298 research outputs found

    A high efficiency, low background detector for measuring pair-decay branches in nuclear decay

    Get PDF
    We describe a high efficiency detector for measuring electron-positron pair transitions in nuclei. The device was built to be insensitive to gamma rays and to accommodate high overall event rates. The design was optimized for total pair kinetic energies up to about 7 MeV.Comment: Accepted for publication by Nucl. Inst. & Meth. in Phys. Res. A (NIM A

    Quantitative parameters for the examination of InGaN QW multilayers by low-loss EELS

    Get PDF
    We present a detailed examination of a multiple InxGa1-xN quantum well (QW) structure for optoelectronic applications. The characterization is carried out using scanning transmission electron microscopy (STEM), combining high-angle annular dark field (HAADF) imaging and electron energy loss spectroscopy (EELS). Fluctuations in the QW thickness and composition are observed in atomic resolution images. The impact of these small changes on the electronic properties of the semiconductor material is measured through spatially localized low-loss EELS, obtaining band gap and plasmon energy values. Because of the small size of the InGaN QW layers additional effects hinder the analysis. Hence, additional parameters were explored, which can be assessed using the same EELS data and give further information. For instance, plasmon width was studied using a model-based fit approach to the plasmon peak; observing a broadening of this peak can be related to the chemical and structural inhomogeneity in the InGaN QW layers. Additionally, Kramers-Kronig analysis (KKA) was used to calculate the complex dielectric function (CDF) from the EELS spectrum images (SIs). After this analysis, the electron effective mass and the sample absolute thickness were obtained, and an alternative method for the assessment of plasmon energy was demonstrated. Also after KKA, the normalization of the energy-loss spectrum allows us to analyze the Ga 3d transition, which provides additional chemical information at great spatial resolution. Each one of these methods is presented in this work together with a critical discussion of their advantages and drawbacks

    Half Life of the Doubly-magic r-Process Nucleus 78Ni

    Full text link
    Nuclei with magic numbers serve as important benchmarks in nuclear theory. In addition, neutron-rich nuclei play an important role in the astrophysical rapid neutron-capture process (r-process). 78Ni is the only doubly-magic nucleus that is also an important waiting point in the r-process, and serves as a major bottleneck in the synthesis of heavier elements. The half-life of 78Ni has been experimentally deduced for the first time at the Coupled Cyclotron Facility of the National Superconducting Cyclotron Laboratory at Michigan State University, and was found to be 110 (+100 -60) ms. In the same experiment, a first half-life was deduced for 77Ni of 128 (+27 -33) ms, and more precise half-lives were deduced for 75Ni and 76Ni of 344 (+20 -24) ms and 238 (+15 -18) ms respectively.Comment: 4 pages, 3 figure

    Beta-delayed proton emission in the 100Sn region

    Full text link
    Beta-delayed proton emission from nuclides in the neighborhood of 100Sn was studied at the National Superconducting Cyclotron Laboratory. The nuclei were produced by fragmentation of a 120 MeV/nucleon 112Sn primary beam on a Be target. Beam purification was provided by the A1900 Fragment Separator and the Radio Frequency Fragment Separator. The fragments of interest were identified and their decay was studied with the NSCL Beta Counting System (BCS) in conjunction with the Segmented Germanium Array (SeGA). The nuclei 96Cd, 98Ing, 98Inm and 99In were identified as beta-delayed proton emitters, with branching ratios bp = 5.5(40)%, 5.5+3 -2%, 19(2)% and 0.9(4)%, respectively. The bp for 89Ru, 91,92Rh, 93Pd and 95Ag were deduced for the first time with bp = 3+1.9 -1.7%, 1.3(5)%, 1.9(1)%, 7.5(5)% and 2.5(3)%, respectively. The bp = 22(1)% for 101Sn was deduced with higher precision than previously reported. The impact of the newly measured bp values on the composition of the type-I X-ray burst ashes was studied.Comment: 15 pages, 14 Figures, 4 Table

    Spatiotemporal trends in cetacean strandings and response in the southwestern Indian Ocean : 2000–2020

    Get PDF
    On behalf of SIF, we would like to thank the Seychelles partners (Alphonse Foundation, Desroches Foundation, Island Conservation Society, Farquhar Foundation, Seychelles Islands Foundation, Silhouette Foundation) for providing financial support to acquire and grant use of their data. Collection of data in Reunion was funded by DEAL Reunion and Region-Reunion.The south-western Indian Ocean (SWIO) is a region of global importance for marine mammal biodiversity, but our understanding of most of the species and populations found there is still rudimentary. The Indian Ocean Network for Cetacean Research (IndoCet) was formed in 2014 and is dedicated to the research of all cetacean species across the SWIO. Since 2019, there have been efforts to create a regional network for coordinated response to stranding events as well as training and capacity building in the SWIO region. The present analysis represents a first investigation of stranding data collected by various members and collaborators within the IndoCet network, covering over 14,800km of coastline belonging to nine countries/territories. Between 2000–2020, there were 397 stranding events, representing 1,232 individual animals, 17 genera and 27 species, belonging to six families: four balaenopterids, one balaenid, one physeterid, two kogiids, six ziphiids and 14 delphinids. Seven mass strandings were recorded: two were composed of three to 20 individuals and five composed of > 20 individuals. Spatial analysis of stranding events indicated that local spatio-temporal clusters (excessive number of events in time and geographic space) were present in all countries/territories, except for the Comoros. The only significant cluster was detected on the southwest coast of Mauritius, just west of the village of Souillac. The SWIO region predominantly comprises relatively poor countries/territories, but imminent Ocean Economy developments are prevalent throughout the region. This study highlights the importance of establishing baselines upon which any future potential impact from anthropogenic developments in the region can be measured.Peer reviewe

    Structural and optical properties of high quality zinc-blende/wurtzite GaAs hetero-nanowires

    Get PDF
    The structural and optical properties of 3 different kinds of GaAs nanowires with 100% zinc-blende structure and with an average of 30% and 70% wurtzite are presented. A variety of shorter and longer segments of zinc-blende or wurtzite crystal phases are observed by transmission electron microscopy in the nanowires. Sharp photoluminescence lines are observed with emission energies tuned from 1.515 eV down to 1.43 eV when the percentage of wurtzite is increased. The downward shift of the emission peaks can be understood by carrier confinement at the interfaces, in quantum wells and in random short period superlattices existent in these nanowires, assuming a staggered band-offset between wurtzite and zinc-blende GaAs. The latter is confirmed also by time resolved measurements. The extremely local nature of these optical transitions is evidenced also by cathodoluminescence measurements. Raman spectroscopy on single wires shows different strain conditions, depending on the wurtzite content which affects also the band alignments. Finally, the occurrence of the two crystallographic phases is discussed in thermodynamic terms.Comment: 24 page

    Origin of the large dispersion of magnetic properties in nanostructured oxides: FexO/Fe3O4 nanoparticles as a case study

    Get PDF
    The intimate relationship in transition-metal oxides between stoichiometry and physiochemical properties makes them appealing as tunable materials. These features become exacerbated when dealing with nanostructures. However, due to the complexity of nanoscale materials, establishing a distinct relationship between structure-morphology and functionalities is often complicated. In this regard, in the FexO/Fe3O4 system a largely unexplained broad dispersion of magnetic properties has been observed. Here we show, thanks to a comprehensive multi-technique approach, a clear correlation between magneto-structural properties in large (45 nm) and small (9 nm) FexO/Fe3O4 core/shell nanoparticles that can explain the spread of magnetic behaviors. The results reveal that while the FexO core in the large nanoparticles is antiferromagnetic and has bulk-like stoichiometry and unit-cell parameters, the FexO core in the small particles is highly non-stoichiometric and strained, displaying no significant antiferromagnetism. These results highlight the importance of ample characterization to fully understand the properties of nanostructured metal oxide

    Systematic investigation of projectile fragmentation using beams of unstable B and C isotopes

    Get PDF
    Publisher's Version/PDFBackground: Models describing nuclear fragmentation and fragmentation fission deliver important input for planning nuclear physics experiments and future radioactive ion beam facilities. These models are usually benchmarked against data from stable beam experiments. In the future, two-step fragmentation reactions with exotic nuclei as stepping stones are a promising tool for reaching the most neutron-rich nuclei, creating a need for models to describe also these reactions. Purpose: We want to extend the presently available data on fragmentation reactions towards the light exotic region on the nuclear chart. Furthermore, we want to improve the understanding of projectile fragmentation especially for unstable isotopes. Method: We have measured projectile fragments from [superscript 10,12−18]C and [superscript 10−15]B isotopes colliding with a carbon target. These measurements were all performed within one experiment, which gives rise to a very consistent data set. We compare our data to model calculations. Results: One-proton removal cross sections with different final neutron numbers (1pxn) for relativistic [superscript 10,12−18]C and [superscript 10−15]B isotopes impinging on a carbon target. Comparing model calculations to the data, we find that the EPAX code is not able to describe the data satisfactorily. Using ABRABLA07 on the other hand, we find that the average excitation energy per abraded nucleon needs to be decreased from 27 MeV to 8.1 MeV. With that decrease ABRABLA07 describes the data surprisingly well. Conclusions: Extending the available data towards light unstable nuclei with a consistent set of new data has allowed a systematic investigation of the role of the excitation energy induced in projectile fragmentation. Most striking is the apparent mass dependence of the average excitation energy per abraded nucleon. Nevertheless, this parameter, which has been related to final-state interactions, requires further study
    corecore