25 research outputs found

    Assessment and Impact of Cognitive Impairment in Multiple Sclerosis: An Overview

    No full text
    Cognitive impairment affects 40–60% of patients with multiple sclerosis. It may be present early in the course of the disease and has an impact on a patient’s employability, social interactions, and quality of life. In the last three decades, an increasing interest in diagnosis and management of cognitive impairment has arisen. Neuropsychological assessment and neuroimaging studies focusing on cognitive impairment are now being incorporated as primary outcomes in clinical trials. However, there are still key uncertainties concerning the underlying mechanisms of damage, neural basis, sensitivity and validity of neuropsychological tests, and efficacy of pharmacological and non-pharmacological interventions. The present article aimed to present an overview of the assessment, neural correlates, and impact of cognitive impairment in multiple sclerosis

    Th1 and Th17 Cells and Associated Cytokines Discriminate among Clinically Isolated Syndrome and Multiple Sclerosis Phenotypes

    No full text
    Multiple sclerosis (MS) is a chronic, inflammatory, and demyelinating disease of the central nervous system. It is a heterogeneous pathology that can follow different clinical courses, and the mechanisms that underlie the progression of the immune response across MS subtypes remain incompletely understood. Here, we aimed to determine differences in the immunological status among different MS clinical subtypes. Blood samples from untreated patients diagnosed with clinically isolated syndrome (CIS) (n = 21), different clinical forms of MS (n = 62) [relapsing–remitting (RRMS), secondary progressive, and primary progressive], and healthy controls (HCs) (n = 17) were tested for plasma levels of interferon (IFN)-γ, IL-10, TGF-β, IL-17A, and IL-17F by immunoanalysis. Th1 and Th17 lymphocyte frequencies were determined by flow cytometry. Our results showed that IFN-γ levels and the IFN-γ/IL-10 ratio were higher in CIS patients than in RRMS patients and HC. Th1 cell frequencies were higher in CIS and RRMS than in progressive MS, and RRMS had a higher Th17 frequency than CIS. The Th1/Th17 cell ratio was skewed toward Th1 in CIS compared to MS phenotypes and HC. Receiver operating characteristic statistical analysis determined that IFN-γ, the IFN-γ/IL-10 ratio, Th1 cell frequency, and the Th1/Th17 cell ratio discriminated among CIS and MS subtypes. A subanalysis among patients expressing high IL-17F levels showed that IL-17F and the IFN-γ/IL-17F ratio discriminated between disease subtypes. Overall, our data showed that CIS and MS phenotypes displayed distinct Th1- and Th17-related cytokines and cell profiles and that these immune parameters discriminated between clinical forms. Upon validation, these parameters might be useful as biomarkers to predict disease progression

    Gelastic epilepsy: Beyond hypothalamic hamartomas

    Get PDF
    Gelastic epilepsy or laughing seizures have been historically related to children with hypothalamic hamartomas. We report three adult patients who had gelastic epilepsy, defined as the presence of seizures with a prominent laugh component, including brain imaging, surface/invasive electroencephalography, positron emission tomography, and medical/surgical outcomes. None of the patients had hamartoma or other hypothalamic lesion. Two patients were classified as having refractory epilepsy (one had biopsy-proven neurocysticercosis and the other one hippocampal sclerosis and temporal cortical dysplasia). The third patient had no lesion on MRI and had complete control with carbamazepine. Both lesional patients underwent resective surgery, one with complete seizure control and the other one with poor outcome. Although hypothalamic hamartomas should always be ruled out in patients with gelastic epilepsy, laughing seizures can also arise from frontal and temporal lobe foci, which can be surgically removed. In addition, we present the first case of gelastic epilepsy due to neurocysticercosis

    Frontoparietal connectivity correlates with working memory performance in multiple sclerosis

    No full text
    Abstract Working Memory (WM) impairment is the most common cognitive deficit of patients with Multiple Sclerosis (MS). However, evidence of its neurobiological mechanisms is scarce. Here we recorded electroencephalographic activity of twenty patients with relapsing-remitting MS and minimal cognitive deficit, and 20 healthy control (HC) subjects while they solved a WM task. In spite of similar performance, the HC group demonstrated both a correlation between temporoparietal theta activity and memory load, and a correlation between medial frontal theta activity and successful memory performances. MS patients did not show theses correlations leading significant differences between groups. Moreover, cortical connectivity analyses using granger causality and phase-amplitude coupling between theta and gamma revealed that HC group, but not MS group, presented a load-modulated progression of the frontal-to-parietal connectivity. This connectivity correlated with working memory capacity in MS groups. This early alterations in the oscillatory dynamics underlaying working memory could be useful for plan therapeutic interventions

    Characterization of relapsing-remitting multiple sclerosis patients using support vector machine classifications of functional and diffusion MRI data

    No full text
    Multiple Sclerosis patients' clinical symptoms do not correlate strongly with structural assessment done with traditional magnetic resonance images. However, its diagnosis and evaluation of the disease's progression are based on a combination of this imaging analysis complemented with clinical examination. Therefore, other biomarkers are necessary to better understand the disease. In this paper, we capitalize on machine learning techniques to classify relapsing-remitting multiple sclerosis patients and healthy volunteers based on machine learning techniques, and to identify relevant brain areas and connectivity measures for characterizing patients. To this end, we acquired magnetic resonance imaging data from relapsing-remitting multiple sclerosis patients and healthy subjects. Fractional anisotropy maps, structural and functional connectivity were extracted from the scans. Each of them were used as separate input features to construct support vector machine classifiers. A fourth input feature was created by combining structural and functional connectivity. Patients were divided in two groups according to their degree of disability and, together with the control group, three group pairs were formed for comparison. Twelve separate classifiers were built from the combination of these four input features and three group pairs. The classifiers were able to distinguish between patients and healthy subjects, reaching accuracy levels as high as 89% ± 2%. In contrast, the performance was noticeably lower when comparing the two groups of patients with different levels of disability, reaching levels below 63% ± 5%. The brain regions that contributed the most to the classification were the right occipital, left frontal orbital, medial frontal cortices and lingual gyrus. The developed classifiers based on MRI data were able to distinguish multiple sclerosis patients and healthy subjects reliably. Moreover, the resulting classification models identified brain regions, and functional and structural connections relevant for better understanding of the disease. Keywords: Resting state, fMRI, DTI, SVM, Multiple sclerosis, Classificatio

    Efficacy of andrographolide in not active progressive multiple sclerosis: a prospective exploratory double-blind, parallel-group, randomized, placebo-controlled trial

    No full text
    Background Multiple sclerosis (MS) is a chronic immune mediated disease and the progressive phase appears to have significant neurodegenerative mechanisms. The classification of the course of progressive MS (PMS) has been re-organized into categories of active vs. not active inflammatory disease and the presence vs. absence of gradual disease progression. Clinical trial experience to date in PMS with anti-inflammatory medications has shown limited effect. Andrographolide is a new class of anti-inflammatory agent, that has been proposed as a potential drug for autoimmune disorders, including MS. In the present trial, we perform an exploratory pilot study on the efficacy and safety of andrographolide (AP) compared to placebo in not active PMS. Methods A pilot clinical trial using 140 mg oral AP or placebo twice daily for 24 months in patients with not active primary or secondary progressive MS was conducted. The primary efficacy endpoint was the mean percentage brain volume change (mPBVC). Secondary efficacy endpoints included 3-month confirmed disability progression (3-CDP) and mean EDSS change. Results Forty-four patients were randomized: 23 were assigned to the AP group, and 21 were assigned to the placebo group. The median baseline EDSS of both groups was 6.0. Annualized mPBVC was - 0.679% for the AP group and - 1.069% for the placebo group (mean difference: -0.39; 95% CI [- 0.836-0.055], p = 0.08, relative reduction: 36.5%). In the AP group, 30% had 3-CDP compared to 41% in the placebo group (HR: 0.596; 95% CI [0.200-1.777], p = 0.06). The mean EDSS change was - 0.025 in the AP group and + 0.352 in the placebo group (mean difference: 0.63, p = 0.042). Adverse events related to AP were mild rash and dysgeusia. Conclusions AP was well tolerated and showed a potential effect in reducing brain atrophy and disability progression, that need to be further evaluated in a larger clinical trial.CORFO INNOVA CHILE 14PIE26946 InnoBioscience Sp

    LGI1-antibody associated epilepsy successfully treated in the outpatient setting

    No full text
    We report six patients with anti-LGI1 associated epilepsy. Two patients presented with new-onset generalized tonic-clonic seizures, four developed faciobrachial dystonic seizures and two piloerection. All patients had significant cognitive complaints at the time of diagnosis. All patients described seizure reduction during the first week of carbamazepine, and seizure freedom was obtained at a median of 13 days (range 7-22), sustained after the initiation of immunosuppression. Median time from symptom onset to carbamazepine initiation was 164 days (range 38-206 days). We discuss the particular seizure response to sodium channel blocking anti epileptic drugs, alone or associated with immunosuppression in this antibody mediated seizures.Wellcome Trust 104079/Z/14/Z UCB-Oxford University Alliance BMA Research Grant-Vera Down grant (2013) BMA Research Grant-Margaret Temple (2017) Epilepsy Research UK P1201 National Institute for Health Research (NIHR) Oxford Biomedical Research Centre [(BRC)

    Galectin-8 as an immunosuppressor in experimental autoimmune encephalomyelitis and a target of human early prognostic antibodies in multiple sclerosis.

    Get PDF
    Galectin-8 (Gal-8) is a member of a glycan-binding protein family that regulates the immune system, among other functions, and is a target of antibodies in autoimmune disorders. However, its role in multiple sclerosis (MS), an autoimmune inflammatory disease of the central nervous system (CNS), remains unknown. We study the consequences of Gal-8 silencing on lymphocyte subpopulations and the development of experimental autoimmune encephalitis (EAE), to then assess the presence and clinical meaning of anti-Gal-8 antibodies in MS patients. Lgals8/Lac-Z knock-in mice lacking Gal-8 expression have higher polarization toward Th17 cells accompanied with decreased CCR6+ and higher CXCR3+ regulatory T cells (Tregs) frequency. These conditions result in exacerbated MOG35-55 peptide-induced EAE. Gal-8 eliminates activated Th17 but not Th1 cells by apoptosis and ameliorates EAE in C57BL/6 wild-type mice. β-gal histochemistry reflecting the activity of the Gal-8 promoter revealed Gal-8 expression in a wide range of CNS regions, including high expression in the choroid-plexus. Accordingly, we detected Gal-8 in human cerebrospinal fluid, suggesting a role in the CNS immune-surveillance circuit. In addition, we show that MS patients generate function-blocking anti-Gal-8 antibodies with pathogenic potential. Such antibodies block cell adhesion and Gal-8-induced Th17 apoptosis. Furthermore, circulating anti-Gal-8 antibodies associate with relapsing-remitting MS (RRMS), and not with progressive MS phenotypes, predicting clinical disability at diagnosis within the first year of follow-up. Our results reveal that Gal-8 has an immunosuppressive protective role against autoimmune CNS inflammation, modulating the balance of Th17 and Th1 polarization and their respective Tregs. Such a role can be counteracted during RRMS by anti-Gal-8 antibodies, worsening disease prognosis. Even though anti-Gal-8 antibodies are not specific for MS, our results suggest that they could be a potential early severity biomarker in RRMS
    corecore