277 research outputs found

    Light Nuclei solving Auger puzzles. The Cen-A imprint

    Full text link
    Ultra High Energy Cosmic Rays (UHECR) map at 60 EeV have been found recently by AUGER group spreading anisotropy signatures in the sky. The result have been interpreted as a manifestation of AGN sources ejecting protons at GZK edges mostly from Super-galactic Plane. The result is surprising due to the absence of much nearer Virgo cluster. Moreover, early GZK cut off in the spectra may be better reconcile with light nuclei (than with protons). In addition a large group (nearly a dozen) of events cluster suspiciously along Cen-A. Finally, proton UHECR composition nature is in sharp disagreement with earlier AUGER claim of a heavy nuclei dominance at 40 EeV. Therefore we interpret here the signals as mostly UHECR light nuclei (He, Be, B, C, O), very possibly mostly the lightest (He,Be) ones, ejected from nearest AGN Cen-A, UHECR smeared by galactic magnetic fields, whose random vertical bending is overlapping with super-galactic arm. The eventual AUGER misunderstanding took place because of such a rare coincidence between the Super Galactic Plane (arm) and the smeared (randomized) signals from Cen-A, bent orthogonally to the Galactic fields. Our derivation verify the consistence of the random smearing angles for He, Be and B, C, O, in reasonable agreement with the AUGER main group events around Cen-A. Only few other rare events are spread elsewhere. The most collimated from Cen-A are the lightest. The most spread the heavier. Consequently Cen-A is the best candidate UHE neutrino tau observable by HEAT and AMIGA as enhanced AUGER array at tens-hundred PeV energy. This model maybe soon tested by new events clustering around the Cen-A and by composition imprint study.Comment: 4 pages, 5 figures

    Calibration of the surface array of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is designed to study cosmic rays of the highest energies (>101910^{19}eV). The ground array of the Observatory will consist of 1600 water Cherenkov detectors deployed over 3000 km2^2. The remoteness and large number of detectors require a robust, automatic self-calibration procedure. It relies on the measurement of the average charge collected by a photomultiplier tube from the Cherenkov light produced by a vertical and central through-going muon, determined to 5–10% at the detector via a novel rate-based technique and to 3% precision through analysis of histograms of the charge distribution. The parameters needed for the calibration are measured every minute, allowing for an accurate determination of the signals recorded from extensive air showers produced by primary cosmic rays. The method also enables stable and uniform triggering conditions to be achieved

    An Indication of Anisotropy in Arrival Directions of Ultra-high-energy Cosmic Rays through Comparison to the Flux Pattern of Extragalactic Gamma-Ray Sources

    Get PDF
    A new analysis of the data set from the Pierre Auger Observatory provides evidence for anisotropy in the arrivaldirections of ultra-high-energy cosmic rays on an intermediate angular scale, which is indicative of excess arrivalsfrom strong, nearby sources. The data consist of 5514 events above 20 EeV with zenith angles up to 80°recordedbefore 2017 April 30. Sky models have been created for two distinct populations of extragalactic gamma-rayemitters: active galactic nuclei from the second catalog of hard Fermi-LAT sources (2FHL) and starburst galaxiesfrom a sample that was examined with Fermi-LAT. Flux-limited samples, which include all types of galaxies fromthe Swift-BAT and 2MASS surveys, have been investigated for comparison. The sky model of cosmic-ray densityconstructed using each catalog has two free parameters, the fraction of events correlating with astrophysicalobjects, and an angular scale characterizing the clustering of cosmic rays around extragalactic sources. Amaximum-likelihood ratio test is used to evaluate the best values of these parameters and to quantify the strength ofeach model by contrast with isotropy. It is found that the starburst model fits the data better than the hypothesis ofisotropy with a statistical significance of 4.0σ, the highest value of the test statistic being for energies above39 EeV. The three alternative models are favored against isotropy with 2.7σ?3.2σ significance. The origin of theindicated deviation from isotropy is examined and prospects for more sensitive future studies are discussed.Fil: Aab, A.. Radboud University Nijmegen; Países BajosFil: Allekotte, Ingomar. Centro Atómico Bariloche and Instituto Balseiro; ArgentinaFil: Almela, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Andrada, B.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Bertou, Xavier Pierre Louis. Centro Atómico Bariloche and Instituto Balseiro; ArgentinaFil: Botti, Ana Martina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Cancio, A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Contreras, F.. Observatorio Pierre Auger; ArgentinaFil: Etchegoyen, Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Figueira, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Fuster, Alan Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Golup, Geraldina Tamara. Centro Atómico Bariloche and Instituto Balseiro; ArgentinaFil: Gómez Berisso, M.. Centro Atómico Bariloche and Instituto Balseiro; ArgentinaFil: Gómez Vitale, P. F.. Pierre Auger Observatory; ArgentinaFil: González, N.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Hampel, Matias Rolf. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Hansen, Patricia Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Harari, Diego Dario. Centro Atómico Bariloche and Instituto Balseiro; ArgentinaFil: Holt, E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Hulsman, Johannes. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Josebachuili Ogando, Mariela Gisele. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Kleinfeller, J.. Pierre Auger Observatory; ArgentinaFil: Lucero, A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Mollerach, Maria Silvia. Centro Atómico Bariloche and Instituto Balseiro; ArgentinaFil: Melo, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Müller, Ana Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Naranjo, I.. Centro Atómico Bariloche and Instituto Balseiro; ArgentinaFil: Roulet, Esteban. Centro Atómico Bariloche and Instituto Balseiro; ArgentinaFil: Rodriguez Rojo, J.. Pierre Auger Observatory; ArgentinaFil: Sánchez, F.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Santos, E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Sarmiento Cano, Christian Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Schmidt, D.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Sciutto, Sergio Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Silli, Gaia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Suarez, F.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Taborda Pulgarin, Oscar Alejandro. Centro Atómico Bariloche and Instituto Balseiro; ArgentinaFil: Wainberg, Oscar Isaac. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Wundheiler, Brian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: Yushkov, Alexey. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Tecnología en Detección y Astropartículas. Comisión Nacional de Energía Atómica. Instituto de Tecnología en Detección y Astropartículas. Universidad Nacional de San Martín. Instituto de Tecnología en Detección y Astropartículas; ArgentinaFil: The Pierre Auger Collaboration. Pierre Auger Observatory; Argentin

    Calibration of the surface array of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is designed to study cosmic rays of the highest energies ð41019 eVÞ. The ground array of the Observatory will consist of 1600 water Cherenkov detectors deployed over 3000 km2. The remoteness and large number of detectors require a robust, automatic self-calibration procedure. It relies on the measurement of the average charge collected by a photomultiplier tube from the Cherenkov light produced by a vertical and central through-going muon, determined to 5–10% at the detector via a novel rate-based technique and to 3% precision through analysis of histograms of the charge distribution. The parameters needed for the calibration are measured every minute, allowing for an accurate determination of the signals recorded from extensive air showers produced by primary cosmic rays. The method also enables stable and uniform triggering conditions to be achieved.Instituto de Física La Plat

    Calibration of the Logarithmic-Periodic Dipole Antenna (LPDA) Radio Stations at the Pierre Auger Observatory using an Octocopter

    Get PDF
    An in-situ calibration of a logarithmic periodic dipole antenna with a frequency coverage of 30 MHz to 80 MHz is performed. Such antennas are part of a radio station system used for detection of cosmic ray induced air showers at the Engineering Radio Array of the Pierre Auger Observatory, the so-called Auger Engineering Radio Array (AERA). The directional and frequency characteristics of the broadband antenna are investigated using a remotely piloted aircraft (RPA) carrying a small transmitting antenna. The antenna sensitivity is described by the vector effective length relating the measured voltage with the electric-field components perpendicular to the incoming signal direction. The horizontal and meridional components are determined with an overall uncertainty of 7.4^{+0.9}_{-0.3} % and 10.3^{+2.8}_{-1.7} % respectively. The measurement is used to correct a simulated response of the frequency and directional response of the antenna. In addition, the influence of the ground conductivity and permittivity on the antenna response is simulated. Both have a negligible influence given the ground conditions measured at the detector site. The overall uncertainties of the vector effective length components result in an uncertainty of 8.8^{+2.1}_{-1.3} % in the square root of the energy fluence for incoming signal directions with zenith angles smaller than 60{\deg}.Comment: Published version. Updated online abstract only. Manuscript is unchanged with respect to v2. 39 pages, 15 figures, 2 table

    Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory

    Get PDF
    On September 14, 2015 the Advanced LIGO detectors observed their first gravitational-wave (GW) transient GW150914. This was followed by a second GW event observed on December 26, 2015. Both events were inferred to have arisen from the merger of black holes in binary systems. Such a system may emit neutrinos if there are magnetic fields and disk debris remaining from the formation of the two black holes. With the surface detector array of the Pierre Auger Observatory we can search for neutrinos with energy above 100 PeV from point-like sources across the sky with equatorial declination from about -65 deg. to +60 deg., and in particular from a fraction of the 90% confidence-level (CL) inferred positions in the sky of GW150914 and GW151226. A targeted search for highly-inclined extensive air showers, produced either by interactions of downward-going neutrinos of all flavors in the atmosphere or by the decays of tau leptons originating from tau-neutrino interactions in the Earth's crust (Earth-skimming neutrinos), yielded no candidates in the Auger data collected within ±500\pm 500 s around or 1 day after the coordinated universal time (UTC) of GW150914 and GW151226, as well as in the same search periods relative to the UTC time of the GW candidate event LVT151012. From the non-observation we constrain the amount of energy radiated in ultrahigh-energy neutrinos from such remarkable events.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    Get PDF
    We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 8080^\circ and energies in excess of 4 EeV (4×10184 \times 10^{18} eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding pp-values obtained after accounting for searches blindly performed at several angular scales, are 1.3×1051.3 \times 10^{-5} in the case of the angular power spectrum, and 2.5×1032.5 \times 10^{-3} in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Azimuthal asymmetry in the risetime of the surface detector signals of the Pierre Auger Observatory

    Get PDF
    The azimuthal asymmetry in the risetime of signals in Auger surface detector stations is a source of information on shower development. The azimuthal asymmetry is due to a combination of the longitudinal evolution of the shower and geometrical effects related to the angles of incidence of the particles into the detectors. The magnitude of the effect depends upon the zenith angle and state of development of the shower and thus provides a novel observable, (secθ)max(\sec \theta)_\mathrm{max}, sensitive to the mass composition of cosmic rays above 3×10183 \times 10^{18} eV. By comparing measurements with predictions from shower simulations, we find for both of our adopted models of hadronic physics (QGSJETII-04 and EPOS-LHC) an indication that the mean cosmic-ray mass increases slowly with energy, as has been inferred from other studies. However, the mass estimates are dependent on the shower model and on the range of distance from the shower core selected. Thus the method has uncovered further deficiencies in our understanding of shower modelling that must be resolved before the mass composition can be inferred from (secθ)max(\sec \theta)_\mathrm{max}.Comment: Replaced with published version. Added journal reference and DO

    A search for point sources of EeV photons

    Full text link
    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical Journa
    corecore