1
T

)−1/2 S−1
T QV ′

1ϵy


2

≤

S−1
T QV ′

1ϵy

2

√
φ

y Lemma A.5. By the same argument, it follows that

Z̃ ′

−1,Sc
δ
V 1
(
V ′

1V 1
)−1

ΩΩΩ1s1,Sγ

2

≤

Z̃−1,Sc
δ


2

√
φ

S−1
T QΩΩΩ1s1,Sγ


2 ≤

√
s
Z̃−1,Sc

δ


2

√
φT 1/2−ξ

, (37)

Z̃ ′

−1,Sc
δ
V 1
(
V ′

1V 1
)−1 s2,Sγ


2

≤

Z̃−1,Sc
δ


2

√
φ

S−1
T Q s2,Sγ


2 ≤

Z̃−1,Sc
δ


2

√
φT 1/2

. (38)

hen, plugging (36)–(38) into (35), we obtain

P
(
Bc

z,T

)
≤ P

⎛⎝Z̃ ′

−1,Sc
δ
ϵy


2

≥
λIωSc

δ
,min

4
−

λI
√
s
Z̃−1,Sc

δ


2

4
√

φT 1/2−ξ
−

λG

Z̃−1,Sc
δ


2

4
√

φT 1/2

⎞⎠
+ P

⎛⎝S−1
T QV ′

1ϵy

2 ≥

√
φλIωSc

δ
,min

4
Z̃−1,Sc

δ


2

−
λI

√
s

4T 1/2−ξ
−

λG

4T 1/2

⎞⎠+ o(1).

(39)

We proceed by deriving the stochastic order of the common term
Z̃−1,Sc

δ


2
. Letting U−1,Sc

δ
denote the matrix

ontaining the columns of E−1Cw′(L) indexed by Scδ , and using that ∥M∥2 = 1,

P
(T−1N−1/2Z̃−1,Sc

δ


2

≥ Kϵ

)
= P

(MS−1C ′

Sc
δ
+ MU−1,Sδ


2

≥ Kϵ

)
≤ P

(C Sc
δ


2

T−1N−1/2S−1

2 ≥

Kϵ

2

)
+ P

(T−1N−1/2U−1,Sc
δ


2

≥
Kϵ

2

)
.

Furthermore, by Markov’s inequality and Assumption 1, for Kϵ ≥

√
4
CSc

δ

2
2
K

ϵ
,

P
(C Sc

δ


2

T−1N−1/2S−1

2 ≥

Kϵ

2

)
≤

4
C Sc

δ

2
2

∑N
i=1
∑T−1

t=1 E
(
si,t
)2

K 2
ϵ T 2N

≤

4
C Sc

δ

2
2
K

K 2
ϵ

≤ ϵ,

P
(T−1N−1/2U−1,Sc

δ


2

≥
Kϵ

2

)
≤

4
∑|Scδ |

i=1
∑T−1

t=1 E
(
uSc

δ
,i,t

)2
K 2

ϵ T 2N
≤

4φmax
∑|Scδ |

i=1
∑

∞

l=0

cSc
δ
,l,i

2
2

K 2
ϵ TN

≤

4φmax
∑

∞

l=0

C Sc
δ
,l

2
2

2 → 0.

Kϵ T
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A

Hence, for all ϵ > 0 there exist Kϵ, T ∗,N∗ > 0 such that P
(Z̃−1,Sc

δ


2

≥ T
√
NKϵ

)
≤ ϵ for all T > T ∗ and N > N∗. Then,

or sufficiently large T ,N , the first RHS term of (39) is bounded by

P

⎛⎝Z̃ ′

−1,Sc
δ
ϵy


2

≥
λIωSc

δ
,min

4
−

λI
√
s
Z̃−1,Sc

δ


2

4
√

φT 1/2−ξ
−

λG

Z̃−1,Sc
δ


2

4
√

φT 1/2

⎞⎠
≤ P

(C Sc
δ
S ′

−1Mϵy


2

≥
λIωSc

δ
,min

8
−

λIKϵ

√
sT 1/2+ξ

√
N

8
√

φ
−

λGKϵ

√
TN

8
√

φ

)

+ P

(U ′

−1,Sc
δ
Mϵy


2

≥
λIωSc

δ
,min

8
−

λIKϵ

√
sT 1/2+ξ

√
N

8
√

φ
−

λGKϵ

√
TN

8
√

φ

)
+ ϵ.

(40)

s {si,t−1ϵy,t} is a m.d.s., it follows from Burkholder’s inequality and the Cr -inequality that for ϵ > 0,

P

⎛⎝
C Sc

δ
S ′

−1ϵy


2

T
√
N

≥ Kϵ

⎞⎠ ≤

C Sc
δ

2
2

∑N
i=1 E

(∑T
t=2 si,t−1ϵy,t

)2
K 2

ϵ T 2N

≤

K
C Sc

δ

2
2
σ 2
y
∑N

i=1
∑T−1

t=1 E(si,t )2

K 2
ϵ T 2N

≤

K ∗

C Sc
δ

2
2
σ 2
y

K 2
ϵ

≤ ϵ,

P

⎛⎝
U ′

−1,Sc
δ
ϵy


2

T
√
N

≥ Kϵ

⎞⎠ ≤

∑|Scδ |
i=1 E

(∑T
t=2
∑

∞

l=0 c
′

Sδ ,l,i
ϵt−1−lϵy,t

)2
K 2

ϵ T 2N

≤

Kσ 2
y
∑|Scδ |

i=1
∑T

t=2
∑

∞

l=0 E
(
c ′

Sδ ,l,i
ϵt−1−l

)2
K 2

ϵ T 2N
≤

Kσ 2
y φmax

∑
∞

l=0

C Sδ ,l
2
2

K 2
ϵ TN

→ 0,

(41)

for Kϵ ≥

√
K∗

CSc
δ

2
2
σ2
y

ϵ
. Then, part (2)–(3) of Lemma A.1, it follows that

Z̃ ′

−1,Sc
δ
ϵy


2

= Op(
√
NT ). As ω−1

Sc
δ
,min = op

(
λI

T
√
N

)
,

ω−1
Sc
δ
,min = op

(
T ξ

√
sTN

)
, and ω−1

Sc
δ
,min = op

(
λI

λG
√
TN

)
by Assumption 6, we have that

P

⎛⎝Z̃ ′

−1,Sc
δ
ϵy


2

≥
λIωSc

δ
,min

4
−

λI
√
s
Z̃−1,Sc

δ


2

4
√

φT 1/2−ξ
−

λG

Z̃−1,Sc
δ


2

4
√

φT 1/2

⎞⎠ → 0.

Next, we focus on the second RHS term of (39). First, again using that
Z̃−1,Sc

δ


2

= Op(T
√
N),

P

⎛⎝S−1
T QV ′

1ϵy

2 ≥

√
φλIωSc

δ
,min

4
Z̃−1,Sc

δ


2

−
λI

√
s

4T 1/2−ξ
−

λG

4T 1/2

⎞⎠
≤ P

(S−1
T QV ′

1ϵy

2 ≥

√
φλIωSc

δ
,min

4KϵT
√
N

−
λI

√
s

4T 1/2−ξ
−

λG

4T 1/2

)
+ ϵ.

(42)

Then, based on Lemma A.3, for the RHS of (42) to converge to zero, it is sufficient that

ω−1
Sc
δ
,min = op

(
λI

(sδ +
√
sπ )T

√
N

)
, ω−1

Sc
δ
,min = op

(
1

√
sT 1/2+ξ

√
N

)
and ω−1

Sc
δ
,min = op

(
λI

λG
√
TN

)
.

All three conditions are satisfied under Assumption 6. Consequently, both RHS terms of (39) converge to zero, thereby
concluding that P

(
Bc

z,T

)
→ 0.

It remains to prove that P
(
Bc

w,T

)
→ 0, where Bc

w,T is defined in (34). First, note that

Bc
w,T ⊆

{W̃ ′

Scπ MV ϵy


2

≥
λI

2
ωScπ ,min −

λI

2

W̃ ′

Scπ V 1
(
V ′

1V 1
)−1

ΩΩΩ1s1,Sγ

2

−
λG
W̃ ′

Scπ V 1
(
V ′

1V 1
)−1 s2,Sγ

 } .

2 2
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T

N

R

b

a

Furthermore, on a set with probability converging to one,

W̃ ′

Scπ MV ϵy


2

≤

W̃ ′

Scπ ϵy


2
+

W̃ Scπ


2

S−1
T QV ′

1ϵy

2

√
φ

, (43)

W̃ ′

Scπ V 1
(
V ′

1V 1
)−1

ΩΩΩ1s1,Sγ

2

≤

W̃ Scπ


2

S−1
T QΩΩΩ1s1,Sγ


2

√
φ

≤

√
s
W̃ Scπ


2

√
φT 1/2−ξ

(44)

W̃ ′

Scπ V 1
(
V ′

1V 1
)−1 s2,Sγ


2

≤

W̃ Scπ


2

S−1
T s2,Sγ


2

√
φ

≤

W̃ Scπ


2

√
φT 1/2

. (45)

hen, plugging (43)–(45) into Bc
w,T from (34), we obtain

P
(
Bc

w,T

)
≤ P

⎛⎝W̃ ′

Scπ ϵy


2

≥
λIωScπ ,min

4
−

λI
√
s
W̃ Scπ


2

4
√

φT 1/2−ξ
−

λG

W̃ Scπ


2

4
√

φT 1/2

⎞⎠
+ P

⎛⎝S−1
T QV ′

1ϵy

2 ≥

λI
√

φωScπ ,min

4
W̃ Scπ


2

−
λI

√
s

4T 1/2−ξ
−

λG

4T 1/2

⎞⎠+ o(1)

= P
(
Bc

w1,T

)
+ P

(
Bc

w2,T

)
+ o(1).

(46)

ext, we derive the order of
W̃ Scπ


2
. From definition (27), and using that ∥M∥2 = 1, it follows thatW̃ Scπ


2

=

MEC ′

Scπ
(L)

2

≤

EC ′

Scπ
(L)

2

=
W Scπ


2 .

ecalling that wi,t =
∑

∞

l=0 c
w′

l,i ϵt−l, it holds that

E
(
wi,t

)2
=

∞∑
l=0

cw′

l,i ΣΣΣϵcw
l,i ≤ φmax

∞∑
l=0

cw
l,i

2
2 ≤ φmax

∞∑
l=0

Cw
l

2
2 ,

y Assumption 3. Then, for any ϵ > 0, it follows that, for Kϵ ≥

(
φmax

∑
∞

l=0

Cw
l

2
2

)−1/2
,

P

⎛⎝
W̃ Scπ


2

√
TM

≥ Kϵ

⎞⎠ ≤

∑M
i=1
∑T

t=1 E
(
wi,t

)2
K 2

ϵ TM
≤

φmax
∑

∞

l=0

Cw
l

2
2

K 2
ϵ

≤ ϵ. (47)

Furthermore, it is straightforward to verify that {wi,tϵy,t} is a martingale difference sequence. Thus, by the Markov bound
nd Burkholder’s inequality,

P
(W ′

Scπ
ϵy


2

≥ Kϵ

√
TM
)

≤

∑M
i=1 E

(∑T
t=1 wi,tϵy,t

)2
K 2

ϵ TM
≤

K
∑M

i=1
∑T

t=1 E
(
wi,tϵy,t

)2
K 2

ϵ TM

≤

K
∑M

i=1
∑T

t=1
∑

∞

l1,l2=0
∑M

j1,j2=1

⏐⏐⏐cw
l1,i,j1

⏐⏐⏐ ⏐⏐⏐cw
l2,i,j2

⏐⏐⏐E ⏐⏐ϵj1,t−11ϵj2,t−12ϵ
2
y,t

⏐⏐
K 2

ϵ TM

≤
K ∗
∑M

i=1

(∑
∞

l=0

cw
l,i


1

)2
K 2

ϵ M
≤

K ∗
(∑

∞

l=0

Cw
l


∞

)2
Kϵ

≤ ϵ,

(48)

for Kϵ ≥

(
K∗
(∑

∞
l=0∥Cw

l ∥
∞

)2
ϵ

)1/2

. Then, part (3) of Lemma A.1 shows that
W ′

Scπ
Mϵy


2

= Op(
√
TM). Using (47) to further

simplify (46),

P

(W̃ ′

Scπ ϵy


2

≥
λIωScπ ,min

4
−

λIKϵ

√
sT ξ

√
M

4
√

φ
−

λGKϵ

√
M

4
√

φ

)
+ ϵ, (49)
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A

P

o
E

b

A

A
t

B

L

L

such that (48) implies P
(
Bc

w1,T

)
→ 0, if ω−1

Scπ ,min = op
(

λI√
TM

)
, ω−1

Scπ ,min = op
(

1
√
sT ξ

√
M

)
and ω−1

Scπ ,min = op
(

λIωScπ ,min

λG
√
M

)
. as

ensured by Assumption 6. Similarly, for Bc
w2,T as defined in (46) we get

P
(
Bc

w2,T

)
≤ P

(S−1
T QV ′

1ϵy

2 ≥

λI
√

φωScπ ,min

4Kϵ

√
TM

−
λI

√
s

4T 1/2−ξ
−

λG

4T 1/2

)
+ ϵ, (50)

such that, by Lemma A.3, sufficient conditions for P
(
Bc

w2,T

)
→ 0 are given by

ω−1
Scπ ,min = op

(
λI

(sδ +
√
sπ )

√
TM

)
, ω−1

Scπ ,min = op

(
1

√
sT ξ

√
M

)
and ω−1

Scπ ,min =

(
λI

λG
√
M

)
.

ll three conditions are satisfied under Assumption 6. Hence, we may conclude that P
(
Bc

w,T

)
→ 0. □

roof of Theorem 2. First, we recall the definitions V = (V 1,V 2), V 1 =

(
Z̃−1,Sδ , W̃ Sπ

)
, ΩΩΩ = diag (ω) and ΩΩΩ1 =

diag
(
ωSγ

)
. Based on the first order conditions, it follows from (5) that

γ̂Sγ − γSγ =
(
V ′

1V 1
)−1 V ′

1ϵy −
1
2

(
V ′

1V 1
)−1 (

λIΩΩΩ1s1,Sγ + λGs2,Sγ
)
, (51)

n a set with probability converging to one based on Theorem 1. By pre-multiplying (51) by STQ ′−1 and taking the
uclidean norm on both sides, it follows thatSTQ ′−1 (γ̂Sγ − γSγ

)
2 ≤

(S−1
T QV ′

1V 1Q ′S−1
T

)−1

2

S−1
T Q

(
V ′

1ϵy −
λI

2
ΩΩΩ1s1,Sγ −

λG

2
s2,Sγ

)
2

≤ φ−1
(S−1

T QV ′

1ϵy

2 +

λI

2

S−1
T QΩΩΩ1s1,Sγ


2 +

λG

2

S−1
T Q s2,Sγ


2

)
+ op(1),

(52)

y Lemma A.5. We derive the stochastic order for the three RHS terms of (52). First,
S−1

T QV ′

1ϵy

2 = Op

(
sδ +

√
sπ
)
, by

Lemma A.3. By Assumption 6, on a set with probability converging to one, the second term and third term on the RHS of
(52) are bounded by

λI

2

S−1
T QΩΩΩ1s1,Sγ


2 ≤

λI

2

S−1
T


2 ∥Q ∥2 ∥ΩΩΩ1∥2

s1,Sγ 2 ≤
λI

√
s

2T 1/2−ξ
= o

(
sδ +

√
sπ
)
, (53)

λG

2

S−1
T Q s2,Sγ


2 ≤

λG

2

S−1
T


2 ∥Q ∥2

s2,Sγ 2 ≤
λG
√
T

→ 0. (54)

Hence, plugging these result into (52), we conclude that, as required,STQ ′−1 (γ̂Sγ − γSγ

)
2 = Op

(
sδ +

√
sπ
)
. □

ppendix B. Bounds on minimum eigenvalues

In this Appendix, we provide sufficient conditions for Assumption 5. We first present some preliminary results in
ppendix B.1 and main eigenvalue bounds in Appendix B.2. The proofs of these lemmas and theorems are delegated to
he Supplementary Appendices C.1 and C.3, respectively.

.1. Preliminary results

We first present a general result linking the eigenvalues of two matrices together.

emma B.1. Let A and B denote two s-dimensional square non-negative definite matrices. Then,

(1) for all i = 1, . . . , s, it holds that |λi (A) − λi(B)| ≤ ∥A − B∥2,
(2) if ∥A − B∥max ≤ δ, then λmin(B) ≥ λmin(A) − sδ.

The following result demonstrates the issue of collinearity of integrated variables in high dimensions.

emma B.2. Define an s-dimensional white noise sequence ut
i.i.d.
∼ N (0, I s) and let ht =

∑t
j=1 uj. Then, as s, T → ∞, for

any φ > 0,

P

(
λmin

(
1
T 2

T∑
t=1

hth′

t

)
> φ

)
→ 0. (55)
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B.2. Main results

We first give a bound on the minimum eigenvalue of the covariance matrix of the stationary variables. This follows
standard arguments in the literature, but is given for completeness.

Theorem B.1. Define ΣΣΣ11 = E
(
v1,tv

′

1,t

)
and assume that λmin (ΣΣΣ11) ≥ 2φ for some φ > 0. Then, under Assumptions 1–3

and 4(2), as T , sδ, sπ → ∞ we have that P
(
λmin

(
Σ̂ΣΣ11

)
≥ φ

)
→ 1.

Contrary to Σ̂ΣΣ11, the matrix Σ̂ΣΣ22 =
sδ
T2

B′

Sδ ,⊥

(∑T
t=1 z̃Sδ ,t z̃

′

Sδ ,t

)
BSδ ,⊥ does not converge in probability to a deterministic

matrix. Accordingly we aim to bound Σ̂ΣΣ22 directly, under varying additional assumptions on the DGP and the growth rate
of sδ .

Theorem B.2. Let Σ̂ΣΣ22 be as defined in Assumption 5 and assume that ϵt
i.i.d.
∼ N (0, ΣΣΣϵ). Then, under Assumptions 1–3, there

exists a constant ζ > 0 such that, as sδ, T → ∞ with sδ
T1/2

→ 0, we have that P
(
λmin

(
Σ̂ΣΣ22

)
≥ ζ

)
→ 1.

It is possible to extend Theorem B.2 to general distributions, based on an argument that relies on strong Gaussian
approximations, at the additional cost of a further restriction on the growth rate of sδ .

Theorem B.3. Let Σ̂ΣΣ22 be as defined in Assumption 5 and set M = IT assuming that µ = τ = 0. Assume that ϵt = Dϵu,t ,
where D is a T × T-matrix with ∥D∥ ≤ K < ∞, and ϵu,s,i ⊥⊥ ϵu,t,j for all i, j, s, t with i ̸= j. Let ΣΣΣu = (σu,ij)Ni,j=1 and assume

that max1≤i≤NE
⏐⏐⏐∑T

t=1

(
ϵ2
u,t,i − σ 2

u,ii

)⏐⏐⏐2 = O
(
T 1/2

)
. Then, under Assumptions 1–3, a constant ζ > 0 exists, independent of sδ ,

N and T , such that, as sδ,N, T → ∞ with sδN
T1/4

→ 0, P
(
λmin

(
Σ̂ΣΣ22

)
> ζ

)
→ 1.

Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2020.07.021.
This supplementary material provides additional results which contain the following: Appendix C.1 provides proofs of
all lemmas that were presented in Appendix A and of the main paper. Appendix C.2 provides the proofs of Corollary 1
and Theorem 3 and Appendix C.3 contains the proofs of the main theorems in of the main paper. Finally, Appendix C.4
provides a detailed data description of the empirical application considered in Section 6.
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