18 research outputs found

    TCEAL1 Loss-of-Function Results in an X-Linked Dominant Neurodevelopmental Syndrome and Drives the Neurological Disease Trait in Xq222 Deletions

    Get PDF
    An Xq22.2 region upstream of PLP1 has been proposed to underly a neurological disease trait when deleted in 46,XX females. Deletion mapping revealed that heterozygous deletions encompassing the smallest region of overlap (SRO) spanning six Xq22.2 genes (BEX3, RAB40A, TCEAL4, TCEAL3, TCEAL1, and MORF4L2) associate with an early-onset neurological disease trait (EONDT) consisting of hypotonia, intellectual disability, neurobehavioral abnormalities, and dysmorphic facial features. None of the genes within the SRO have been associated with monogenic disease in OMIM. Through local and international collaborations facilitated by GeneMatcher and Matchmaker Exchange, we have identified and herein report seven de novo variants involving TCEAL1 in seven unrelated families: three hemizygous truncating alleles; one hemizygous missense allele; one heterozygous TCEAL1 full gene deletion; one heterozygous contiguous deletion of TCEAL1, TCEAL3, and TCEAL4; and one heterozygous frameshift variant allele. Variants were identified through exome or genome sequencing with trio analysis or through chromosomal microarray. Comparison with previously reported Xq22 deletions encompassing TCEAL1 identified a more-defined syndrome consisting of hypotonia, abnormal gait, developmental delay/intellectual disability especially affecting expressive language, autistic-like behavior, and mildly dysmorphic facial features. Additional features include strabismus, refractive errors, variable nystagmus, gastroesophageal reflux, constipation, dysmotility, recurrent infections, seizures, and structural brain anomalies. An additional maternally inherited hemizygous missense allele of uncertain significance was identified in a male with hypertonia and spasticity without syndromic features. These data provide evidence that TCEAL1 loss of function causes a neurological rare disease trait involving significant neurological impairment with features overlapping the EONDT phenotype in females with the Xq22 deletion

    Genome-wide association study of REM sleep behavior disorder identifies polygenic risk and brain expression effects

    Get PDF
    Rapid-eye movement (REM) sleep behavior disorder (RBD), enactment of dreams during REM sleep, is an early clinical symptom of alpha-synucleinopathies and defines a more severe subtype. The genetic background of RBD and its underlying mechanisms are not well understood. Here, we perform a genome-wide association study of RBD, identifying five RBD risk loci near SNCA, GBA, TMEM175, INPP5F, and SCARB2. Expression analyses highlight SNCA-AS1 and potentially SCARB2 differential expression in different brain regions in RBD, with SNCA-AS1 further supported by colocalization analyses. Polygenic risk score, pathway analysis, and genetic correlations provide further insights into RBD genetics, highlighting RBD as a unique alpha-synucleinopathy subpopulation that will allow future early intervention

    Genome-wide association study of {REM} sleep behavior disorder identifies polygenic risk and brain expression effects

    Get PDF
    AbstractRapid-eye movement (REM) sleep behavior disorder (RBD), enactment of dreams during REM sleep, is an early clinical symptom of alpha-synucleinopathies and defines a more severe subtype. The genetic background of RBD and its underlying mechanisms are not well understood. Here, we perform a genome-wide association study of RBD, identifying five RBD risk loci near SNCA, GBA, TMEM175, INPP5F, and SCARB2. Expression analyses highlight SNCA-AS1 and potentially SCARB2 differential expression in different brain regions in RBD, with SNCA-AS1 further supported by colocalization analyses. Polygenic risk score, pathway analysis, and genetic correlations provide further insights into RBD genetics, highlighting RBD as a unique alpha-synucleinopathy subpopulation that will allow future early intervention

    Clinical and genetic analysis of ATP13A2 in hereditary spastic paraplegia expands the phenotype

    No full text
    Abstract Background Hereditary spastic paraplegias (HSP) are neurodegenerative disorders characterized by lower limb spasticity and weakness, with or without additional symptoms. Mutations in ATP13A2, known to cause Kufor–Rakeb syndrome (KRS), have been recently implicated in HSP. Methods Whole‐exome sequencing was done in a Canada‐wide HSP cohort. Results Three additional patients with homozygous ATP13A2 mutations were identified, representing 0.7% of all HSP families. Spastic paraplegia was the predominant feature, all patients suffered from psychiatric symptoms, and one patient had developed seizures. Of the identified mutations, c.2126G>C;(p.[Arg709Thr]) is novel, c.2158G>T;(p.[Gly720Trp]) has not been reported in ATP13A2‐related diseases, and c.2473_2474insAAdelC;p.[Leu825Asnfs*32]) has been previously reported in KRS but not in HSP. Structural analysis of the mutations suggested a disruptive effect, and enrichment analysis suggested the potential involvement of specific pathways. Conclusion Our study suggests that in HSP patients with psychiatric symptoms, ATP13A2 mutations should be suspected, especially if they also have extrapyramidal symptoms

    Clinical significance of NDRG3 in patients with breast cancer

    No full text
    [Aim]: The expression level of NDRG3 gene is investigated among breast cancer (BC) patients.[Methods]: Real-time quantitative PCR was performed.[Results]: NDRG3 was downregulated in BC patients particularly in advanced stage of the disease. HER2 status was significantly correlated with the expression of NDRG3. Also, triple-negative BC patients showed low levels of NDRG3 expression in comparison to other subtypes. Lastly, the expression of NDRG3 had significant impact on survival, with NDRG3 downregulated patients having the worst event-free survival rate among others.[Conclusion]: We have presented that NDRG3 might be a tumor suppressor candidate. NDRG3 downregulation might be involved in the tumorigenesis and development of invasive BC in an advanced phase of the disease.Peer reviewe

    High expression of CEACAM19, a new member of carcinoembryonic antigen gene family, in patients with breast cancer

    No full text
    Carcinoembryonic antigen (CEA) family members play important roles in malignancies and are introduced as biomarkers in different types of cancers. Among them CEACAM19 (CEAL1) gene, a new member of the CEA family, remains to be fully elucidated. The aim of this study was investigating the mRNA expression level of CEACAM19 in tumor samples of breast cancer patients compared to breast tissue of normal individuals. We evaluated the expression level of this gene in 75 breast tumors by using real-time quantitative PCR. Also, we studied the correlation between CEACAM19 expression and clinicopathological features and hormone receptors status, including estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 of patients. Out of the enrolled patients, six of them (7.9%) showed low expression, ten (13.2%) showed normal expression and 59 (77.6%) showed high expression of CEACAM19. There was a significant correlation between high expression of CEACAM19 gene in tumor samples compared to normal tissues (P = 0.039). No significant correlation was seen between clinicopathological factors and disease-free survival with mRNA levels of CEACAM19 in tumor samples, while the difference between the expression of CEACAM19 in ER/PR-positive and ER/PR-negative breast cancer patients was statistically significant (P = 0.046). In conclusion, CEACAM19 showed high expression in tumor samples compared to normal mammary tissue. In addition, CEACAM19 may represent as a novel therapeutic target in certain subgroups of breast cancer patients such as ER/PR-negative. Critical roles of CEA proteins in tumor progression may nominate them as robust potential targets for therapeutic intervention in near future.Peer reviewe

    Fine mapping of the HLA locus in Parkinson’s disease in Europeans

    No full text
    We fine mapped the leukocyte antigen (HLA) region in 13,770 Parkinson’s disease (PD) patients, 20,214 proxy-cases, and 490,861 controls of European origin. Four HLA types were associated with PD after correction for multiple comparisons, HLA-DQA1*03:01, HLA-DQB1*03:02, HLA-DRB1*04:01, and HLA-DRB1*04:04. Haplotype analyses followed by amino acid analysis and conditional analyses suggested that the association is protective and primarily driven by three specific amino acid polymorphisms present in most HLA-DRB1*04 subtypes—11V, 13H, and 33H (OR = 0.87, 95% CI: 0.83–0.90, p < 8.23 × 10−9 for all three variants). No other effects were present after adjustment for these amino acids. Our results suggest that specific HLA-DRB1 variants are associated with reduced risk of PD, providing additional evidence for the role of the immune system in PD. Although effect size is small and has no diagnostic significance, understanding the mechanism underlying this association may lead to the identification of new targets for therapeutics development
    corecore