18 research outputs found

    The mental time line: an analogue of the mental number line in the mapping of life events

    Get PDF
    A crucial aspect of the human mind is the ability to project the self along the time line to past and future. It has been argued that such self-projection is essential to re-experience past experiences and predict future events. In-depth analysis of a novel paradigm investigating mental time shows that the speed of this "self-projection" in time depends logarithmically on the temporal-distance between an imagined "location" on the time line that participants were asked to imagine and the location of another imagined event from the time line. This logarithmic pattern suggests that events in human cognition are spatially mapped along an imagery mental time line. We argue that the present time-line data are comparable to the spatial mapping of numbers along the mental number line and that such spatial maps are a fundamental basis for cognition

    Cognitive flexibility in children with Developmental Language Disorder: Drawing of nonexistent objects

    Get PDF
    Cognitive flexibility is the ability to adapt thoughts and behaviors to new environments. Previous studies investigating cognitive flexibility in children with Developmental Language Disorder (DLD) present contradictory findings. In the current study, cognitive flexibility was assessed in 5- and 6-year-old preschoolers with DLD (n = 23) and peers with typical development (TD; n = 50) using a nonexistent object drawing (NEOD) task. The children were asked to draw a nonexistent man and a nonexistent house. The children with DLD did not differ from their peers with TD on simple category changes, which were comprised of changes in the size or shape of parts of the object, change of the whole shape of the object, and deletion of parts of the object. Nevertheless, children with DLD made fewer more complex, high-level category changes, which included samecategory insertions, position exchange of object’s parts, and cross-category insertions. The difference between DLD and TD on high-level category changes was related to differences between the two groups in verbal short-term memory and inhibition. Furthermore, children with DLD made no changes to their original drawings of an existing man and house more often than their peers with TD. It is concluded that children with DLD aged 5–6 years show less flexibility on the NEOD task than age-matched children with TD. This difference in cognitive flexibility may be related to lower levels of verbal short-term memory and inhibition ability of children with DLD, or to different use of these cognitive skills on the NEOD task

    Sequence Specific Motor Performance Gains after Memory Consolidation in Children and Adolescents

    Get PDF
    Memory consolidation for a trained sequence of finger opposition movements, in 9- and 12-year-old children, was recently found to be significantly less susceptible to interference by a subsequent training experience, compared to that of 17-year-olds. It was suggested that, in children, the experience of training on any sequence of finger movements may affect the performance of the sequence elements, component movements, rather than the sequence as a unit; the latter has been implicated in the learning of the task by adults. This hypothesis implied a possible childhood advantage in the ability to transfer the gains from a trained to the reversed, untrained, sequence of movements. Here we report the results of transfer tests undertaken to test this proposal in 9-, 12-, and 17-year-olds after training in the finger-to-thumb opposition sequence (FOS) learning task. Our results show that the performance gains in the trained sequence partially transferred from the left, trained hand, to the untrained hand at 48-hours after a single training session in the three age-groups tested. However, there was very little transfer of the gains from the trained to the untrained, reversed, sequence performed by either hand. The results indicate sequence specific post-training gains in FOS performance, as opposed to a general improvement in performance of the individual, component, movements that comprised both the trained and untrained sequences. These results do not support the proposal that the reduced susceptibility to interference, in children before adolescence, reflects a difference in movement syntax representation after training

    Reduced Susceptibility to Interference in the Consolidation of Motor Memory before Adolescence

    Get PDF
    Are children superior to adults in consolidating procedural memory? This notion has been tied to “critical,” early life periods of increased brain plasticity. Here, using a motor sequence learning task, we show, in experiment 1, that a) the rate of learning during a training session, b) the gains accrued, without additional practice, within a 24 hours post-training interval (delayed consolidation gains), and c) the long-term retention of these gains, were as effective in 9, 12 and 17-year-olds and comparable to those reported for adults. However, a follow-up experiment showed that the establishment of a memory trace for the trained sequence of movements was significantly more susceptible to interference by a subsequent motor learning experience (practicing a reversed movement sequence) in the 17-year-olds compared to the 9 and 12-year-olds. Unlike the 17-year-olds, the younger age-groups showed significant delayed gains even after interference training. Altogether, our results indicate the existence of an effective consolidation phase in motor learning both before and after adolescence, with no childhood advantage in the learning or retention of a motor skill. However, the ability to co-consolidate different, successive motor experiences, demonstrated in both the 9 and 12-year-olds, diminishes after puberty, suggesting that a more selective memory consolidation process takes over from the childhood one. Only the adult consolidation process is gated by a recency effect, and in situations of multiple, clashing, experiences occurring within a short time-interval, adults may less effectively establish in memory experiences superseded by newer ones

    Different post-training processes in children's and adults' motor skill learning.

    No full text
    Do young children and adults share similar underlying motor skill learning mechanisms? Past studies have shown that school-aged children's speed of performance developed over wake periods of a few hours post-training. Such training-dependent gains were not found in adults. In the current study of children as young as 5-years-old and young adults who practiced a simple grapho-motor task, this finding was replicated only by the children that showed faster performance a few hours post-training. These positive gains in performance speed were retained two weeks later. Furthermore, among the children, variations in gains attained a few hours post-training were associated with initial performance level. These behavioral findings indicate different underlying post-training processes in children's and adults' motor skill learning thus, supporting differential tutoring of skills

    Cognitive flexibility in children with Developmental Language Disorder: drawing of nonexistent objects

    Get PDF
    Cognitive flexibility is the ability to adapt thoughts and behaviors to new environments. Previous studies investigating cognitive flexibility in children with Developmental Language Disorder (DLD) present contradictory findings. In the current study, cognitive flexibility was assessed in 5- and 6-year-old preschoolers with DLD (n = 23) and peers with typical development (TD; n = 50) using a nonexistent object drawing (NEOD) task. The children were asked to draw a nonexistent man and a nonexistent house. The children with DLD did not differ from their peers with TD on simple category changes, which were comprised of changes in the size or shape of parts of the object, change of the whole shape of the object, and deletion of parts of the object. Nevertheless, children with DLD made fewer more complex, high-level category changes, which included same-category insertions, position exchange of object's parts, and cross-category insertions. The difference between DLD and TD on high-level category changes was related to differences between the two groups in verbal short-term memory and inhibition. Furthermore, children with DLD made no changes to their original drawings of an existing man and house more often than their peers with TD. It is concluded that children with DLD aged 5–6 years show less flexibility on the NEOD task than age-matched children with TD. This difference in cognitive flexibility may be related to lower levels of verbal short-term memory and inhibition ability of children with DLD, or to different use of these cognitive skills on the NEOD task

    Retention and transfer after a single training session.

    No full text
    <p>Shown is performance on the trained and transfer conditions at 48 hours post-training (T, trained; LR, left reversed; RR, right reversed; RT, right trained). Bars –Standard Error.</p

    Figure 2

    No full text
    <p>Age dependent effect of post-training interference. (a) Speed and (b) accuracy gains with (♦) and without (□) interference training in the three age-groups. Interference training was given at 2 hours after the termination of the initial training session. Average performance in the initial (init) and the final (end) four blocks of the initial training session, and in four consecutive blocks at 24 hours post-training (24hr post) is shown. Bars–standard error; black arrow - significant interaction; white arrows - no interaction (significant gains in both experiments). Comparison between the three experimental groups' performance at the end of training and at 24 hours post-training in the two experiments, without and with interference (repeated measures ANOVA) showed a significant main effect for time-point for both the number of sequences (speed) and the number of errors (accuracy) (speed: <i>F</i><sub>(1,110)</sub> = 152.06, <i>P</i><.001 accuracy: <i>F</i><sub>(1,110)</sub> = 7.11, <i>P</i><.01) and for age (speed: <i>F</i><sub>(2,110)</sub> = 60.01, <i>P</i><.001 accuracy: <i>F</i><sub>(2,110)</sub> = 6.89, <i>P</i><.001). The only significant interaction (age-group×assessment time×experiment) was for performance speed (<i>F</i><sub>(2,110)</sub> = 6.82, <i>P</i><.05) with the 17-year-olds showing less improvement in the interference condition. There was no significant difference between the two experiments for the end time-point in the 17-year-olds (<i>t</i><sub>(37)</sub> = 0.81, <i>P</i> = .42). An analysis of variance for repeated measures, conducted for each age-group separately (with time-points as within-subject factor and age-group and experiment as between-subject factors), showed a significant difference in between-session gains accrued for the initially trained sequence (task A) between the two experiments only in the 17-year-olds (interaction of time-point×experiment, <i>F</i><sub>(1,37)</sub> = 10.62, <i>P</i><.001). The 9 and 12-year-olds improved to a similar degree with and without interference (no interaction of time-point×experiment, <i>F</i><sub>(1,35)</sub> = 2.89, <i>P</i> = .1; <i>F</i><sub>(1,38</sub> = 2.21, <i>P</i> = .15, 9 and 12-year-olds respectively).</p
    corecore