868 research outputs found

    Considering the non-programming geographer\u27s perspective when designing extracurricular introductory computer programming workshops

    Get PDF
    Computer programming is becoming an increasingly important scientific skill, but geographers are not necessarily receiving this training as part of their formal education. While there are efforts to promote and support extracurricular introductory computer programming workshops, there remain questions about how best to deliver these workshops. Therefore, as part of a recent introductory programming extracurricular workshop I organized for non-programing geographers, I tried to understand more about their perceptions of computer programming. I identify that one of the most important aspects for geographers to learn to computer program is to have training that is domain specific to ensure that the training is relevant and achieves a deeper learning outcome

    Marine Benthic Habitat Mapping of Muir Inlet, Glacier Bay National Park and Preserve, Alaska With an Evaluation of the Coastal and Marine Ecological Classification Standard III

    Get PDF
    Seafloor geology and potential benthic habitats were mapped in Muir Inlet, Glacier Bay National Park and Preserve, Alaska, using multibeam sonar, ground-truth information, and geological interpretations. Muir Inlet is a recently deglaciated fjord that is under the influence of glacial and paraglacial marine processes. High glacially derived sediment and meltwater fluxes, slope instabilities, and variable bathymetry result in a highly dynamic estuarine environment and benthic ecosystem. We characterize the fjord seafloor and potential benthic habitats using the Coastal and Marine Ecological Classification Standard (CMECS) recently developed by the National Oceanic and Atmospheric Administration (NOAA) and NatureServe. Substrates within Muir Inlet are dominated by mud, derived from the high glacial debris flux. Water-column characteristics are derived from a combination of conductivity temperature depth (CTD) measurements and circulation-model results. We also present modern glaciomarine sediment accumulation data from quantitative differential bathymetry. These data show Muir Inlet is divided into two contrasting environments: a dynamic upper fjord and a relatively static lower fjord. The accompanying maps represent the first publicly available high-resolution bathymetric surveys of Muir Inlet. The results of these analyses serve as a test of the CMECS and as a baseline for continued mapping and correlations among seafloor substrate, benthic habitats, and glaciomarine processes

    Cosmology With A Dark Refraction Index

    Full text link
    We review Gordon's optical metric and the transport equations for the amplitude and polarization of a geometrical optics wave traveling in a gravity field. We apply the theory to the FLRW cosmologies by associating a refraction index with the cosmic fluid. We then derive an expression for the accumulated effect of a refraction index on the distance redshift relations and fit the Hubble curve of current supernova observations with a non-accelerating cosmological model. We also show that some observational effects caused by inhomogeneities, e.g. the Sachs-Wolfe effect, can be interpreted as being caused by an effective index of refraction, and hence this theory could extend to other speed of light communications such as gravitational radiation and neutrino fluxes.Comment: 21 pages, 3 figure

    Mahalanobis distances and ecological niche modelling: correcting a chi-squared probability error

    Get PDF
    The Mahalanobis distance is a statistical technique that can be used to measure how distant a point is from the centre of a multivariate normal distribution. By measuring Mahalanobis distances in environmental space ecologists have also used the technique to model: ecological niches, habitat suitability, species distributions, and resource selection functions. Unfortunately, the original description of the Mahalanobis distance technique for ecological modelling contained an error describing how Mahalanobis distances could be converted into probabilities using a chi-squared distribution. This error has been repeated in the literature, and is present in popular modelling software. In the hope of correcting this error to maximise the potential application of the Mahalanobis distance technique within the ecological modelling community, I explain how Mahalanobis distances are calculated, and through a virtual ecology experiment demonstrate how to correctly produce probabilities and discuss the implications of the error for previous Mahalanobis distance studies

    Distance-redshift from an optical metric that includes absorption

    Full text link
    We show that it is possible to equate the intensity reduction of a light wave caused by weak absorption with a geometrical reduction in intensity caused by a "transverse" conformal transformation of the spacetime metric in which the wave travels. We are consequently able to modify Gordon's optical metric to account for electromagnetic properties of ponderable material whose properties include both refraction and absorption. Unlike refraction alone however, including absorption requires a modification of the optical metric that depends on the eikonal of the wave itself. We derive the distance-redshift relation from the modified optical metric for Friedman-Lema\^itre-Robertson-Walker spacetimes whose cosmic fluid has associated refraction and absorption coefficients. We then fit the current supernovae data and provide an alternate explanation (other than dark energy) of the apparent acceleration of the universe.Comment: 2 figure

    Local and non-local measures of acceleration in cosmology

    Get PDF
    Current cosmological observations, when interpreted within the framework of a homogeneous and isotropic Friedmann-Lemaitre-Robertson-Walker (FLRW) model, strongly suggest that the Universe is entering a period of accelerating expansion. This is often taken to mean that the expansion of space itself is accelerating. In a general spacetime, however, this is not necessarily true. We attempt to clarify this point by considering a handful of local and non-local measures of acceleration in a variety of inhomogeneous cosmological models. Each of the chosen measures corresponds to a theoretical or observational procedure that has previously been used to study acceleration in cosmology, and all measures reduce to the same quantity in the limit of exact spatial homogeneity and isotropy. In statistically homogeneous and isotropic spacetimes, we find that the acceleration inferred from observations of the distance-redshift relation is closely related to the acceleration of the spatially averaged universe, but does not necessarily bear any resemblance to the average of the local acceleration of spacetime itself. For inhomogeneous spacetimes that do not display statistical homogeneity and isotropy, however, we find little correlation between acceleration inferred from observations and the acceleration of the averaged spacetime. This shows that observations made in an inhomogeneous universe can imply acceleration without the existence of dark energy.Comment: 19 pages, 10 figures. Several references added or amended, some minor clarifications made in the tex

    Information Management to Mitigate Loss of Control Airline Accidents

    Get PDF
    Loss of control inflight continues to be the leading contributor to airline accidents worldwide and unreliable airspeed has been a contributing factor in many of these accidents. Airlines and the FAA developed training programs for pilot recognition of these airspeed events and many checklists have been designed to help pilots troubleshoot. In addition, new aircraft designs incorporate features to detect and respond in such situations. NASA has been using unreliable airspeed events while conducting research recommended by the Commercial Aviation Safety Team. Even after significant industry focus on unreliable airspeed, research and other evidence shows that highly skilled and trained pilots can still be confused by the condition and there is a lack of understanding of what the associated checklist(s) attempts to uncover. Common mode failures of analog sensors designed for measuring airspeed continue to confound both humans and automation when determining which indicators are correct. This paper describes failures that have occurred in the past and where/how pilots may still struggle in determining reliable airspeed when confronted with conflicting information. Two latest generation aircraft architectures will be discussed and contrasted. This information will be used to describe why more sensors used in classic control theory will not solve the problem. Technology concepts are suggested for utilizing existing synoptic pages and a new synoptic page called System Interactive Synoptic (SIS). SIS details the flow of flight critical data through the avionics system and how it is used by the automation. This new synoptic page as well as existing synoptics can be designed to be used in concert with a simplified electronic checklist (sECL) to significantly reduce the time to configure the flight deck avionics in the event of a system or sensor failure

    Modification to the Luminosity Distance Redshift Relation in Modified Gravity Theories

    Full text link
    We derive an expression for the luminosity distance as a function of redshift for a flat Robertson-Walker spacetime perturbed by arbitrary scalar perturbations possibly produced by a modified gravity theory with two different scalar perturbation potentials. Measurements of the luminosity distance as function of redshift provide a constraint on a combination of the scalar potentials and so they can complement weak lensing and other measurements in trying to distinguish among the various alternative theories of gravity.Comment: 15 pages, we discuss in more detail how the luminosity distance expression can be used to differentiate among various theories of gravit

    Impact of Advanced Synoptics and Simplified Checklists During Aircraft Systems Failures

    Get PDF
    AbstractNatural human capacities are becoming increasingly mismatched to the enormous data volumes, processing capabilities, and decision speeds demanded in todays aviation environment. Increasingly Autonomous Systems (IAS) are uniquely suited to solve this problem. NASA is conducting research and development of IAS - hardware and software systems, utilizing machine learning algorithms, seamlessly integrated with humans whereby task performance of the combined system is significantly greater than the individual components. IAS offer the potential for significantly improved levels of performance and safety that are superior to either human or automation alone. A human-in-the-loop test was conducted in NASA Langleys Integration Flight Deck B-737-800 simulator to evaluate advanced synoptic pages with simplified interactive electronic checklists as an IAS for routine air carrier flight operations and in response to aircraft system failures. Twelve U.S. airline crews flew various normal and non-normal procedures and their actions and performance were recorded in response to failures. These data are fundamental to and critical for the design and development of future increasingly autonomous systems that can better support the human in the cockpit. Synoptic pages and electronic checklists significantly improved pilot responses to non-normal scenarios, but implementation of these aids and other intelligent assistants have barriers to implementation (e.g., certification cost) that must overcome

    Evaluation of Technology Concepts for Energy, Automation, and System State Awareness in Commercial Airline Flight Decks

    Get PDF
    A pilot-in-the-loop flight simulation study was conducted at NASA Langley Research Center to evaluate flight deck systems that (1) provide guidance for recovery from low energy states and stalls, (2) present the current state and expected future state of automated systems, and/or (3) show the state of flight-critical data systems in use by automated systems and primary flight instruments. The study was conducted using 13 commercial airline crews from multiple airlines, paired by airline to minimize procedural effects. Scenarios spanned a range of complex conditions and several emulated causal and contributing factors found in recent accidents involving loss of state awareness by pilots (e.g., energy state, automation state, and/or system state). Three new technology concepts were evaluated while used in concert with current state-of-the-art flight deck systems and indicators. The technologies include a stall recovery guidance algorithm and display concept, an enhanced airspeed control indicator that shows when automation is no longer actively controlling airspeed, and enhanced synoptic pages designed to work with simplified interactive electronic checklists. An additional synoptic was developed to provide the flight crew with information about the effects of loss of flight critical data. Data was collected via questionnaires administered at the completion of flight scenarios, audio/video recordings, flight data, head and eye tracking data, pilot control inputs, and researcher observations. This paper presents findings derived from the questionnaire responses and subjective data measures including workload, situation awareness, usability, and acceptability as well as analyses of two low-energy flight events that resulted in near-stall conditions
    • …
    corecore