12 research outputs found
Esquemas de Representaci贸n Ontol贸gica para la Integraci贸n de Datos en los Sistemas de Informaci贸n de Planta
La complejidad de los procesos productivos sumada a la falta de integraci贸n y consistencia en los datos hacen que los Sistemas de Informaci贸n de Planta (SIP) sean sumamente dependientes de los expertos del proceso. Por este contexto, ha surgido un inter茅s en sistemas de integraci贸n de datos basados en conocimiento. A diferencia de otros autores, que proponen soluciones de mediaci贸n sem谩ntica, en este trabajo se b煤sca explotar las capacidades deductivas del razonador siguiendo un enfoque de integraci贸n dirigido por el conocimiento (knowledge-driven approach). Conceptos propios de la ingenier铆a de procesos han sido implementados con 茅xito haciendo uso de los est谩ndares y tecnolog铆as propuestas recientemente por World Wide Web Consortium (W3C) en la construcci贸n de SemanticWeb. Con el objeto de demostrar la potencialidad y el alcance de los esquemas de representaci贸n propuestos, se realizaron pruebas de razonamiento sobre un ejemplo de aplicaci贸n industrial.Fil: Roda, Fernando. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas. Centro Cient铆fico Tecnol贸gico Rosario. Centro Internacional Franco Argentino de Ciencias de la Informaci贸n y Sistemas; ArgentinaFil: Basualdo, Marta Susana. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas. Centro Cient铆fico Tecnol贸gico Rosario. Centro Internacional Franco Argentino de Ciencias de la Informaci贸n y Sistemas; ArgentinaFil: Musulin, Estanislao. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas. Centro Cient铆fico Tecnol贸gico Rosario. Centro Internacional Franco Argentino de Ciencias de la Informaci贸n y Sistemas; Argentin
Esquemas de representaci贸n ontol贸gica para la integraci贸n de datos en los sistemas de informaci贸n de planta
La complejidad de los procesos productivos sumada a la falta de integraci贸n y consistencia en los datos hacen que los Sistemas de Informaci贸n de Planta (SIP) sean sumamente dependientes de los expertos del proceso. Por este contexto, ha surgido un inter茅s en sistemas de integraci贸n de datos basados en conocimiento. A diferencia de otros autores, que proponen soluciones de mediaci贸n sem谩ntica, en este trabajo se busca explotar las capacidades deductivas del razonador siguiendo un enfoque de integraci贸n dirigido por el conocimiento (knowledge-driven approach). Conceptos propios de la ingenier铆a de procesos han sido implementados con 茅xito haciendo uso de los est谩ndares y tecnolog铆as propuestas recientemente por World Wide Web Consortium (W 3C) en la construcci贸n de SemanticWeb. Con el objeto de demostrar la potencialidad y el alcance de los esquemas de representaci贸n propuestos, se realizaron pruebas de razonamiento sobre un ejemplo de aplicaci贸n industrial.Sociedad Argentina de Inform谩tica e Investigaci贸n Operativ
Spectral Graph Analysis for Process Monitoring
Process monitoring is a fundamental task to support operator decisions under ab- normal situations. Most process monitoring approaches, such as Principal Components Analysis and Locality Preserving Projections, are based on dimensionality reduction. In this paper Spectral Graph Analysis Monitoring (SGAM) is introduced. SGAM is a new process monitoring technique that does not require dimensionality reduction techniques. The approach it is based on the spectral graph analysis theory. Firstly, a weighted graph representation of process measurements is developed. Secondly, the process behavior is parameterized by means of graph spectral features, in particular the graph algebraic connectivity and the graph spectral energy. The developed methodology has been illustrated in autocorrelated and non-linear synthetic cases, and applied to the well known Tennessee Eastman process benchmark with promising results.Fil: Musulin, Estanislao. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas. Centro Cient铆fico Tecnol贸gico Rosario. Centro Internacional Franco Argentino de Ciencias de la Informaci贸n y Sistemas; Argentin
An ontology-based framework to support intelligent data analysis of sensor measurements
In the past years, the large availability of sensed data highlighted the need of computer-aided systems that perform intelligent data analysis (IDA) over the obtained data streams. Temporal abstractions (TAs) are key to interpret the principle encoded within the data, but their usefulness depends on an efficient management of domain knowledge. In this article, an ontology-based framework for IDA is presented. It is based on a knowledge model composed by two existing ontologies (Semantic Sensor Network ontology (SSN), SWRL Temporal Ontology (SWRLTO)) and a new developed one: the Temporal Abstractions Ontology (TAO). SSN conceptualizes sensor measurements, thus enabling a full integration with semantic sensor web (SSW) technologies. SWRLTO provides temporal modeling and reasoning. TAO has been designed to capture the semantic of TAs. These ontologies have been aligned through DOLCE Ultra-Lite (DUL) upper ontology, boosting the integration with other domains. The resulting knowledge model has a modular design that facilitates the integration, exchange and reuse of its constitutive parts. The framework is sketched in a chemical plant case study. It is shown how complex temporal patterns that combine several variables and representation schemes can be used to infer process states and/or conditionsFil: Roda, Fernando. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas. Centro Cient铆fico Tecnol贸gico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Informaci贸n y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Informaci贸n y de Sistemas; ArgentinaFil: Musulin, Estanislao. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas. Centro Cient铆fico Tecnol贸gico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Informaci贸n y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Informaci贸n y de Sistemas; Argentin
A knowledge-driven approach for process supervision in chemical plants
In this work, an ontology-based framework for process supervision in chemical plants is presented. A conceptualization of equipment, control systems and hazards has been developed. This conceptual model includes the semantic of each modeled term in order to obtain a heavyweight ontology. The ontology has been formalized using Description Logic (DL). A knowledge-driven approach has been adopted in order to demonstrate how DL reasoning could be used to support process supervision, detecting and diagnosing faults, without the help of external agents. In the proposed approach, a DL reasoner adds implicit facts to the ontology through forward chaining reasoning, from the current measurements to the characterization of hazards. Additionally, the system is able to check knowledge consistency and formally explain the obtained results. The system functionality has been illustrated in the Tennessee Eastman process.benchmark.Fil: Musulin, Estanislao. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas. Centro Cient铆fico Tecnol贸gico - CONICET - Rosario. Centro Internacional Franco Argentino de Ciencias de la Informaci贸n y Sistemas; ArgentinaFil: Roda, Fernando. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas. Centro Cient铆fico Tecnol贸gico - CONICET - Rosario. Centro Internacional Franco Argentino de Ciencias de la Informaci贸n y Sistemas; Argentin
Selection of controlled variables: A novel perspective based on the singular energy of weighted graphs
The optimal selection of controlled variables is a well-known plant-wide control subproblem. In this paper, a novel approach based on spectral graph theory is proposed. This strategy is useful from both graphical and mathematical point of views. It is shown here that if the closed-loop process is represented by a specific weighted graph, deviations in plant variables are bounded by the graph singular energy. Moreover, this graph-based methodology supports the fast interpretation of the magnitude and direction of influences between process variables at steady state. The suggested spectral approach is compared with the recently proposed minimum square deviation (MSD) methodology in detail. Indeed, both strategies have strong structural and behavioral resemblances, i.e. reducing specific deviations and improving the conditions of the subprocess to be controlled. The introduced graph representation is tested in the Shell oil fractionator process, giving a complete set of evaluations and results.Fil: Zumoffen, David Alejandro Ramon. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas. Centro Cient铆fico Tecnol贸gico Rosario. Centro Internacional Franco Argentino de Ciencias de la Informaci贸n y Sistemas; ArgentinaFil: Musulin, Estanislao. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas. Centro Cient铆fico Tecnol贸gico Rosario. Centro Internacional Franco Argentino de Ciencias de la Informaci贸n y Sistemas; Argentin
Closing the Information Loop in Recipe-Based Batch Production
In addition to the basic regulatory functions, a batch control system must support production planning and scheduling, recipe management, resource allocation, batch report generation, unit supervision and exception handling. A closed-loop framework is presented in this work that integrates decision support tools required at the different levels of a decision-making hierarchical batch control system. Specifically, the proposed framework consists of a reactive batch scheduler (MOPP) and a fault diagnosis system (ExSit-M) developed by the Universitat Polit猫cnica de Catalunya, and a S88-recipe-based coordinator (JGrafchart) developed by the Lund University. These tools need to exchange information to obtain optimal utilization of the production plant. The complete integrated system is built using a general recipe description and other guidelines from ISA S88 standard