219 research outputs found

    The effect of Rift Valley fever virus Clone 13 vaccine on semen quality in rams

    Get PDF
    Rift Valley fever (RVF) is an arthropod-borne viral disease of importance in livestock and humans. Epidemics occur periodically in domestic ruminants. People in contact with infected livestock may develop disease that varies from mild flu-like symptoms to fatal viraemia. Livestock vaccination may assist in disease control. Rift Valley fever virus (RVFV) Clone 13 is a relatively new vaccine against RVF, derived from an avirulent natural mutant strain of RVFV, and has been shown to confer protective immunity against experimental infection with RVFV. The hypothesis tested in the current trial was that rams vaccinated with RVFV Clone 13 vaccine would not experience a reduction in semen quality (measured by evaluating the percentage progressively motile and percentage morphologically normal spermatozoa in successive ejaculates) relative to unvaccinated control animals. Ram lambs were screened for antibodies to RVFV using a serum neutralisation test. Animals without detectable antibodies (n = 23) were randomly allocated to either a test group (n = 12) or a control group (n = 11). Animals in the test group were vaccinated with RVFV Clone 13 vaccine. Daily rectal temperature measurements and weekly semen and blood samples were taken from all animals. Seven animals were eliminated from the statistical analysis because of potential confounding factors. Logistic regression analysis was performed on data gathered from the remaining animals to determine whether an association existed between animal group, rectal temperature and semen quality parameters. No correlation existed between the treatment group and values obtained for the semen quality parameters measured. There was no statistically significant post-vaccination decline in the percentage of live morphologically normal spermatozoa, or the percentage of progressively motile spermatozoa, either when assessed amongst all animals or when assessed within individual groups. A repeat study with a larger sample size and a more comprehensive pre-screening process may be indicated to avoid the inclusion of unsuitable animals

    Inclusion body hepatitis associated with an outbreak of fowl adenovirus type 2 and type 8b in broiler flocks in South Africa

    Get PDF
    Inclusion body hepatitis is an acute disease of chickens ascribed to viruses of the genus Aviadenovirus and referred to as fowl adenovirus (FAdV). There are 12 FAdV types (FAdV1 to FAdV8a and FAdV8b to FAdV11), classified into five species based on their genotype (designated FAdVA to FAdVE). A total of 218 000 chickens, 2–29 days of age, were affected over a 1-year period, all testing positive by microscopy, virus isolation and confirmation with polymerase chain reaction (PCR). Affected birds were depressed, lost body weight, were weak and had watery droppings. Pathological changes observed during necropsy indicated consistent changes in the liver, characterised by hepatomegaly, cholestasis and hepatitis. Lesions were also discernible in the spleen, kidney and gizzard wall and were characterised by splenomegaly, pinpoint haemorrhages, nephritis with haemorrhage,visceral gout and serosal ecchymosis of the gizzard wall. Histopathological lesions were most consistently observed in the liver but could also be seen in renal and splenic tissue. Virus isolation was achieved in embryonated eggs and most embryos revealed multifocal to diffuse hepatic necrosis, with a mixed cellular infiltrate of macrophages and heterophils (necro-granulomas), even in the absence of macroscopic pathology. Virus isolation results were verified by histopathology and PCR on embryonic material and further characterised by nucleotide sequence analysis. Two infectious bursal disease virus isolates were also made from the Klerksdorp flock. Nucleotide sequence analysis of the L1 hexon loop of all the FAdVisolates indicated homology (99%) with prototype strains P7-A for FAdV-2, as well as for FAdV-8b

    Molecular differentiation and pathogenicity of Aviadenoviruses isolated during an outbreak of inclusion body hepatitis in South Africa

    Get PDF
    Fowl adenovirus (FAdV) is a member of the genus Aviadenovirus and causes a number of economically important poultry diseases. One of these diseases, inclusion body hepatitis (IBH), has a worldwide distribution and is characterised by acute mortality (5% - 20%) in production chickens. The disease was first described in the United States of America in 1963 and has also been reported in Canada, the United Kingdom, Australia, France and Ireland, but until now, not in South Africa. Adenoviruses isolated from the first outbreak of IBH in South Africa were able to reproduce the disease in chicken embryo livers. The aim of the present study was to characterise the viruses and determine the pathogenicity of the FAdV strains responsible for the first reported case of IBH in South Africa. Polymerase chain reaction (PCR) amplification of the L1 loop region of the fowl adenovirus hexon gene using degenerate primer pair hexon A/B was used to identify the viruses that were isolated. Restriction fragment length polymorphism (RFLP) of the amplification products was used for the differentiation of 14 isolates of fowl adenovirus. Sequencing of the PCR products followed by amino acid comparison and phylogenetic analysis using the L1 loop region of the hexon protein was done to determine the identity of the isolates. Amino acid sequences of the hexon genes of all the South African isolates were compared with those of reference strains representing FAdV species. Amino acid comparison of 12 South Africa field isolates to FAdV reference strains revealed a high sequence identity (> 93.33%) with reference strains T8-A and 764. Two of the isolates had high sequence identity (93.40%) with reference strains P7-A, C2B and SR48. Phylogenetic analysis of the L1 loop region of the hexon protein of all 14 South African isolates was consistent with their RFLP clusters. The mortality rates of embryos challenged with 10(6) egg infective doses (EID50) FAdV 2 were 80% - 87% and mortality rates for embryos challenged with 10(5.95) (EID50) FAdV 8b were 65% - 80%

    L'analyse syntaxique de l'oral : problÚmes et méthodes

    No full text
    National audienceCette Ă©tude expose les rĂ©sultats de plusieurs mois de rĂ©flexion et d'expĂ©rimentation liĂ©es Ă  la constitution d'un corpus oral de rĂ©fĂ©rence dans le cadre du projet d'Ă©valuation des analyseurs syntaxiques Easy. La plupart des travaux sur l'analyse syntaxique automatique au cours des derniĂšres dĂ©cennies ont portĂ© sur l'Ă©crit, et l'on dispose de trĂšs peu de corpus oraux syntaxiquement annotĂ©s (Ă  notre connaissance aucun pour le français). Or, de tels corpus seraient extrĂȘmement intĂ©ressants, tant pour les Ă©tudes linguistiques, que pour l'Ă©volution des technologies de la parole, dont les « modĂšles de langage » sont souvent mis au point Ă  partir de textes Ă©crits reflĂ©tant assez mal le langage parlĂ© (par exemple le journal Le Monde). L'oral constitue un dĂ©fi majeur pour l'analyse syntaxique, mais nous montrerons que les phĂ©nomĂšnes que l'on y observe se retrouvent Ă©galement pour beaucoup Ă  l'Ă©crit, mĂȘme si c'est avec des frĂ©quences moindres. Nous faisons donc l'hypothĂšse que l'Ă©tude de l'oral peut aussi amener quelque lumiĂšre dans les zones d'ombre, souvent nĂ©gligĂ©es par commoditĂ©, de l'Ă©crit

    Potential link of single nucleotide polymorphisms (SNPs) to virulence of vaccine‐associated field strains of lumpy skin disease virus in South Africa

    Get PDF
    South Africa is endemic for lumpy skin disease and is therefore reliant on various live attenuated vaccines for the control and prevention of the disease. In recent years, wide‐spread outbreaks of vaccine‐like strains of lumpy skin disease virus (LSDV) were reported internationally, leading to an increase in the generation of full genome sequences from field isolates. In this study, the complete genomes of six LSDVs submitted during active outbreaks in the 1990’s in South Africa were generated. Based on phylogenetic analysis, the six viruses clustered with vaccine strains in LSDV Subgroup 1.1 and are subsequently referred to as vaccine‐associated. The genetic differences between the phenotypically distinct vaccine and vaccine‐associated strains were 67 single nucleotides polymorphisms (SNPs). This study characterised the location and possible importance of each of these SNPs in their role during virulence and host specificity

    Molecular differentiation and pathogenicity of Aviadenoviruses isolated during an outbreak of inclusion body hepatitis in South Africa

    Get PDF
    Fowl adenovirus (FAdV) is a member of the genus Aviadenovirus and causes a number of economically important poultry diseases. One of these diseases, inclusion body hepatitis (IBH), has a worldwide distribution and is characterised by acute mortality (5% – 20%) in production chickens. The disease was first described in the United States of America in 1963 and has also been reported in Canada, the United Kingdom, Australia, France and Ireland, but until now, not in South Africa. Adenoviruses isolated from the first outbreak of IBH in South Africa were able to reproduce the disease in chicken embryo livers. The aim of the present study was to characterise the viruses and determine the pathogenicity of the FAdV strains responsible for the first reported case of IBH in South Africa. Polymerase chain reaction (PCR) amplification of the L1 loop region of the fowl adenovirus hexon gene using degenerate primer pair hexon A/B was used to identify the viruses that were isolated. Restriction fragment length polymorphism (RFLP) of the amplification products was used for the differentiation of 14 isolates of fowl adenovirus. Sequencing of the PCR products followed by amino acid comparison and phylogenetic analysis using the L1 loop region of the hexon protein was done to determine the identity of the isolates. Amino acid sequences of the hexon genes of all the South African isolates were compared with those of reference strains representing FAdV species. Amino acid comparison of 12 South Africa field isolates to FAdV reference strains revealed a high sequence identity (> 93.33%) with reference strains T8-A and 764. Two of the isolates had high sequence identity (93.40%) with reference strains P7-A, C2B and SR48. Phylogenetic analysis of the L1 loop region of the hexon protein of all 14 South African isolates was consistent with their RFLP clusters. The mortality rates of embryos challenged with 106 egg infective doses (EID50) FAdV 2 were 80% – 87% and mortality rates for embryos challenged with 105.95 (EID50) FAdV 8b were 65% – 80%.http://www.jsava.co.zaam201

    Seminal transmission of lumpy skin disease virus in heifers

    Get PDF
    It is known that lumpy skin disease virus (LSDV) can be shed in bull semen following infection and that artificial insemination (AI) poses a biosecurity risk. It is however not known whether the use of LSDV infected semen in AI poses a biosecurity risk. The aims of the current study were to investigate whether LSDV, transmitted through semen, can infect cows and embryos.. Two controlled trials were performed simultaneously. Eleven (11) young beef heifers, naĂŻve to LSDV, were synchronized using an OvSynch protocol and inseminated with fresh semen spiked with a field strain of LSDV on day 0. Six (6) of the heifers were superovulated on Day 1 using PMSG, and embryos were flushed from these heifers on Day 6. Blood and serum samples were collected from Day 4 until Day 27 to determine the presence of LSDV by PCR and virus isolation, and the presence of antibodies against LSDV by SNT. The first clinical signs of LSD were noticed on Day 10, followed by severe generalized LSD in 3 heifers, and mild LSD in 2 more heifers. Two heifers were humanely euthanized due to severe unresponsive stranguria. LSDV was detected by PCR, virus isolation or electron microscopy in blood, embryos and organs of experimentally infected animals, and 8 heifers had seroconverted by Day 27. Two control animals were not affected. This is the first report of experimental seminal transmission of LSDV in cattle.NRF. Project number FA 200704250000.http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1865-16822015-10-31hb201

    On the universal outcome of star-formation: Is there a link between stars and brown-dwarfs?

    Full text link
    (abridged) The recent evidence obtained by Briceno et al. that star-formation in Taurus-Auriga (TA) may be producing significantly fewer brown dwarfs (BDs) per star than the ONC is investigated by setting up a realistic model stellar plus BD population and explicitly taking into account a high binary proportion and dynamical evolution in the TA groups and the ONC. The Briceno result is reproduced almost exactly despite an identical IMF in both systems because many BD-BD and star-BD binaries are disrupted in the ONC thus freeing BDs, while the TA groups remain unevolved dynamically. However, the resulting populations do not have the correct star-star, star-BD and expecially BD-BD binary properties, even if a variable BD IMF is allowed for. The conclusion is therefore that BDs need to be added as a separate population which has its own binary properties. Such an extra population can have various origins which are briefly discussed in this contribution but more fully in an associated paper.Comment: MNRAS, accepted, 23 pages, 14 figures, LaTeX, two references adde

    A modelling framework for the prediction of the herd-level probability of infection from longitudinal data

    Get PDF
    International audienceThe collective control programmes (CPs) that exist for many infectious diseases of farm animals rely on the application of diagnostic testing at regular time intervals for the identification of infected animals or herds. The diversity of these CPs complicates the trade of animals between regions or countries because the definition of freedom from infection differs from one CP to another. In this paper, we describe a statistical model for the prediction of herd-level probabilities of infection from longitudinal data collected as part of CPs against infectious diseases of cattle. The model was applied to data collected as part of a CP against bovine viral diarrhoea virus (BVDV) infection in Loire-Atlantique, France. The model represents infection as a herd latent status with a monthly dynamics. This latent status determines test results through test sensitivity and test specificity. The probability of becoming status positive between consecutive months is modelled as a function of risk factors (when available) using logistic regression. Modelling is performed in a Bayesian framework, using either Stan or JAGS. Prior distributions need to be provided for the sensitivities and specificities of the different tests used, for the probability of remaining status positive between months as well as for the probability of becoming positive between months. When risk factors are available, prior distributions need to be provided for the coefficients of the logistic regression, replacing the prior for the probability of becoming positive. From these prior distributions and from the longitudinal data, the model returns posterior probability distributions for being status positive for all herds on the current month. Data from the previous months are used for parameter estimation. The impact of using different prior distributions and model implementations on parameter estimation was evaluated. The main advantage of this model is its ability to predict a probability of being status positive in a month from inputs that can vary in terms of nature of test, frequency of testing and risk factor availability/presence. The main challenge in applying the model to the BVDV CP data was in identifying prior distributions, especially for test characteristics, that corresponded to the latent status of interest, i.e. herds with at least one persistently infected (PI) animal. The model is available on Github as an R package (https://github.com/AurMad/STOCfree) and can be used to carry out output-based evaluation of disease CPs
    • 

    corecore