53 research outputs found

    Paradoxical antiproliferative effect by a murine mammary tumor-derived epithelial cell line

    Get PDF
    [Background] Despite significant advancement in breast cancer therapy, there is a great need for a better understanding of the mechanisms involved in breast carcinogenesis and progression, as well as of the role of epigenetic contributions from stromal cells in mammary tumorigenesis. In this study, we isolated and characterized murine mammary tumor-derived epithelial and myofibroblast cell lines, and investigated the in vitro and in vivo effect of cellular soluble factors produced by the epithelial cell line on tumor cells[Methods] Morphology, immunophenotype, cytogenetics, invasiveness, and tumorigenicity of epithelial (LM-234ep) and myofibroblast (LM-234mf) cell lines isolated from two murine mammary adenocarcinomas with common ancestor were studied. The in vitro effects of LM-234ep conditioned medium on proliferation, cell cycle distribution, and expression of cell cycle proteins, were investigated in LM-234mf cells, mouse melanoma cells (B16-F10), and human cervical adenocarcinoma cells (HeLa). The in vivo anti-tumor activity of LM-234ep conditioned media was evaluated in subcutaneous tumors formed in nude mice by B16-F10 and HeLa cells.[Results] LM-234ep cells were found to be cytokeratin positive and hipertriploid, whereas LM- 234mf cells were α-smooth muscle actin positive and hypohexaploid. Chromosome aberrations were found in both cases. Only LM-234mf revealed to be invasive in vitro and to secrete active MMP-2, though neither of the cell types were able to produce progressing tumors. LM-234epderived factors were able to inhibit the in vitro growth of LM-234mf, B16-F10, and HeLa cells, inducing cell cycle arrest in G0/G1 phase. The administration of LM-234ep conditioned medium inhibited the growth of B16-F10 and HeLa tumors in nude mice.[Conclusion] Our data suggest the existence of epithelial cell variants with tumor suppressive properties within mammary tumors. To our knowledge, this is the first report showing antiproliferative and antineoplastic activities induced by tumor-derived epithelial cells.This work was supported by Cancer Research Foundation (Fundación de Investigación del Cáncer, FUNDIC), Buenos Aires, Argentina.Peer reviewe

    Glucagon-Like Peptide-1 Agonists Protect Pancreatic β-Cells From Lipotoxic Endoplasmic Reticulum Stress Through Upregulation of BiP and JunB

    Get PDF
    Chronic exposure of pancreatic beta-cells to saturated free fatty acids (FFAs) causes endoplasmic reticulum (ER) stress and apoptosis and may contribute to beta-cell loss in type 2 diabetes. Here, we evaluated the molecular mechanisms involved in the protection of beta-cells from lipotoxic ER stress by glucagon-like peptide (GLP)-1 agonists utilized in the treatment of type 2 diabetes.info:eu-repo/semantics/publishe

    MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic β-cell responses to the viral by-product double-stranded RNA

    Get PDF
    β-Cell destruction in type 1 diabetes (T1D) is at least in part consequence of a ‘dialog’ between β-cells and immune system. This dialog may be affected by the individual's genetic background. We presently evaluated whether modulation of MDA5 and PTPN2, two candidate genes for T1D, affects β-cell responses to double-stranded RNA (dsRNA), a by-product of viral replication. These genes were selected following comparison between known candidate genes for T1D and genes expressed in pancreatic β-cells, as identified in previous array analysis. INS-1E cells and primary fluorescence-activated cell sorting-purified rat β-cells were transfected with small interference RNAs (siRNAs) targeting MDA5 or PTPN2 and subsequently exposed to intracellular synthetic dsRNA (polyinosinic–polycitidilic acid—PIC). Real-time RT–PCR, western blot and viability assays were performed to characterize gene/protein expression and viability. PIC increased MDA5 and PTPN2 mRNA expression, which was inhibited by the specific siRNAs. PIC triggered apoptosis in INS-1E and primary β-cells and this was augmented by PTPN2 knockdown (KD), although inhibition of MDA5 did not modify PIC-induced apoptosis. In contrast, MDA5 silencing decreased PIC-induced cytokine and chemokine expression, although inhibition of PTPN2 induced minor or no changes in these inflammatory mediators. These findings indicate that changes in MDA5 and PTPN2 expression modify β-cell responses to dsRNA. MDA5 regulates inflammatory signals, whereas PTPN2 may function as a defence mechanism against pro-apoptotic signals generated by dsRNA. These two candidate genes for T1D may thus modulate β-cell apoptosis and/or local release of inflammatory mediators in the course of a viral infection by acting, at least in part, at the pancreatic β-cell level

    JunB Inhibits ER Stress and Apoptosis in Pancreatic Beta Cells

    Get PDF
    Cytokines contribute to pancreatic β-cell apoptosis in type 1 diabetes (T1D) by modulation of β-cell gene expression networks. The transcription factor Activator Protein-1 (AP-1) is a key regulator of inflammation and apoptosis. We presently evaluated the function of the AP-1 subunit JunB in cytokine-mediated β-cell dysfunction and death. The cytokines IL-1β+IFN-γ induced an early and transitory upregulation of JunB by NF-κB activation. Knockdown of JunB by RNA interference increased cytokine-mediated expression of inducible nitric oxide synthase (iNOS) and endoplasmic reticulum (ER) stress markers, leading to increased apoptosis in an insulin-producing cell line (INS-1E) and in purified rat primary β-cells. JunB knockdown β-cells and junB−/− fibroblasts were also more sensitive to the chemical ER stressor cyclopiazonic acid (CPA). Conversely, adenoviral-mediated overexpression of JunB diminished iNOS and ER markers expression and protected β-cells from cytokine-induced cell death. These findings demonstrate a novel and unexpected role for JunB as a regulator of defense mechanisms against cytokine- and ER stress-mediated apoptosis

    Paradoxical antiproliferative effect by a murine mammary tumor-derived epithelial cell line

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite significant advancement in breast cancer therapy, there is a great need for a better understanding of the mechanisms involved in breast carcinogenesis and progression, as well as of the role of epigenetic contributions from stromal cells in mammary tumorigenesis. In this study, we isolated and characterized murine mammary tumor-derived epithelial and myofibroblast cell lines, and investigated the <it>in vitro </it>and <it>in vivo </it>effect of cellular soluble factors produced by the epithelial cell line on tumor cells.</p> <p>Methods</p> <p>Morphology, immunophenotype, cytogenetics, invasiveness, and tumorigenicity of epithelial (LM-234ep) and myofibroblast (LM-234mf) cell lines isolated from two murine mammary adenocarcinomas with common ancestor were studied. The <it>in vitro </it>effects of LM-234ep conditioned medium on proliferation, cell cycle distribution, and expression of cell cycle proteins, were investigated in LM-234mf cells, mouse melanoma cells (B16-F10), and human cervical adenocarcinoma cells (HeLa). The <it>in vivo </it>anti-tumor activity of LM-234ep conditioned media was evaluated in subcutaneous tumors formed in <it>nude </it>mice by B16-F10 and HeLa cells.</p> <p>Results</p> <p>LM-234ep cells were found to be cytokeratin positive and hipertriploid, whereas LM-234mf cells were α-smooth muscle actin positive and hypohexaploid. Chromosome aberrations were found in both cases. Only LM-234mf revealed to be invasive <it>in vitro </it>and to secrete active MMP-2, though neither of the cell types were able to produce progressing tumors. LM-234ep-derived factors were able to inhibit the <it>in vitro </it>growth of LM-234mf, B16-F10, and HeLa cells, inducing cell cycle arrest in G<sub>0</sub>/G<sub>1 </sub>phase. The administration of LM-234ep conditioned medium inhibited the growth of B16-F10 and HeLa tumors in <it>nude </it>mice.</p> <p>Conclusion</p> <p>Our data suggest the existence of epithelial cell variants with tumor suppressive properties within mammary tumors. To our knowledge, this is the first report showing antiproliferative and antineoplastic activities induced by tumor-derived epithelial cells.</p

    Paradoxical antiproliferative effect by a murine mammary tumor-derived epithelial cell line

    Get PDF
    Background Despite significant advancement in breast cancer therapy, there is a great need for a better understanding of the mechanisms involved in breast carcinogenesis and progression, as well as of the role of epigenetic contributions from stromal cells in mammary tumorigenesis. In this study, we isolated and characterized murine mammary tumor-derived epithelial and myofibroblast cell lines, and investigated the in vitro and in vivo effect of cellular soluble factors produced by the epithelial cell line on tumor cells. Methods Morphology, immunophenotype, cytogenetics, invasiveness, and tumorigenicity of epithelial (LM-234ep) and myofibroblast (LM-234mf) cell lines isolated from two murine mammary adenocarcinomas with common ancestor were studied. The in vitro effects of LM-234ep conditioned medium on proliferation, cell cycle distribution, and expression of cell cycle proteins, were investigated in LM-234mf cells, mouse melanoma cells (B16-F10), and human cervical adenocarcinoma cells (HeLa). The in vivo anti-tumor activity of LM-234ep conditioned media was evaluated in subcutaneous tumors formed in nude mice by B16-F10 and HeLa cells. Results LM-234ep cells were found to be cytokeratin positive and hipertriploid, whereas LM-234mf cells were α-smooth muscle actin positive and hypohexaploid. Chromosome aberrations were found in both cases. Only LM-234mf revealed to be invasive in vitro and to secrete active MMP-2, though neither of the cell types were able to produce progressing tumors. LM-234ep-derived factors were able to inhibit the in vitro growth of LM-234mf, B16-F10, and HeLa cells, inducing cell cycle arrest in G0/G1 phase. The administration of LM-234ep conditioned medium inhibited the growth of B16-F10 and HeLa tumors in nude mice. Conclusion Our data suggest the existence of epithelial cell variants with tumor suppressive properties within mammary tumors. To our knowledge, this is the first report showing antiproliferative and antineoplastic activities induced by tumor-derived epithelial cells

    Genes associated with adult axon regeneration promoted by olfactory ensheathing cells: A new role for matrix metalloproteinase 2

    No full text
    The molecular mechanisms used by olfactory ensheathing cells (OECs) to promote repair in the damaged adult mammalian CNS remain unknown. Thus, we used microarrays to analyze three OEC populations with different capacities to promote axonal regeneration in cultured rat retinal neurons. Gene expression in “long-term cultured OECs” that do not stimulate adult axonal outgrowth was compared with that of “primary olfactory ensheathing cells” and the immortalized OEC cell line TEG3. In this way, we identified a number of candidate genes that might play a role in promoting adult axonal regeneration. Among these genes, it was striking that both the matrix metalloproteinase 2 (MMP2) and an inhibitor of this protease were represented. The disruption of MMP2 activity in TEG3 cells impaired their capacity to trigger axon regeneration in cultured adult retinal neurons. Furthermore, the MMP2 protein was detected in grafts of OECs that elicited robust axonal regeneration in the injured spinal cord of adult rats in vivo. These data suggest that MMP2 does indeed participate in adult axonal regeneration induced by OECs.This work was supported by Neuropharma (Tres Cantos, Madrid, Spain), Fundacion Marcelino Botin, and a grant from the Direccion General de Investigacion Cientifica y Tecnica. E.P.was supported by a fellowship from the Spanish Ministerio de Educacion y Ciencia (Formacion de Personal Universitario).Peer reviewe
    corecore