76 research outputs found

    Correlating material-specific layers and magnetic distributions within onion-like Fe 3 O 4 /MnO/ γ- Mn2 O3 core/shell nanoparticles

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.The magnetic responses of two nanoparticle systems comprised of Fe3 O 4/γ−Mn2O3 (soft ferrimagnetic, FM/hard FM) and Fe3O4/MnO/γ−Mn2 O3 (soft FM / antiferromagnetic, AFM/hard FM) are compared, where the MnO serves to physically decouple the FM layers. Variation in the temperature and applied field allows for Small Angle Neutron Scattering (SANS) measurements of the magnetic moments both parallel and perpendicular to an applied field. Data for the bilayer particle indicate that the graded ferrimagnetic layers are coupled and respond to the field as a single unit. For the trilayer nanoparticles, magnetometry suggests a Curie temperature (TC)≈ 40 K for the outer γ−Mn2O3 component, yet SANS reveals an increase in the magnetization associated with outer layer that is perpendicular to the applied field above TC during magnetic reversal. This result suggests that the γ−Mn2O3 magnetically reorients relative to the applied field as the temperature is increased above 40 K

    Unravelling the elusive antiferromagnetic order in wurtzite and zinc blende CoO polymorph nanoparticles

    Get PDF
    Although cubic rock salt‐CoO has been extensively studied, the magnetic properties of the main nanoscale CoO polymorphs (hexagonal wurtzite and cubic zinc blende structures) are rather poorly understood. Here, a detailed magnetic and neutron diffraction study on zinc blende and wurtzite CoO nanoparticles is presented. The zinc blende‐CoO phase is antiferromagnetic with a 3rd type structure in a face‐centered cubic lattice and a Néel temperature of TN (zinc‐blende) ≈225 K. Wurtzite‐CoO also presents an antiferromagnetic order, TN (wurtzite) ≈109 K, although much more complex, with a 2nd type order along the c‐axis but an incommensurate order along the y‐axis. Importantly, the overall magnetic properties are overwhelmed by the uncompensated spins, which confer the system a ferromagnetic‐like behavior even at room temperature

    Oxide wizard : an EELS application to characterize the white lines of transition metal edges

    Get PDF
    Physicochemical properties of transition metal oxides are directly determined by the oxidation state of the metallic cations. To address the increasing need to accurately evaluate the oxidation states of transition metal oxide systems at the nanoscale, here we present Oxide Wizard. This script for Digital Micrograph characterizes the energy-loss near-edge structure and the position of the transition metal edges in the electron energy-loss spectrum. These characteristics of the edges can be linked to the oxidation states of transition metals with high spatial resolution. The power of the script is demonstrated by mapping manganese oxidation states in Fe3O4/Mn3O4 core/shell nanoparticles with sub-nanometer resolution in real space

    Magnetic proximity effect features in antiferromagnetic/ferrimagnetic core-shell nanoparticles

    Get PDF
    A study of "inverted" core-shell, MnO/γ-Mn2O3, nanoparticles is presented. Crystal and magnetic structures and characteristic sizes have been determined by neutron diffraction for the antiferromagnetic core (MnO) and the ferrimagnetic shell (γ-Mn2O3). Remarkably, while the MnO core is found to have a TN not far from its bulk value, the magnetic order of the γ-Mn2O3 shell is stable far above TC, exhibiting two characteristic temperatures, at T~ 40  K [TC(γ-Mn2O3)] and at T~120  K [~ TN(MnO)]. Magnetization measurements are consistent with these results. The stabilization of the shell moment up to TN of the core can be tentatively attributed to core-shell exchange interactions, hinting at a possible magnetic proximity effect

    Synthesis of compositionally graded nanocast NiO/NiCo2O4/Co3O4 mesoporous composites with tuneable magnetic properties

    Get PDF
    A series of mesoporous NiO/NiCo2O4/Co3O4 composites has been synthesized by nanocasting using SBA-15 silica as a hard template. The evaporation method was used as the impregnation step. Nickel and cobalt nitrates in different Ni(II) : Co(II) molar ratios were dissolved in ethanol and used as precursors. The composites show variable degrees of order, from randomly organized nanorods to highly ordered hexagonally-packed nanowires as the Ni(II) : Co(II) molar ratio decreases. The materials exhibit moderately large surface areas in the 60-80 m2 g−1 range. Their magnetic properties, saturation magnetization (MS) and coercivity (HC), can be easily tuned given the ferrimagnetic (NiCo2O4) and antiferromagnetic (NiO and Co3O4) character of the constituents. Moreover, the NiCo2O4 rich materials are magnetic at room temperature and consequently can be easily manipulated by small magnets. Owing to their appealing combination of properties, the nanocomposites are expected to be attractive for myriad applications

    Elucidating Individual Magnetic Contributions in Bi-Magnetic Fe3O4/Mn3O4 Core/Shell Nanoparticles by Polarized Powder Neutron Diffraction

    Get PDF
    Heterogeneous bi-magnetic nanostructured systems have had a sustained interest during the last decades owing to their unique magnetic properties and the wide range of derived potential applications. However, elucidating the details of their magnetic properties can be rather complex. Here, a comprehensive study of Fe3O4/Mn3O4 core/shell nanoparticles using polarized neutron powder diffraction, which allows disentangling the magnetic contributions of each of the components, is presented. The results show that while at low fields the Fe3O4 and Mn3O4 magnetic moments averaged over the unit cell are antiferromagnetically coupled, at high fields, they orient parallel to each other. This magnetic reorientation of the Mn3O4 shell moments is associated with a gradual evolution with the applied field of the local magnetic susceptibility from anisotropic to isotropic. Additionally, the magnetic coherence length of the Fe3O4 cores shows some unusual field dependence due to the competition between the antiferromagnetic interface interaction and the Zeeman energies. The results demonstrate the great potential of the quantitative analysis of polarized neutron powder diffraction for the study of complex multiphase magnetic materials

    Two-, three-, and four-component magnetic multilayer onion nanoparticles based on iron oxides and manganese oxides

    Get PDF
    Magnetic multilayered, onion-like, heterostructured nanoparticles are interesting model systems for studying magnetic exchange coupling phenomena. In this work, we synthesized heterostructured magnetic nanoparticles composed of two, three, or four components using iron oxide seeds for the subsequent deposition of manganese oxide. The MnO layer was allowed either to passivate fully in air to form an outer layer of Mn3O4 or to oxidize partially to form MnO|Mn3O4 double layers. Through control of the degree of passivation of the seeds, particles with up to four different magnetic layers can be obtained (i.e., FeO|Fe3O4|MnO|Mn3O4). Magnetic characterization of the samples confirmed the presence of the different magnetic layers

    Role of the oxygen partial pressure in the formation of composite Co-CoO nanoparticles by reactive aggregation

    Get PDF
    The magnetic properties of diluted films composed of nanocomposite Co-CoO nanoparticles (of ~8 nm diameter) dispersed in a Cu matrix have been investigated. The nanoparticles were formed in an aggregation chamber by sputtering at different Ar/O2 partial pressures (0-0.015). The exchange bias properties appear to be insensitive to the amount of O2 during their formation. However, the temperature dependence of the magnetization, M(T), exhibits two different contributions with relative intensities that correlate with the amount of O2. The magnetic results imply that two types of particles are formed, nanocomposite Co-CoO (determining the exchange bias) and pure CoO, as confirmed by transmission electron microscopy observations. Importantly, as the O2 partial pressure during the sputtering is raised the number of nanocomposite Co-CoO nanoparticles (exhibiting exchange bias properties) is reduced and, consequently, there is an increase in the relative amount of pure, antiferromagnetic CoO particles

    Electron energy-loss spectroscopic tomography of FexCo(3-x)O4 impregnated Co3O4 mesoporous particles: unraveling the chemical information in three dimensions

    Get PDF
    Electron energy-loss spectroscopy-spectrum image (EELS-SI) tomography is a powerful tool to investigate the three dimensional chemical configuration in nanostructures. Here, we demonstrate, for the first time, the possibility to characterize the spatial distribution of Fe and Co cations in a complex FexCo(3-x)O4/Co3O4 ordered mesoporous system. This hybrid material is relevant because of the ferrimagnetic/antiferromagnetic coupling and high surface area. We unambiguously prove that the EELS-SI tomography shows a sufficiently high resolution to simultaneously unravel the pore structure and the chemical signal
    corecore