15 research outputs found

    COP1 destabilizes DELLA proteins in Arabidopsis

    Get PDF
    DELLA transcriptional regulators are central components in the control of plant growth responses to the environment. This control is considered to be mediated by changes in the metabolism of the hormones gibberellins (GAs), which promote the degradation of DELLAs. However, here we show that warm temperature or shade reduced the stability of a GA-insensitive DELLA allele in Arabidopsis thaliana. Furthermore, the degradation of DELLA induced by the warmth preceded changes in GA levels and depended on the E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). COP1 enhanced the degradation of normal and GA-insensitive DELLA alleles when coexpressed in Nicotiana benthamiana. DELLA proteins physically interacted with COP1 in yeast, mammalian, and plant cells. This interaction was enhanced by the COP1 complex partner SUPRESSOR OF phyA-105 1 (SPA1). The level of ubiquitination of DELLA was enhanced by COP1 and COP1 ubiquitinated DELLA proteins in vitro. We propose that DELLAs are destabilized not only by the canonical GA-dependent pathway but also by COP1 and that this control is relevant for growth responses to shade and warm temperature.This work was supported by the Spanish Ministry of Economy, Industry and Competitiveness and Agencia Española de Investigación/Fondo Europeo para el Desarrollo Regional/Unión Europea (grants BIO2016-79133-P to D.A. and BIO2013-46539-R and BIO2016-80551-R to V.R.); the European Union SIGNAT-Research and Innovation Staff Exchange (Grant H2020-MSCA-RISE-2014-644435 to M.A.B., D.A., and J.J.C.); the Argentinian Agencia Nacional de Promoción Científica y Tecnológica (Grant Proyectos de Investigación Científica y Tecnológica-2016-1459 to J.J.C.); Universidad de Buenos Aires (grant 20020170100505BA to J.J.C.); the National Institute of General Medical Sciences of the National Institutes of Health (awards R01GM067837 and R01GM056006 to S.A.K.); the German Research Foundation (DFG) under Germany’s Excellence Strategy/Initiative (Cluster of Excellence on Plant Sciences – Excellence Cluster EXC-2048/1, Project ID 390686111 to M.D.Z.); the International Max Planck Research School of the Max Planck Society; the Universities of Düsseldorf and of Cologne to T.B.; Nordrhein Westfalen Bioeconomy Science Center-FocusLabs CombiCom to N.H. and M.D.Z.; and Ministry of Education, Youth and Sports of the Czech Republic (Project LQ1601 Central European Institute of Technology 2020 to B.B. and M.C.). N.B.-T., E.I., and M.G.-L. were supported by Ministerio de Economía y Competitividad-Formación de Personal Investigador Program fellowships

    COP1 destabilizes DELLA proteins in Arabidopsis

    Get PDF
    DELLA transcriptional regulators are central components in the control of plant growth responses to the environment. This control is considered to be mediated by changes in the metabolism of the hormones gibberellins (GAs), which promote the degradation of DELLAs. However, here we show that warm temperature or shade reduced the stability of a GA-insensitive DELLA allele in Arabidopsis thaliana. Furthermore, the degradation of DELLA induced by the warmth preceded changes in GA levels and depended on the E3 ubiquitin ligase CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1). COP1 enhanced the degradation of normal and GAinsensitive DELLA alleles when coexpressed in Nicotiana benthamiana. DELLA proteins physically interacted with COP1 in yeast, mammalian, and plant cells. This interaction was enhanced by the COP1 complex partner SUPRESSOR OF phyA-105 1 (SPA1). The level of ubiquitination of DELLA was enhanced by COP1 and COP1 ubiquitinated DELLA proteins in vitro. We propose that DELLAs are destabilized not only by the canonical GA-dependent pathway but also by COP1 and that this control is relevant for growth responses to shade and warm temperature.Fil: Blanco Touriñán, Noel. Universidad Politécnica de Valencia; EspañaFil: Legris, Martina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Minguet, Eugenio G.. Universidad Politécnica de Valencia; EspañaFil: Costigliolo Rojas, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Nohales, María A.. University of Southern California; Estados UnidosFil: Iniesto, Elisa. Consejo Superior de Investigaciones Científicas; EspañaFil: García León, Marta. Consejo Superior de Investigaciones Científicas; EspañaFil: Pacín, Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Heucken, Nicole. Universitat Dusseldorf; AlemaniaFil: Blomeier, Tim. Universitat Dusseldorf; AlemaniaFil: Locascio, Antonella. Universidad Politécnica de Valencia; EspañaFil: Cerný, Martin. Mendel University in Brno; República ChecaFil: Esteve Bruna, David. Universidad Politécnica de Valencia; EspañaFil: Díez Díaz, Mónica. Univerdiad Catolica de Valencia; EspañaFil: Brzobohatý, Bretislav. Mendel University in Brno; República ChecaFil: Frerigmann, Henning. Max Planck Institute for Plant Breeding Research; AlemaniaFil: Zurbriggen, Matías D.. Universitat Dusseldorf; AlemaniaFil: Kay, Steve A.. University of Southern California; Estados UnidosFil: Rubio, Vicente. Consejo Superior de Investigaciones Científicas; EspañaFil: Blázquez, Miguel A.. Universidad Politécnica de Valencia; EspañaFil: Casal, Jorge José. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Alabadí, David. Universidad Politécnica de Valencia; Españ

    PICLN modulates alternative splicing and light/temperature responses in plants

    No full text
    Plants undergo transcriptome reprogramming to adapt to daily and seasonal fluctuations in light and temperature conditions. While most efforts have focused on the role of master transcription factors, the importance of splicing factors modulating these processes is now emerging. Efficient pre-mRNA splicing depends on proper spliceosome assembly, which in plants and animals requires the methylosome complex. Ion Chloride nucleotide-sensitive protein (PICLN) is part of the methylosome complex in both humans and Arabidopsis (Arabidopsis thaliana), and we show here that the human PICLN ortholog rescues phenotypes of Arabidopsis picln mutants. Altered photomorphogenic and photoperiodic responses in Arabidopsis picln mutants are associated with changes in pre-mRNA splicing that partially overlap with those in PROTEIN-ARGININE METHYL TRANSFERASE5 (prmt5) mutants. Mammalian PICLN also acts in concert with the Survival Motor Neuron (SMN) complex component GEMIN2 to modulate the late steps of UsnRNP assembly, and many alternative splicing events regulated by PICLN but not PRMT5, the main protein of the methylosome, are controlled by Arabidopsis GEMIN2. As with GEMIN2 and SM PROTEIN E1/PORCUPINE (SME1/PCP), low temperature, which increases PICLN expression, aggravates morphological and molecular defects of picln mutants. Taken together, these results establish a key role for PICLN in the regulation of pre-mRNA splicing and in mediating plant adaptation to daily and seasonal fluctuations in environmental conditions

    The KnownLeaf literature curation system captures knowledge about Arabidopsis leaf growth and development and facilitates integrated data mining

    No full text
    The information that connects genotypes and phenotypes is essentially embedded in research articles written in natural language. To facilitate access to this knowledge, we constructed a framework for the curation of the scientific literature studying the molecular mechanisms that control leaf growth and development in Arabidopsis thaliana (Arabidopsis). Standard structured statements, called relations, were designed to capture diverse data types, including phenotypes and gene expression linked to genotype description, growth conditions, genetic and molecular interactions, and details about molecular entities. Relations were then annotated from the literature, defining the relevant terms according to standard biomedical ontologies. This curation process was supported by a dedicated graphical user interface, called Leaf Knowtator. A total of 283 primary research articles were curated by a community of annotators, yielding 9947 relations monitored for consistency and over 12,500 references to Arabidopsis genes. This information was converted into a relational database (KnownLeaf) and merged with other public Arabidopsis resources relative to transcriptional networks, protein–protein interaction, gene co-expression, and additional molecular annotations. Within KnownLeaf, leaf phenotype data can be searched together with molecular data originating either from this curation initiative or from external public resources. Finally, we built a network (LeafNet) with a portion of the KnownLeaf database content to graphically represent the leaf phenotype relations in a molecular context, offering an intuitive starting point for knowledge mining. Literature curation efforts such as ours provide high quality structured information accessible to computational analysis, and thereby to a wide range of applications. DATA: The presented work was performed in the framework of the AGRON-OMICS project (Arabidopsis GRO wth Network integrating OMICS technologies) supported by European Commission 6th Framework Programme project (Grant number LSHG-CT-2006-037704). This is a data integration and data sharing portal collecting all the all the major results from the consortium. All data presented in our paper is available here. https://agronomics.ethz.ch/
    corecore