611 research outputs found

    Voltage Sensors in Domains III and IV, but Not I and II, Are Immobilized by Na+ Channel Fast Inactivation

    Get PDF
    AbstractUsing site-directed fluorescent labeling, we examined conformational changes in the S4 segment of each domain of the human skeletal muscle sodium channel (hSkM1). The fluorescence signals from S4 segments in domains I and II follow activation and are unaffected as fast inactivation settles. In contrast, the fluorescence signals from S4 segments in domains III and IV show kinetic components during activation and deactivation that correlate with fast inactivation and charge immobilization. These results indicate that in hSkM1, the S4 segments in domains III and IV are responsible for voltage-sensitive conformational changes linked to fast inactivation and are immobilized by fast inactivation, while the S4 segments in domains I and II are unaffected by fast inactivation

    Issues in the Differential Diagnosis of Uterine Low-grade Endometrioid Carcinoma, Including Mixed Endometrial Carcinomas: Recommendations from the International Society of Gynecological Pathologists

    Get PDF
    This article provides practical recommendations developed from the International Society of Gynecological Pathologists Endometrial Carcinoma Project to address 4 issues that may arise in the diagnosis of uterine corpus low-grade endometrioid carcinoma: (1) The distinction between atypical hyperplasia and low-grade endometrioid carcinoma. (2) The distinction between low-grade endometrioid carcinoma and serous carcinoma. (3) The distinction between corded and hyalinized or spindle cell variants of low-grade endometrioid carcinoma and carcinosarcoma. (4) The diagnostic criteria for mixed endometrial carcinomas, a rare entity that should be diagnosed only after exclusion of a spectrum of tumors including morphologic variants of endometrioid carcinoma, dedifferentiated endometrial carcinoma, carcinosarcoma, and endometrial carcinomas with ambiguous morphology

    Gene silencing in tick cell lines using small interfering or long double-stranded RNA

    Get PDF
    Gene silencing by RNA interference (RNAi) is an important research tool in many areas of biology. To effectively harness the power of this technique in order to explore tick functional genomics and tick-microorganism interactions, optimised parameters for RNAi-mediated gene silencing in tick cells need to be established. Ten cell lines from four economically important ixodid tick genera (Amblyomma, Hyalomma, Ixodes and Rhipicephalus including the sub-species Boophilus) were used to examine key parameters including small interfering RNA (siRNA), double stranded RNA (dsRNA), transfection reagent and incubation time for silencing virus reporter and endogenous tick genes. Transfection reagents were essential for the uptake of siRNA whereas long dsRNA alone was taken up by most tick cell lines. Significant virus reporter protein knockdown was achieved using either siRNA or dsRNA in all the cell lines tested. Optimum conditions varied according to the cell line. Consistency between replicates and duration of incubation with dsRNA were addressed for two Ixodes scapularis cell lines; IDE8 supported more consistent and effective silencing of the endogenous gene subolesin than ISE6, and highly significant knockdown of the endogenous gene 2I1F6 in IDE8 cells was achieved within 48 h incubation with dsRNA. In summary, this study shows that gene silencing by RNAi in tick cell lines is generally more efficient with dsRNA than with siRNA but results vary between cell lines and optimal parameters need to be determined for each experimental system

    Corrigendum: MEF2 transcription factors are key regulators of sprouting angiogenesis

    Get PDF
    The above-mentioned article contained three errors in the Supplemental Figures. In Supplemental Figure 3D, both bar graphs are missing labels for the X-axes due to an oversight during figure preparation

    Structure characterization of the central repetitive domain of high molecular weight gluten proteins. II. Characterization in solution and in the dry state

    Get PDF
    The structure of the central repetitive domain of high molecular weight (HMW) wheat gluten proteins was characterized in solution and in the dry state using HMW proteins Bx6 and Bx7 and a subcloned, bacterially expressed part of the repetitive domain of HMW Dx5. Model studies of the HMW consensus peptides PGQGQQ and GYYPTSPQQ formed the basis for the data analysis. In solution, the repetitive domain contained a continuous nonoverlapping series of both type I and type II β-turns at positions predicted from the model studies; type II β-turns occurred at QPGQ and QQGY sequences and type I β-turns at YPTS and SPQQ. The subcloned part of the HMW Dx5 repetitive domain sometimes migrated as two bands on SDS-PAGE; we present evidence that this may be caused by a single amino acid insertion that disturbs the regular structure of β-turns. The type I β-turns are lost when the protein is dried on a solid surface, probably by conversion to type II β-turns. The homogeneous type II β-turn distribution is compatible with the formation of a β-spiral structure, which provides the protein with elastic properties. The β-turns and thus the β-spiral are stabilized by hydrogen bonds within and between turns. Reformation of this hydrogen bonding network after, e.g., mechanical disruption may be important for the elastic properties of gluten proteins

    Bi-allelic <i>NIT1 </i>variants cause a brain small vessel disease characterized by movement disorders, massively dilated perivascular spaces, and intracerebral hemorrhage

    Get PDF
    Purpose: To describe a recessively inherited cerebral small vessel disease, caused by loss-of-function variants in Nitrilase1 (NIT1). Methods:We performed exome sequencing, brain magnetic resonance imaging, neuropathology, electron microscopy, western blotting, and transcriptomic and metabolic analyses in 7 NIT1-small vessel disease patients from 5 unrelated pedigrees. Results: The first identified patients were 3 siblings, compound heterozygous for the NIT1 c.727C&gt;T; (p.Arg243Trp) variant and the NIT1 c.198_199del; p.(Ala68∗) variant. The 4 additional patients were single cases from 4 unrelated pedigrees and were all homozygous for the NIT1 c.727C&gt;T; p.(Arg243Trp) variant. Patients presented in mid-adulthood with movement disorders. All patients had striking abnormalities on brain magnetic resonance imaging, with numerous and massively dilated basal ganglia perivascular spaces. Three patients had non-lobar intracerebral hemorrhage between age 45 and 60, which was fatal in 2 cases. Western blotting on patient fibroblasts showed absence of NIT1 protein, and metabolic analysis in urine confirmed loss of NIT1 enzymatic function. Brain autopsy revealed large electron-dense deposits in the vessel walls of small and medium sized cerebral arteries. Conclusion: NIT1-small vessel disease is a novel, autosomal recessively inherited cerebral small vessel disease characterized by a triad of movement disorders, massively dilated basal ganglia perivascular spaces, and intracerebral hemorrhage.</p

    Bi-allelic <i>NIT1 </i>variants cause a brain small vessel disease characterized by movement disorders, massively dilated perivascular spaces, and intracerebral hemorrhage

    Get PDF
    Purpose: To describe a recessively inherited cerebral small vessel disease, caused by loss-of-function variants in Nitrilase1 (NIT1). Methods:We performed exome sequencing, brain magnetic resonance imaging, neuropathology, electron microscopy, western blotting, and transcriptomic and metabolic analyses in 7 NIT1-small vessel disease patients from 5 unrelated pedigrees. Results: The first identified patients were 3 siblings, compound heterozygous for the NIT1 c.727C&gt;T; (p.Arg243Trp) variant and the NIT1 c.198_199del; p.(Ala68∗) variant. The 4 additional patients were single cases from 4 unrelated pedigrees and were all homozygous for the NIT1 c.727C&gt;T; p.(Arg243Trp) variant. Patients presented in mid-adulthood with movement disorders. All patients had striking abnormalities on brain magnetic resonance imaging, with numerous and massively dilated basal ganglia perivascular spaces. Three patients had non-lobar intracerebral hemorrhage between age 45 and 60, which was fatal in 2 cases. Western blotting on patient fibroblasts showed absence of NIT1 protein, and metabolic analysis in urine confirmed loss of NIT1 enzymatic function. Brain autopsy revealed large electron-dense deposits in the vessel walls of small and medium sized cerebral arteries. Conclusion: NIT1-small vessel disease is a novel, autosomal recessively inherited cerebral small vessel disease characterized by a triad of movement disorders, massively dilated basal ganglia perivascular spaces, and intracerebral hemorrhage.</p

    Advancing vector biology research: a community survey for future directions, research applications and infrastructure requirements

    Get PDF
    Vector-borne pathogens impact public health, animal production, and animal welfare. Research on arthropod vectors such as mosquitoes, ticks, sandflies, and midges which transmit pathogens to humans and economically important animals is crucial for development of new control measures that target transmission by the vector. While insecticides are an important part of this arsenal, appearance of resistance mechanisms is increasingly common. Novel tools for genetic manipulation of vectors, use of Wolbachia endosymbiotic bacteria, and other biological control mechanisms to prevent pathogen transmission have led to promising new intervention strategies, adding to strong interest in vector biology and genetics as well as vector-pathogen interactions. Vector research is therefore at a crucial juncture, and strategic decisions on future research directions and research infrastructure investment should be informed by the research community. A survey initiated by the European Horizon 2020 INFRAVEC-2 consortium set out to canvass priorities in the vector biology research community and to determine key activities that are needed for researchers to efficiently study vectors, vector-pathogen interactions, as well as access the structures and services that allow such activities to be carried out. We summarize the most important findings of the survey which in particular reflect the priorities of researchers in European countries, and which will be of use to stakeholders that include researchers, government, and research organizations
    • …
    corecore