22 research outputs found

    Periodontitis and type 2 diabetes among women with previous gestational diabetes: epidemiological and immunological aspects in a follow-up of three years

    Get PDF
    Periodontitis can contribute to the development of insulin resistance. Gestational diabetes is a risk factor for type 2 diabetes. Therefore, periodontitis, when associated with gestational diabetes, could increase the risk for the development of type 2 diabetes after pregnancy. Objective The aim of this study was to verify the incidence on the development of type 2 diabetes in women with previous gestational diabetes with and without periodontitis after a three-year time interval. Material and Methods Initial sample of this follow-up study consisted of 90 women diagnosed with gestational diabetes who underwent periodontal examination. After three years, 49 women were subjected to new periodontal examination and biological, behavioral, and social data of interest were collected. Additionally, the quantification of the C-reactive protein in blood samples was performed. Fasting glucose and glycated hemoglobin levels were requested. Saliva samples were collected for quantification of interleukin 6 and 10, tumor necrosis factor α, matrix metalloproteinase 2 and 9. Results The incidence of type 2 diabetes mellitus was 18.4% and of periodontitis was 10.2%. There was no significant difference in the incidence of type 2 diabetes mellitus among women with and without periodontitis. It was observed impact of C-reactive protein in the development of type 2 diabetes mellitus. However, it was not observed impact of periodontitis on the development of type 2 diabetes mellitus among women with previous gestational diabetes. Conclusions It was not observed impact of periodontitis on the development of type 2 diabetes among women with previous gestational diabetes. The impact of C-reactive protein in the development of type 2 diabetes mellitus highlights the importance of an inflammatory process in the diabetes pathogenesis

    Clinical Evaluation of Two Ke0 in the same Pharmacokinetic Propofol Model: Study on Loss and Recovery of Consciousness

    Get PDF
    SummaryBackground and objectiveThe constant equilibrium between the plasma and effect site (ke0) is used by pharmacokinetic models to calculate a drug concentration in its site of action (Ce). It would be interesting if Ce of propofol was similar at loss and recovery of consciousness. The objective of this study was to evaluate the clinical performance of two different ke0 (fast = 1.21 min-1, and slow = 0.26 min-1) in relation to Ce during loss and recovery of consciousness using Marsh pharmacokinetic model.MethodsTwenty healthy adult male volunteers participated in this study. In all volunteers propofol was administered as target-controlled infusion, Marsh pharmacokinetic model for fast ke0 and, at a different time, the same pharmacokinetic model with slow ke0 was used. Initially, propofol was infused with a serum target-controlled infusion of 3.0 μg.mL-1. Loss of consciousness and recovery of consciousness were based on response to verbal stimulus. Ce was recorded at the moment of loss and recovery of consciousness.ResultsOn loss and recovery of consciousness, the Ce for fast ke0 was different (3.64 ± 0.78 and 1.47 ± 0.29 μg.mL-1, respectively, p < 0.0001), while with slow ke0 the Ce was similar (2.20 ± 0.70 and 2.14 ± 0.43 μg.mL-1, respectively, p = 0.5425).ConclusionsClinically, the slow ke0 (0.26 min-1) incorporated in the Marsh pharmacokinetic model showed better performance than the fast ke0 (1.21 min-1), since the calculated concentration of propofol at the effect site on loss and recovery of consciousness was similar

    Evaluación farmacodinámica y análisis físico-químico de dos formulaciones de propofol usadas en infusión objeto-controlada

    Get PDF
    BACKGROUND AND OBJECTIVES: There are several formulations of propofol available to the anesthesiologist for clinical use. The aim of this study was to analyze the physicochemical properties, pharmacodynamic effect, and pharmaceutical and clinical equivalence of the reference drug propofol as well as a similar formulation. METHOD: Sixteen volunteers were enrolled in this randomized, double-blind, and paired study of Diprivan® and Propovan® formulations. Formulations were given as target-controlled infusion with target concentration of 3.0 &mu;g.mL-1 for 15 minutes. Variables studied were the area under the curve (AUC) of the bispectral index (BIS) graph regarding time, minimum BIS reached and time to reach it, and recovery time. The two formulations were sent to analysis of particle size of lipid emulsion, surface potential, and active principle quantification. RESULTS: There was no difference between the formulations when comparing AUC, minimum BIS reached and time to reach it. The similar formulation recovery time was lower compared to the reference formulation (eight and 10 min, respectively, p = 0.014). Mean particle size of lipid emulsion, surface potential, and active ingredient quantification were similar for both formulations. CONCLUSION: There was no clinically significant difference between the use of propofol, reference Diprivan®, and the similar Propovan® during infusion. However, the recovery time was longer with the reference drug. Although analysis of both formulations studied show similar results regarding its physicochemical characterization, further studies should be conducted to justify this difference.JUSTIFICATIVA Y OBJETIVOS: Existen varias formulaciones de propofol para el uso clínico que están disponibles para el anestesiólogo. El objetivo de este estudio, fue analizar las propiedades físico-químicas, el efecto farmacodinámico y la equivalencia farmacéutica y clínica del fármaco referencia de propofol y una formulación similar. MÉTODO: Dieciséis voluntarios participaron en este estudio aleatorio, doble ciego y pareado entre las formulaciones Diprivan® y Propovan®. Las formulaciones fueron administradas en un régimen de infusión objeto-controlada con una concentración objetivo de 3,0 µg.mL-1 durante 15 minutos. Las variables estudiadas fueron el área bajo la curva (ASC) del gráfico del índice bispectral (BIS) con relación al tiempo, el BIS mínimo alcanzado y el tiempo para tal, y el tiempo de recuperación. Las dos formulaciones se sometieron a los análisis de tamaño de partículas de la emulsión lipídica, potencial de superficie y cuantificación del principio activo. RESULTADOS: No hubo diferencia entre las formulaciones cuando se comparó la ASC, el BIS mínimo alcanzado y el tiempo transcurrido para tal. El tiempo de recuperación con la formulación similar fue menor con relación a la referencia (8 y 10 min, respectivamente, p = 0,014). El tamaño promedio de partículas de la emulsión lipídica, potencial de superficie y la cuantificación del principio activo, fueron similares en las dos formulaciones. CONCLUSIONES: No hubo diferencia clínica significativa entre el uso de propofol referencia Diprivan® y su similar Propovan® durante la infusión. Sin embargo, el tiempo de recuperación se extendió más con el fármaco de referencia. Aunque los análisis de las formulaciones estudiadas muestren resultados similares en cuanto a su caracterización físico-química, otros estudios deben ser realizados para justificar tal diferencia.JUSTIFICATIVA E OBJETIVOS: Existem várias formulações de propofol para uso clínico à disposição do anestesiologista. O objetivo desse estudo foi analisar as propriedades físico-químicas, o efeito farmacodinâmico e a equivalência farmacêutica e clínica do fármaco referência de propofol e uma formulação similar. MÉTODOS: Dezesseis voluntários participaram desse estudo aleatório, duplamente encoberto e pareado entre as formulações Diprivan® e Propovan®. As formulações foram administradas em regime de infusão alvo-controlada com concentração-alvo de 3,0 µg.mL-1 por 15 minutos. As variáveis estudadas foram a área sob a curva (ASC) do gráfico do índice bispectral (BIS) em relação ao tempo, o BIS mínimo atingido e o tempo para tal e o tempo de recuperação. As duas formulações foram submetidas às análises de tamanho de partículas da emulsão lipídica, potencial de superfície e quantificação de princípio ativo. RESULTADOS: Não houve diferença entre as formulações quando se comparou a ASC, BIS mínimo atingido e o tempo decorrido para tal. O tempo de recuperação com a formulação similar foi menor em relação à referência (oito e 10 min, respectivamente, p = 0,014). O tamanho médio de partículas da emulsão lipídica, potencial de superfície e a quantificação de princípio ativo foram semelhantes nas duas formulações. CONCLUSÃO: Não houve diferença clínica significativa entre o uso de propofol referência Diprivan® e seu similar Propovan® durante a infusão. Entretanto, o tempo de recuperação foi mais prolongado com o fármaco referência. Embora as análises com as duas formulações estudadas mostrarem resultados semelhantes quanto a sua caracterização físico-química, outros estudos devem ser realizados para justificar tal diferença.Instituto Penido Burnier Sociedade Brasileira de Anestesiologia Centro de Ensino e TreinamentoCentro Médico de CampinasHospital Santa SofiaUniversidade de São Paulo Faculdade de Ciências FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)UNIFESPSciEL

    Periodontitis and type 2 diabetes among women with previous gestational diabetes: epidemiological and immunological aspects in a follow-up of three years

    No full text
    Abstract Periodontitis can contribute to the development of insulin resistance. Gestational diabetes is a risk factor for type 2 diabetes. Therefore, periodontitis, when associated with gestational diabetes, could increase the risk for the development of type 2 diabetes after pregnancy. Objective The aim of this study was to verify the incidence on the development of type 2 diabetes in women with previous gestational diabetes with and without periodontitis after a three-year time interval. Material and Methods Initial sample of this follow-up study consisted of 90 women diagnosed with gestational diabetes who underwent periodontal examination. After three years, 49 women were subjected to new periodontal examination and biological, behavioral, and social data of interest were collected. Additionally, the quantification of the C-reactive protein in blood samples was performed. Fasting glucose and glycated hemoglobin levels were requested. Saliva samples were collected for quantification of interleukin 6 and 10, tumor necrosis factor α, matrix metalloproteinase 2 and 9. Results The incidence of type 2 diabetes mellitus was 18.4% and of periodontitis was 10.2%. There was no significant difference in the incidence of type 2 diabetes mellitus among women with and without periodontitis. It was observed impact of C-reactive protein in the development of type 2 diabetes mellitus. However, it was not observed impact of periodontitis on the development of type 2 diabetes mellitus among women with previous gestational diabetes. Conclusions It was not observed impact of periodontitis on the development of type 2 diabetes among women with previous gestational diabetes. The impact of C-reactive protein in the development of type 2 diabetes mellitus highlights the importance of an inflammatory process in the diabetes pathogenesis

    Comparative study between fast and slow induction of propofol given by target-controlled infusion: expected propofol concentration at the effect site. Randomized controlled trial

    Get PDF
    BACKGROUND AND OBJECTIVE: Studies have shown that the rate of propofol infusion may influence the predicted propofol concentration at the effect site (Es). The aim of this study was to evaluate the Es predicted by the Marsh pharmacokinetic model (ke0 0.26 min-1) in loss of consciousness during fast or slow induction. METHOD: The study included 28 patients randomly divided into two equal groups. In slow induction group (S), target-controlled infusion (TCI) of propofol with plasma, Marsh pharmacokinetic model (ke0 0.26 min-1) with target concentration (Tc) at 2.0-&#181;g mL-1 were administered. When the predicted propofol concentration at the effect site (Es) reached half of Es value, Es was increased to previous Es + 1 &#181;g mL-1, successively, until loss of consciousness. In rapid induction group (R), patients were induced with TCI of propofol with plasma (6.0 &#181;g mL-1) at effect site, and waited until loss of consciousness. RESULTS: In rapid induction group, Tc for loss of consciousness was significantly lower compared to slow induction group (1.67 &#177; 0.76 and 2.50 &#177; 0.56 &#181;g mL-1, respectively, p = 0.004). CONCLUSION: The predicted propofol concentration at the effect site for loss of consciousness is different for rapid induction and slow induction, even with the same pharmacokinetic model of propofol and the same balance constant between plasma and effect site

    Efficacy of Continuous S(+)-Ketamine Infusion for Postoperative Pain Control: A Randomized Placebo-Controlled Trial

    No full text
    Aim. A double-blind, randomized, placebo-controlled trial was designed to evaluate the efficacy of continuous intraoperative infusion of S(+)-ketamine under intravenous anesthesia with target-controlled infusion of remifentanil and propofol for postoperative pain control. Methods. Forty-eight patients undergoing laparoscopic cholecystectomy were assigned to receive continuous S(+)-ketamine infusion at a rate of 0.3 mg·kg−1·h−1 (n=24, intervention group) or an equivalent volume of saline at the same rate (n=24, placebo group). The same target-controlled intravenous anesthesia was induced in both groups. Pain was assessed using a 0 to 10 verbal numeric rating scale during the first 12 postoperative hours. Pain scores and morphine consumption were recorded in the postanesthesia care unit (PACU) and at 4 and 12 hours after surgery. Results. Pain scores were lower in the intervention group at all time points. Morphine consumption did not differ significantly between groups during PACU stay, but it was significantly lower in the intervention group at each time point after PACU discharge (P=0.0061). At 12 hours after surgery, cumulative morphine consumption was also lower in the intervention group (5.200±2.707) than in the placebo group (7.525±1.872). Conclusions. Continuous S(+)-ketamine infusion during laparoscopic cholecystectomy under target-controlled intravenous anesthesia provided better postoperative pain control than placebo, reducing morphine requirement. Trial Registration. This trial is registered with ClinicalTrials.gov NCT02421913

    Avaliação farmacodinâmica e análise físico-química de duas formulações de propofol usadas em infusão alvo-controlada Evaluación farmacodinámica y análisis físico-químico de dos formulaciones de propofol usadas en infusión objeto-controlada Pharmacodynamic evaluation and physical/chemical analysis of two formulations of propofol used in target-controlled infusion

    No full text
    JUSTIFICATIVA E OBJETIVOS: Existem várias formulações de propofol para uso clínico à disposição do anestesiologista. O objetivo desse estudo foi analisar as propriedades físico-químicas, o efeito farmacodinâmico e a equivalência farmacêutica e clínica do fármaco referência de propofol e uma formulação similar. MÉTODOS: Dezesseis voluntários participaram desse estudo aleatório, duplamente encoberto e pareado entre as formulações Diprivan® e Propovan®. As formulações foram administradas em regime de infusão alvo-controlada com concentração-alvo de 3,0 µg.mL-1 por 15 minutos. As variáveis estudadas foram a área sob a curva (ASC) do gráfico do índice bispectral (BIS) em relação ao tempo, o BIS mínimo atingido e o tempo para tal e o tempo de recuperação. As duas formulações foram submetidas às análises de tamanho de partículas da emulsão lipídica, potencial de superfície e quantificação de princípio ativo. RESULTADOS: Não houve diferença entre as formulações quando se comparou a ASC, BIS mínimo atingido e o tempo decorrido para tal. O tempo de recuperação com a formulação similar foi menor em relação à referência (oito e 10 min, respectivamente, p = 0,014). O tamanho médio de partículas da emulsão lipídica, potencial de superfície e a quantificação de princípio ativo foram semelhantes nas duas formulações. CONCLUSÃO: Não houve diferença clínica significativa entre o uso de propofol referência Diprivan® e seu similar Propovan® durante a infusão. Entretanto, o tempo de recuperação foi mais prolongado com o fármaco referência. Embora as análises com as duas formulações estudadas mostrarem resultados semelhantes quanto a sua caracterização físico-química, outros estudos devem ser realizados para justificar tal diferença.JUSTIFICATIVA Y OBJETIVOS: Existen varias formulaciones de propofol para el uso clínico que están disponibles para el anestesiólogo. El objetivo de este estudio, fue analizar las propiedades físico-químicas, el efecto farmacodinámico y la equivalencia farmacéutica y clínica del fármaco referencia de propofol y una formulación similar. MÉTODO: Dieciséis voluntarios participaron en este estudio aleatorio, doble ciego y pareado entre las formulaciones Diprivan® y Propovan®. Las formulaciones fueron administradas en un régimen de infusión objeto-controlada con una concentración objetivo de 3,0 µg.mL-1 durante 15 minutos. Las variables estudiadas fueron el área bajo la curva (ASC) del gráfico del índice bispectral (BIS) con relación al tiempo, el BIS mínimo alcanzado y el tiempo para tal, y el tiempo de recuperación. Las dos formulaciones se sometieron a los análisis de tamaño de partículas de la emulsión lipídica, potencial de superficie y cuantificación del principio activo. RESULTADOS: No hubo diferencia entre las formulaciones cuando se comparó la ASC, el BIS mínimo alcanzado y el tiempo transcurrido para tal. El tiempo de recuperación con la formulación similar fue menor con relación a la referencia (8 y 10 min, respectivamente, p = 0,014). El tamaño promedio de partículas de la emulsión lipídica, potencial de superficie y la cuantificación del principio activo, fueron similares en las dos formulaciones. CONCLUSIONES: No hubo diferencia clínica significativa entre el uso de propofol referencia Diprivan® y su similar Propovan® durante la infusión. Sin embargo, el tiempo de recuperación se extendió más con el fármaco de referencia. Aunque los análisis de las formulaciones estudiadas muestren resultados similares en cuanto a su caracterización físico-química, otros estudios deben ser realizados para justificar tal diferencia.BACKGROUND AND OBJECTIVES: There are several formulations of propofol available to the anesthesiologist for clinical use. The aim of this study was to analyze the physicochemical properties, pharmacodynamic effect, and pharmaceutical and clinical equivalence of the reference drug propofol as well as a similar formulation. METHOD: Sixteen volunteers were enrolled in this randomized, double-blind, and paired study of Diprivan® and Propovan® formulations. Formulations were given as target-controlled infusion with target concentration of 3.0 &mu;g.mL-1 for 15 minutes. Variables studied were the area under the curve (AUC) of the bispectral index (BIS) graph regarding time, minimum BIS reached and time to reach it, and recovery time. The two formulations were sent to analysis of particle size of lipid emulsion, surface potential, and active principle quantification. RESULTS: There was no difference between the formulations when comparing AUC, minimum BIS reached and time to reach it. The similar formulation recovery time was lower compared to the reference formulation (eight and 10 min, respectively, p = 0.014). Mean particle size of lipid emulsion, surface potential, and active ingredient quantification were similar for both formulations. CONCLUSION: There was no clinically significant difference between the use of propofol, reference Diprivan®, and the similar Propovan® during infusion. However, the recovery time was longer with the reference drug. Although analysis of both formulations studied show similar results regarding its physicochemical characterization, further studies should be conducted to justify this difference

    Pharmacodynamic Evaluation and Physical/Chemical Analysis of Two Formulations of Propofol used in Target-Controlled Infusion

    Get PDF
    Background and objectives: There are several formulations of propofol available to the anesthesiologist for clinical use. The aim of this study was to analyze the physicochemical properties, pharmacodynamic effect, and pharmaceutical and clinical equivalence of the reference drug propofol as well as a similar formulation. Method: Sixteen volunteers were enrolled in this randomized, double-blind, and paired study of Diprivan® and Propovan® formulations. Formulations were given as target-controlled infusion with target concentration of 3.0 μg.mL-1 for 15 minutes. Variables studied were the area under the curve (AUC) of the bispectral index (BIS) graph regarding time, minimum BIS reached and time to reach it, and recovery time. The two formulations were sent to analysis of particle size of lipid emulsion, surface potential, and active principle quantification. Results: There was no difference between the formulations when comparing AUC, minimum BIS reached and time to reach it. The similar formulation recovery time was lower compared to the reference formulation (eight and 10 min, respectively, p = 0.014). Mean particle size of lipid emulsion, surface potential, and active ingredient quantification were similar for both formulations. Conclusion: There was no clinically significant difference between the use of propofol, reference Diprivan®, and the similar Propovan® during infusion. However, the recovery time was longer with the reference drug. Although analysis of both formulations studied show similar results regarding its physicochemical characterization, further studies should be conducted to justify this difference. Keywords: Anesthesia, Intravenous, Consciousness Monitors, Pharmacology, Clinical, Propofo

    High Expression of SOD2 Protein Is a Strong Prognostic Factor for Stage IIIB Squamous Cell Cervical Carcinoma

    No full text
    High superoxide dismutase 2 (SOD2) expression is associated with a poor prognosis at many cancer sites, the presence of metastases, and more advanced cervical cancer. This study aims to determine whether SOD2 protein expression is associated with the prognosis of stage IIIB cervical carcinoma. Methods: sixty-three patients with stage IIIB squamous cell cervical carcinoma were included. The evaluation of SOD2 expression by immunohistochemistry was based on a positive cell ratio score and the staining intensity score. Taking disease recurrence and death as endpoints, receiver operating characteristic curves were used to discriminate between high and low SOD2 expression. Results: high SOD2 expression was associated with recurrence (p = 0.001), distant recurrence (p = 0.002), and death (p = 0.005). A multivariate analysis showed that patients with high SOD2 expression had a threefold increased risk for recurrence (HR = 3.16; 1.33–7.51) and death (HR = 2.98; 1.20–7.40) compared with patients who had low SOD2 expression. Patients with high SOD2 expression had shorter disease-free survival (p = 0.001) and overall survival (p = 0.003) than patients with low SOD2 expression. Conclusion: high SOD2 expression is a strong prognostic factor for stage IIIB squamous cell carcinoma of the cervix and could be used as a prognostic marker in women with cervical carcinoma
    corecore