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In the past years, the large availability of sensed data highlighted the need of computer-aided systems
that perform intelligent data analysis (IDA) over the obtained data streams. Temporal abstractions
(TAs) are key to interpret the principle encoded within the data, but their usefulness depends on an
efficient management of domain knowledge. In this article, an ontology-based framework for IDA is
presented. It is based on a knowledge model composed by two existing ontologies (Semantic Sensor
Network ontology (SSN), SWRL Temporal Ontology (SWRLTO)) and a new developed one: the Temporal
Abstractions Ontology (TAO). SSN conceptualizes sensor measurements, thus enabling a full integration
with semantic sensor web (SSW) technologies. SWRLTO provides temporal modeling and reasoning. TAO
has been designed to capture the semantic of TAs. These ontologies have been aligned through DOLCE
Ultra-Lite (DUL) upper ontology, boosting the integration with other domains. The resulting knowledge
model has a modular design that facilitates the integration, exchange and reuse of its constitutive parts.
The framework is sketched in a chemical plant case study. It is shown how complex temporal patterns
that combine several variables and representation schemes can be used to infer process states and/or
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1. Introduction

Sensing and communication technologies, such as “wireless
sensor networks”, have witnessed explosive growth in the recent
past. These technologies are empowering information systems
from many domains such as health care, industrial control systems
and environmental monitoring, to collect and store large volumes
of data (Molina & Flores, 2012). In addition, the recently developed
sensor web technologies enable sensor measurements from all
kind of sources to be available for sharing through web services
(Sheth, Henson, & Sahoo, 2008; Ye et al., 2012). However, although
these data is a very valuable asset for process analysis and super-
vision, it is usually not properly exploited. Therefore the need for
computer-aided systems that extract useful knowledge from that
large amount of available data becomes evident.

Intelligent data analysis (IDA) is and emergent research field
that aims at feeling the gap between data generation and data
comprehension, providing an efficient mean of matching raw data
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to process knowledge Lavrac, Keravnou, and Zupan (1997). IDA is
directed toward application of knowledge for data interpretation.
It takes advantage from different tools such as statistics, pattern
recognition, data mining, machine learning and data abstraction;
to discover the principles that are encoded within the sensed data.

The choice of a particular data representation has a large impact
on efficiency and simplicity of IDA tasks (Lin, Keogh, Lonardi, &
Chiu, 2003). Qualitative representation and reasoning has proven
to be an excellent practice to embrace dynamic processes complex-
ity since it relies on abstracted views of signals behavior, instead
on just raw sensor outputs. These views are temporal abstractions
(TAs) that interpret past and present states and trends that are
relevant for the given set of goals. TAs are interval based
representations having a wide range of complexity, from relatively
simple level shifts to trend compound abstractions based on
combinations of more primitive abstractions (Calbimonte, Yan,
Jeung, Corcho, & Aberer, 2012; Cheung & Stephanopoulos, 1990;
Janusz & Venkatasubramanian, 1991; Lin et al., 2003; Meléndez &
Colomer, 2001; Molina & Flores, 2012; Shahar, 1994). One impor-
tant advantage of using qualitative representation (QR) for IDA is
that it enables artificial intelligence symbol-based reasoning,
which brings a transparent way of capturing the process condition.
TAs can be interpreted by matching against predefined templates
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or guidelines (Haimowitz & Kohane, 1996; Seyfang & Miksch,
2004), or reasoned within a higher context (Bellazzi, Larizza,
Magni, Montani, & Stefanelli, 2000).

Very different domains such as medicine (Stacey & McGregor,
2007) and Process System Eng. (PSE), have shown an special interest
in IDA solutions. Works from these areas present different but com-
plementary approaches for the analysis and interpretation of sensor
measurements. Qualitative Trend Analysis (QTA) is an outstanding
method widely studied in PSE field (Cheung & Stephanopoulos,
1990; Gamero, Melendez, & Colomer, 2011; Janusz &
Venkatasubramanian, 1991; Maurya, Paritosh, Rengaswamy, &
Venkatasubramanian, 2010; Venkatasubramanian, Rengaswamy,
Kavuri, & Yin, 2003; Villez, Venkatasubramanian, & Rengaswamy,
2013; Villez et al., 2013). QTA can identify a set of basic trends in
the measured variable by looking at it derivatives signs. We call
these kind of method shape-based since they depend on the shape
of the observed signals. Note that these methods do not make use
of domain knowledge in the abstraction process.

However, in medicine, IDA approaches rely more on heuristic
knowledge (Esfandiary, Babavalian, Moghadam, & Tabar, 2014;
Stacey & McGregor, 2007) that is captured by different representa-
tion schemes ranging from elaborated ontologies (Shahar, 1994;
Shahar & Musen, 1996) to more simple point schemadata
(Seyfang & Miksch, 2004; Seyfang et al., 2001). These techniques
involve taking patient raw time-stamped data and using domain
knowledge to generate temporal abstractions; such as “severe ane-
mia for 3 weeks in the context of administering the drug AZT”.
Shahar (1994) presented one of the first works in that matter;
the author calls it the “Knowledge-based Temporal abstraction
theory (KBTA)”. The core of KBTA is a set of five inference mecha-
nisms (Temporal Context Formation, Contemporaneous Abstrac-
tion, Temporal Inference, Temporal Interpolation, Temporal
Pattern Matching) supported by an ontology with 5 concepts
(Primitive parameters, Events, Contexts, Abstract Parameters, and
Patterns). KBTA was implemented in a computer program called
RESUME. It uses a frame-based languages to formalize the ontology
concepts, and inference mechanisms are encoded with external
rule-based tools. A shortcoming of this approach is that the knowl-
edge specification and the inference mechanisms are decoupled.
Furthermore, these formalisms are not sufficiently expressive to
represent complex domain knowledge and temporal entities. In
RESUME, inferences are also bounded by constraints such as the
closed-word and the unique-name assumptions that may lead to
wrong deductions.

O’Connor, Hernandez, and Das (2011a) deal with these issues by
means of semantic web technologies, which take advantage of
Description Logic (DL) reasoning (Krotzsch, Simancik, & Horrocks,
2012). In particular, the authors make use of OWL' (Web Ontology
Language) and SWRL? to integrate the specification and querying
components of the KBTA methods. They showed how SWRL built-
in functions are suitable to implement the five KBTA inference mech-
anisms, including a method for adding TAs on line. However, besides
the OWL based implementation, the authors do not introduce
changes to the original lightweight ontology of KBTA.

As shown, the above IDA approaches are developed to work
with specific TA schemes and therefore they are not flexible
enough to support different time series representations and
abstraction levels. On the other hands, none of these efforts have
considered an important goal of IDA: to extract knowledge from
different data sources.

To address this issues, in this work an ontology-based
framework to support intelligence data analysis of sensed data is

! http://www.w3.org/TR/owl-features/.
2 http://www.w3.org/Submission/SWRL/.

presented. It relies in a novel knowledge model composed by four
ontologies: Temporal Abstractions Ontology (TAO), Semantic
Sensor Network ontology (SSN) (Compton et al., 2012), SWRL Tem-
poral Ontology (SWRLTO) (O’Connor & Das, 2011) and DOLCE
Ultra-Lite (DUL) (Masolo, Borgo, Gangemi, Guarino, & Oltramari,
2003). The framework uses temporal reasoning to search and clas-
sify qualitative temporal patterns, that help to infer the process
state or condition.

The knowledge model is able to manage several TA schemes;
both, knowledge-based temporal abstractions and shaped-based
temporal abstractions are supported. This not only brings flexibil-
ity, but also enhances the analytical skills of the tool, as dynamic
properties can be analyzed by combining different abstract views
of the process.

Another important feature of the proposed framework is the
integration with SSN that enables a full compatibility with sensor
web technologies. Through it, the knowledge base have access to
information about sensors and sensor observations from all kind
of sources.

DOLCE Ultra-Lite has been employed as the upper-level
ontology of the proposed framework. As a featured foundational
ontology, DOLCE eases the understanding of the model and boosts
future integrations with a large amounts of domains ontologies
that are based on it.

Finally, we present a set of ontological correspondences for a
full semantic alignment between the aforementioned ontologies.

The paper is organized as follows. Section 2 describes the main
components, features and requirement of the proposed IDA frame-
work. Section 3 introduces the ontologies used. In Section 4 these
ontologies are semantically aligned to form a novel knowledge
model. In Section 5, the framework is illustrated in a simple exam-
ple in the PSE domain. Finally, in Section 6 concluding remarks are
given.

2. Ontology-based framework for IDA

Any IDA system must cope with three interrelated issues: data
validation, data representation and data interpretation. In this
work, these issues were met by a novel IDA framework that takes
advantage of the latest semantic technologies.

Fig. 1 depicts the work-flow in the proposed framework. The
IDA process starts with the sensing tasks over the dynamic system
under study. It is usually implemented by automatic sensor
devices, but it can also be achieved manually. In each observation,
a sensor measures a system property and provides an estimated
value, a time stamp and some contextual data such as a measure-
ment quality estimation. These observation records are validated
and stored in large repositories (usually implemented as time ser-
ies databases). Validation involves some data pre-processing tasks
such as noise reduction, outlier detection and the rectification of
input errors. To properly evaluate the stored measurements, the
corresponding sensors metadata must be attached to observation
records. This information should include sensors precision, opera-
tion range, Eng. units, etc. Data acquisition and validation tasks are
high domain-dependent and therefore they must be specifically
designed for each application environment. For this reason, no
implementation guidelines are proposed here for these tasks.
Instead, a reusable formal knowledge model for data representa-
tion is presented (see Section 3). It provides a foundational
structure for the knowledge base (KB) where all the acquired
knowledge is stored. As depicted in the figure, the conceptualiza-
tion is composed by a set of three main ontologies:

1. An ontology of measurements, incorporated by semantically
annotating the observation records.
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Fig. 1. Work-flow in the proposed IDA framework.

2. An ontology of TAs for different representation schemes and
abstraction levels.
3. An ontology of temporal concepts that assists reasoning tasks.

Since data came from heterogeneous sources, the entities of the
KB must be integrated in a consistence model expressed in a
computer-interpretable language.

In this framework the responsibility of populate the KB with
qualitative episodes lies in a specialized agent (i.e. TA representa-
tion Agent) that must be trained to detect and interpret process
trends using a specific abstraction method. It takes raw data and/
or TAs as inputs and generates qualitative episodes in a higher
abstraction level. One important source of knowledge for TAs
creation came from the domain experts, but it can also be obtained
by machine learning methods. The expertise of these actors are
valuable to state a mappings from the operational data to the
abstract concepts. These expert knowledge can also be integrated
in the KB as Horn-like rules that aid the TA representation tasks.

The reasoning tasks are performed by different inference
engines. A DL reasoner maintains the KB consistency and provides
a sound and complete classification scheme with satisfactory
measures of computer complexity. Nevertheless, the DL inference
routines are not able to process temporal dimensions on concepts
or relations. Therefore, a temporal reasoning layer must be incor-
porated. Temporal reasoning is essential for IDA representation
and interpretation tasks because it enables transparent and consis-
tent temporal pattern matching. In addition, TA representation
agents may need to implement additional reasoning routines in
order to follow up specific representation methods.

Finally, a query engine is needed so as clients could perform
queries about the measurements and qualitative representations
of the process variables and states.

2.1. Implementation technology

The chart in Fig. 2 shows the central components and technol-
ogies proposed to implement the aforementioned tasks. As any
knowledge based system, this IDA framework involves a knowl-
edge base, an inference engine or reasoner and some interfaces
to other computer systems or users.

Knowledge Base It is composed by: (1) The classes, properties and
constraints that define the domain concepts (i.e.
TBox statements), (2) A set of ontological
assertion axioms that describe the instances for
particular applications (i.e. ABox statements),

KNOWLEDGE-BASED SYSTEM FOR
INTELLIGENT DATA ANALYSIS

KNOWLEDGE BASE INFERENCE ENGINE INTERFACES
Horn-like Query
Dt Rules Engi
DL Reasoner || Rule Engine TS
OWL SWRL SQWRL

Fig. 2. Implementation technology for the proposed system.

(3) A set of if-then rules to infer new facts. Onto-
logical statements are implemented in OWL2, a
sound and complete language with a formal
semantic based in SROIQ Description Logic (DL)
(Horrocks, Kutz, & Sattler, 2006). Rules
expressed as OWL axioms are limited by some
restrictions that enable the language to be
decidable.® Thus, Semantic Web Rule Language
(SWRL) (Horrocks et al., 2004) has been consid-
ered to formulate the KB rules.

Any off-the-shelf DL reasoner can be used to pro-
cess OWL axioms; most of then are based on the
Tableaux Decision algorithm (Horrocks & Sattler,
2007). However, SWRL expressions require a
SWRL-enabled reasoner like Pellet or Kaon, or
the addition of a rule engine such as Jess or
Drool.

The Semantic Query Web Rule Language
(SQWRL) (O’Connor & Das, 2009), a SQL-like
language for querying ontologies, is proposed
as the interface for knowledge extraction.

Inference engine

Interface

3. Ontological modeling

Ontological modeling has been carried out following the five
ontological principles stated by Gruber (1995): Clarity to

3 http://www.w3.0rg/TR/2009/REC-owl2-syntax-20091027/#Global_Restrictions_
on_Axioms_in_OWL_2_DL.
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communicate the intended meaning of defined terms, Coherence to
sanction inferences that are consistent with definitions, Extensibil-
ity to anticipate the use of the shared vocabulary, Minimal Encoding
Bias to be independent of the symbolic level and Minimal Ontolog-
ical Commitments to make as few claims as possible about the
world.

The development process has been based on the methodology
presented by Noy and McGuinness (2001). According to this, the
following tasks were accomplished:

Step 1. Determination of the scope and domain of the ontology.

Step 2. Search and evaluation of existing ontologies that fit in the
scope.

Step 3. Construction a new conceptualization to consider concepts
not covered by existing ontologies.

Step 4. Alignment of the selected ontologies in a single and
consistent knowledge model.

Step 5. Model implementation using OWL and SWRL.

Regarding to the scope, three essential knowledge requirement
have been identified to support IDA.

1. A scheme to capture the quantitative raw data produced by
sensing tasks. In this regard, it is useful to consider the estab-
lished standards to share measurements and sensor data.

2. A scheme for temporal modeling and reasoning. It must deal
with the representation of temporal entities (e.g. time instants,
periods, duration, etc.) and with the interpretation and process-
ing of temporal relations (e.g. before, after, during, etc.).

3. A scheme to store and manage complex temporal abstractions.
Whit such a scheme, the IDA system can store and manage
qualitative representation of dynamic properties at different
abstraction levels. This scheme should include information
about the methods and actors responsible for the produced
abstractions.

Several conceptualizations that partially met the above model-
ing requirement have been taken into account. Next subsections
present a brief description of the reused and new conceptualiza-
tion and explains how they were aligned to built a novel ontology.

3.1. Sensor measurements modeling

The input of an IDA system is a stream of time-stamped values
usually produced by one or more sensors mounted to observe a
significant process variable. Sensors are different to other technol-
ogies, such as services in service-oriented architectures, because of
its event based nature and the temporal and spatial dimensions
that need to be considered. Consequently, in recent years there
has been a rising interest in ontologies and other semantic
technologies to improve the integration and communication
between sensor networks (Compton, Henson, Neuhaus, Lefort, &
Sheth, 2009; Ye, Coyle, Dobson, & Nixon, 2007). The basic idea
under these approaches is annotating sensor data with spatial,
temporal, and thematic semantic metadata that increase interop-
erability as well as provide contextual information.

One of the most remarkable works in that matter is the
Semantic Sensor Network (SSN) ontology (Compton et al., 2012).
SSN (see Fig. 3) targets at the formal and machine-processable rep-
resentation of sensor capabilities, properties, observations and
measurement processes. SSN allows the network, its sensors and
the resulting data to be organized, installed and managed, queried,
understood and controlled through high-level specifications. The
SSN ontology has implicated a large conceptualization effort to
merge sensor-centric and observation-centric approaches. In order
to do this, SSN leverages the Sensor Web Enablement (SWE) (Botts,

Percivall, Reed, & Davidson, 2008) standard. It was formalized
using OWL2 and is available as a single OWL File at http://purl.ocl-
c.org/NET/ssnx/ssn.

The SSN ontology is resolved around the Stimulus-Sensor-Obser-
vation pattern (SSO) presented by Stasch, Janowicz, Broring, Reis,
and Kuhn (2009). This pattern was developed following the princi-
ple of minimal ontological commitments to make it reusable for a
variety of application areas. It introduces a minimal set of classes
and relations centered around the notions of stimuli, sensor, and
observation. Stimuli are detectable changes in the environment that
a sensor observes to infer information about environmental prop-
erties and construct features of interest. Thus, Stimuli play the role
of a link to the physical environment. In SSN, Stimuli is considered
as an Event and is represented by the equivalent classes ssn:Stimuli
and ssn:Sensorinput.

Observation is defined as “a Situation in which a Sensing method
has been used to estimate or calculate a value of a Property of a Fea-
ture Of Interest”. The class ssn:Observation provides the structure to
represent a single observation, hence it is related to a single mea-
surement (i.e. class ssn:SensorOutput) and attributed to a single
property (i.e. classes ssn:Property and ssn:FeatureOfInterest) and to
a particular ssn:Sensor.

A ssn:FeatureOfinterest represents a real world phenomena, it
can be events (e.g. a reaction) or objects (e.g. an equipment) but
not qualities. ssn:Property is defined as the quality of the phenom-
ena to be measured (such as temperature or pressure).

The result of the sensing process is modeled by the class
ssn:SensorOutput. Concrete data values (e.g. “30°C”, “60 mph”,
etc.) are represented through a hasValue relationships to an Obser-
vationValue and then through the data property DUL:hasRegionDa-
taValue to a XML Scheme data type.

Information about observation times is represented by means of
two object properties, ssn:observationSamplingTime and/or
ssn:observationResultTime, that link a ssn:Observation with a time
instant. The first property points the time at which the observation
has been made, while the second property points at the time at
which the result is available. It is also possible to provide some
information on the quality of an observation through the ssn:qual-
ityOfObservation property.

According to the SSO pattern, a ssn:Sensor is defined as an entity
that transforms an incoming stimulus into another representation.
To do so, sensors implements a specific method that results in the
estimation, or calculation of the value of the phenomena. This pro-
cess is represented by the class ssn:Sensing and is related with the
sensor by the relation ssn:implementedBy and its inverse ssn:imple-
ments. In most of the cases sensors are implemented with physical
devices. In SSN these are represented by the class ssn:SensingDevice
which is a subclass of both ssn:Sensor and ssn:Device. The ssn:Device
class describes an abstract device and inherits all the properties of
the class ssn:System (i.e. sub-components, platform to which a sys-
tem is attached, deployment in which a system participates, oper-
ating and survival range). SSN also includes several classes that
describe the measurement capabilities of the ssn:Sensor such as
ssn:Sensitivity, ssn:Accuracy and ssn:MeasurementRange.

3.2. Temporal modeling and reasoning

A proper temporal model must be a principled model that
enforces a consistent representation of temporal information in
the system. Temporal modeling is key in IDA because both sensor
measurements and qualitative representations need to be placed
on a temporal dimension so that reasoners can interpret and pro-
cess them.

Although, OWL is a powerful standardized technology for repre-
senting information and reasoning with it, this has very limited
support for temporal information modeling. In fact, OWL only
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Fig. 3. Partial overview of the SSN conceptualization (UML diagram).
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Fig. 4. SWRL Temporal Ontology.

allows data values to be typed as basic XML Schema dates, times or
durations.* Additionally, SWRL includes some basic operators for
manipulating time points, but time intervals are no supported. As
a consequence, several novel approaches have been presented to
overcome these OWL shortcomings (Artale & Franconi, 2000;
Anagnostopoulos, Batsakis, & Petrakis, 2013; Batsakis & Petrakis,
2010; Batsakis, Stravoskoufos, & Petrakis, 2011; O’Connor & Das,
2011; Papadakis, Stravoskoufos, Baratis, Petrakis, & Plexousakis,
2011).

In this work, the SWRL Temporal Ontology (SWRLTO) (O’Connor
& Das, 2011) has been used because it is a lightweight solution that
provides a simple scheme to operate over temporal information in
queries and rules. SWRLTO is an open source OWL ontology that
can be layered on existing ontologies without requiring they to
be significantly rewritten. In fact, it has been successfully applied
to several works on medicine (O’Connor et al., 2011a, 2011b;
Subirats et al., 2013; Weichert, Mertens, Walczak, Kern-Isberner,
& Wagner, 2013).

SWRLTO is based on the valid-time temporal model (Snodgrass,
1995). In this model, every temporal fact can be associated with an
instant or an interval denoting the Fact’s Valid-Time. These tempo-
ral references are known as the Valid-Time as the fact is held to be
true or valid during that period. No conclusions can be made about
the fact for time regions outside of this. The SWRL Temporal Ontol-
ogy provides OWL with the tools for representing all the entities
defined by this model. Fig. 4 shows its mains classes and properties
using UML notation. The class swrlto:ValidTime has two subclasses:
swrlto:Validinstant and swrlto:ValidPeriod. A Valid Instant denotes a
point on a time-line. A Valid Period models the time between two
instants. These are specified by the swrlto:hasStartTime and
swrlto:hasFinishTime date-time properties. The swrlto:Granularity
class represent the unit of measure for temporal datum.

4 XML Schema. http://www.w3.org/TR/xmlschemal1-1/, 2009.

Table 1

Allen’s temporal relations. i and j are temporal intervals. i starts at the time point i
and ends at i, while j starts at j; and ends at j,. It is assumed that is < i, and j; < j,.
Operators labeled with (x) are meaningful to relate both instants and intervals.

Relation Pictorical Example Relations on Endpoints Inverse

i before j (¥) i is< s Jj after i (*)
i
i meets j i le = Js j metBy i
J
i overlaps j i iy < Js < e Nie < Je j overlappedBy i

i starts j (%) a is =Js Nie < Je J startedBy i (¥)

i during j (*) i is > Js Nie < Je J contains i (¥)
J

i finishes j (*) i s < Js Nie = Je Jj finishesBy i (*)
J

i equals j i %s =75 N =7,

Regarding the temporal reasoning scheme, SWRLTO imple-
ments a set of SWRL built-in predicates to handle temporal
relations. Most of them are based on the Allen algebra (Allen,
1983), which defines 13 temporal operations that allow to relative
positioning any pair of intervals by comparing it starting and end-
ing points (see Table 1). Although this algebra was not originally
intended to relate an interval with an instant or even two instants,
SWRLTO built-in predicates enable it for some operators. Addition-
ally, SWRLTO provides some built-in functions to perform granu-
larity conversion and duration calculations at varying granularity.

3.3. TA modeling

Literature does not present many works about ontology-based
TA modeling. The conceptualization proposed by Shahar and
Musen (1996) for the KBTA method is perhaps the most relevant
contribution among the few works on that matter. Here, a novel
ontology to formally represent the semantic of temporal abstrac-
tions is presented. Thought it is founded on the basic principles
of KBTA's inference mechanisms, the proposed approach aims at
a more flexible modeling that also supports shaped-based methods
(such as QTA or QRT) as well as ad hoc machine learning-based
methods. The presented, is a DL formal model that leverages the
reasoning capabilities of semantic web technologies and that it is
easily integrable to others OWL ontologies. It is called Temporal
Abstractions Ontology (TAO).

Fig. 5 shows a diagram of the proposed conceptualization using
UML notation. Temporal abstractions are qualitative representa-
tions (QRs) that provide the means to integrate domain context
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Fig. 5. Temporal Abstraction Ontology.

to analyze real time data. QRs are defined as the description of a
time series by means of contiguous Episodes (Villez et al., 2013).
In TAO, QR Schemes are modeled by the class tao:QR Scheme which
is linked to a set of primitives forming the used alphabet, and to
the method/s that can be employed to obtain it.

Episodes are temporal abstractions of data stream slices
obtained by a heuristic or formal method. They are formally
defined as a set of two elements: a time interval, named temporal
extent, and a qualitative context, providing the temporal extension
with significance (Williams, 1986).

In the ontology, this concept is modeled by the class tao:Episode.
The temporal extent is given by a swrlto:ValidTime while the qual-
itative context is given by a tao:Primitive. Like ssn:Observation,
tao:Episode is associated with the property of the tao:feature of
interest that is abstracted by the episode.

Primitives are the elemental symbols of the alphabet used for a
given QR scheme. In the ontology, these are specified by the rela-
tion tao:usesPrimitive from tao:QR Scheme to tao:Primitive. For
instance, in many derivatives-based representation primitives are
described by alphabetic characters such as A, B, C, etc. In OWL,
these symbols can be stored as XML scheme data linked with the
primitive through the relation tao:Symbol. By definition, an episode
of a QR is characterized by a single primitive. The primitive of an
episode is stated by the object property tao:hasPrimitive.

The class tao:TA Representation Agent has been defined in order
to trace the abstraction process. A TA representation agent is an
entity representing the author of a given sequence of episodes. It
is not limited to software agents and it can also be a human expert
performing a heuristic analysis. Anyhow, every TA agent performs
a specific sequence of tasks that result in a qualitative representa-
tion of the input data stream. This process is modeled by the class
tao:TA Method.

The input of a TA method is a data stream representation that
can be in a quantitative form, such as the actual sensor measure-
ments, or in a qualitative form, such as the episodes in a lower
abstraction level (see the relation tao:usesAsinput from tao:TA
Method to tao:Data Stream Representation Scheme). For that reason,
the range of the object property tao:isAbstractionOf is defined as a
disjunction of tao:Observations and tao:Episodes. The latter let to
build qualitative episodes from a set of episodes in a lower abstrac-

tion level, forming a multilayer abstraction hierarchy (see the
recursive relation on the class tao:Episode).

The output of the TA method must be a qualitative representa-
tion. In fact, the relation tao:hasOutput (and its inverse) allows to
state which method/s can be implemented in order to obtain a par-
ticular QR Scheme. Two categories of TA methods have been
defined by subsuming the class tao:TA Method with the classes
tao:Shape-based Method and tao:Knowledge-based Method.

Shape-based methods depend on the shape of the observed
signals. They can identify a finite set of shapes in the observed var-
iable (e.g. a rising or a decreasing trend), once detected a symbol is
associated with the correspondent time interval. Almost no
domain knowledge or expertise is required to obtain these abstrac-
tions. In fact, they can be applied to different domains without any
modification in its routine. Example of shape-based methods are
QTA (Cheung &  Stephanopoulos, 1990; Janusz &
Venkatasubramanian, 1991; Meléndez & Colomer, 2001) and the
slope-based representation (Calbimonte et al., 2012).

Knowledge-based methods must be specifically defined for
each domain. The abstractions are real interpretations of the
process dynamic that rely on the expertise captured by the repre-
sentation agent. They are strongly dependent on the context and
need a sound analysis of historical data. These methods are usually
implemented with a set of If-Then rules or may be supported by
model-based tools. Examples of Knowledge-based TA methods
are can be found in Shahar and Musen (1996), Montani, Leonardi,
Bottrighi, Portinale, and Terenziani (2013) and Musen, Middleton,
and Greenes (2014).

Quality is an indicator of the data reliability highly dependent
on the method followed to obtain it. Many modern sensing sys-
tems provide a measure of the observation quality® based on the
sensor measurement properties regarding the observed value.
Observation quality is usually expressed by categories like good,
bad and uncertain, sometimes followed by a code giving some insight
(e.g. Not Connected, Configuration Error, EU Units Exceeded, etc.). Like
observations, qualitative episodes are estimations of a property

5 Observation Quality is considered by the O&M standard through the attribute
resultQuality, equivalent to ssn:qualityOfObservation.
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under study represented in a particular abstraction level, thus they
should also have an associated quality value. In fact, TA quality
should be tied to the percentage of good data available to their
calculus. In the proposed framework, it can be stated by a set of
SWRL rules so that inference engines can automatically deduce
them. In that way, the quality of the data sources is dragged into
the abstraction process.

In the proposed framework, the arguments to set the quality of
TA Episodes are expressed by a set of SWRL rules, thus enabling
inference engines to deduce them.

It is important to note that with a proper instantiation, the pro-
posed conceptualization enables different representation
approaches such as the Triangular Episodes of Cheung and
Stephanopoulos (1990) or Symbolic Aggregate Approximations of
Lin et al. (2003). These representations can be stored in the same
KB as alternative views of the process under study.

Once the ontologies that support the knowledge structure have
been determined, they must be integrated into a single conceptu-
alization. This procedure is explained in the following section.

4. Semantic alignment

The proposed framework reuses the aforementioned knowledge
models. However, since these ontologies have been developed to
meet specific needs under particular domains and following differ-
ent approaches, they had to be semantically aligned. Ontology
alignment can be defined as a set of correspondences between
two ontologies (Shvaiko & Euzenat, 2005). A correspondence states
a relation hold between two entities, one from each ontology, such
as equivalence (=); more general (2) or disjointness ().

In this work, a semantic alignment method based on an
upper-level ontology has been employed. Since upper-level ontol-
ogies (i.e. foundational ontologies) are logic formalization of very
general concepts shared across different domains, in ontology
alignment, they act as external sources of common knowledge.
As a semantic technique, it maps concepts based on the analysis
of interpretations, and not on labels, as in syntactic matching. In
particular, SSN, TAO and SWRLTO have been aligned using DOL-
CE + DnS Ultralite ver. 3.27 (DUL), a simplified version of DOLCE
(Descriptive Ontology for Linguistic and Cognitive Engineering)
(Masolo et al., 2003). It has been chosen for the following reasons:

e It is a comprehensive ontology that covers many domains and
fields of research.

o It has a rigorous conceptualization that facilitates the interpre-
tation of the domain primitives.

e It boss further alignment and reuse as many ontology-based
frameworks are already based on it (e.g. WordNet).

o SSN, one of the biggest component of this framework is already
aligned with DUL.

The alignment has been performed as follows: first, the upper
entities of DUL and SWRLTO have been aligned in order to provide
DOLCE with a time model. Then, SSN and TA have been aligned
with the resulting upper-level ontology.

4.1. SWRLTO-DUL alignment

In this subsection, the semantic alignment between SWRLTO
and DUL is given using DL notation. Since DUL is founded upon
the concepts of the DOLCE Lite-Plus, the possible mappings
between SWRLTO and DOLCE have been also analyzed. However,
it must be stressed that only the SWRLTO-DUL mappings are

needed for implementing the proposed framework. alignment of
classes,

swrlto : ValidTime = dul/dolce : Time Interval (1)
swrlto : Granularity C dul : Unit of measure (2)
swrlto : Granularity C dolce : non-physical-object (3)
swrlto : ExtendedProposition 13 (dul : Quality U dul : Situation)  (4)
swrlto : ExtendedProposition = dolce : Perdurant (5)

alignment of object properties,

swrlto : hasValidTime 3 dolce : temporal-location (6)
swrlto : hasValidTime 3 dul : is observable at (7)
swrlto : hasGranularity C dul/dolce : has region (8)

alignment of data properties,

swrlto : hasStartTime C dul : has interval date 9)
swrlto : hasFinishTime C dul : has interval date (10)
swrlto : hasTime C dul : has interval date (11)

It must be noted that this alignment is not straightforward nor
the correspondences are unique as it has to deal with two
important issues: (1) SWRLTO and DUL concepts are in a similar
abstraction level (i.e. they contain foundational concepts) and the
formal semantic of SWRLTO is not provided. (2) These ontologies
consider different representation of temporal information. DOLCE
(and thus DUL) adopts a 4D-fluent approach (Masolo et al., 2003)
while SWRLTO is presented as a reification solution (O’Connor &
Das, 2011).

In 4D-fluent, concepts in time are represented as 4-dimensional
objects with the 4th dimension being the time. It divides the world
in two basic categories: endurants and perdurants (also called fluent
or occurrent). The former represent information that do not change
over time while the latter are entities that extend in time by accu-
mulating different “temporal parts”. In this way, changes occur on
the properties of the temporal part keeping the entities of the static
part unchanged (Hawley, 2001).

On the other hand, the knowledge model of SWRLTO is quite
flexible and it does not have constraints that prevent from the
use of other similar approaches. In fact, the meaning of a dolce:
Perdurant is consistent with the definition of the concept swrito:
Extended Proposition “entities that can extend over time”. For this
reason, these concepts have been mapped as equivalent.

Another important correspondence has been defined between
the classes swrlto:ValidTime and dul:Time Interval. Even thought
swrlto:ValidTime seems to be a more general concept, as it involves
time instants and periods, a Time Interval in DOLCE is defined as
“any region in a dimensional space that aims at representing time”.
Due to this semantic agreement, a correspondence has been stated
between them.

Finally, it is stressed that thanks to this alignment any domain
ontology, new or existent, based on DOLCE can incorporate tempo-
ral reasoning capabilities. Furthermore, since the alignment works
on upper-level concepts, it can be achieved without any modifica-
tion of the domain ontologies. This is possible because, every
dolce:perdurant member having a dolce:Time interval as temporal
location can now be interpreted as an swrlto:Extended Proposition
having a swrlto:Valid Time, thus enabling SWRLTO built-in func-
tions to be used in rules or queries to reason over temporal facts.

4.2. SSN-DUL alignment

The W3C incubator group developed SSN subsuming its
concepts and properties to DUL, so these ontologies are already
aligned. The following is a list of the most important correspon-
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dences for classes that were presented in Compton et al. (2012).
Here, they are transcribed using DL notation.

ssn : Sensor C dul : PhysicalObject (
ssn : Obserwvation C dul : Situation (
ssn : SensorQutput C dul : InformationObject (
ssn : Sensorlnput C dul : Event (
ssn : Process C dul : Method (
ssn : FeatureOfInterest C (dul : Event U dul : Object) (
ssn : Property C dul : Quality (
ssn : ObservationValue C dul : Region (
ssn : Device C dul : DesignedArtifact (

4.3. TAO-DUL alignment

The following correspondences have been defined to align TA
and DUL. This has been carried out consistently with the SSN-
DUL alignment.

alignment of classes,

tao : TA Method C dul : Method (21)
tao : Episode C dul : Situation (22)
tao : Primitive C dul : Pattern (23)
tao : TA Representation Agent C dul : Agent (24)
tao : TA Quality C dul : Social attribute (25)
tao : Data Stream Representation Scheme C tao : QR

Scheme C dul : Theory (26)
alignment of object properties,

tao : obtainedBy C dul : is conceptualized by (27)
tao : hasEpisode C dul : is object included in (28)
tao : hasPrimitive C dul : satisfies (29)
tao : usesPrimitive C dul : has component (30)
tao : isAbstractionOf C dul : has constituent (31)
tao : isEpisodeOf C dul : is described by (32)
tao : hasQuality C dul : has region (33)
tao : implements C dul : is described by (34)
tao : usesAsInput C dul : is related to description (35)
tao : hasOutput C dul : is related to description (36)

The main guidelines of this alignment are grounded in the
“Description and Situation” design pattern included in DUL.°.

dul:Situation is defined as “A view, consistent with (‘satisfying’)
a Description, on a set of entities. It can also be seen as a ‘relational
context’ created by an observer on the basis of a ‘frame’ (i.e. a
Description).” In TAO this is precisely the role played by a tao:Epi-
sode (see Eq. (22)). In fact, tao:Episode is a situation detected in a
dynamic property expressed by means of an abstract concept (i.e.
the tao:Primitive). That is, an episode has presence meanwhile
the process dynamic satisfies the description enclosed in the asso-
ciated primitive. Here, the TA Representation Agent is the observer
who checks the presence of qualitative episodes.

tao:Primitive is subsumed by dul:Pattern (see Eq. (23)) because it
closely fits the dul:Pattern definition. According to DUL, a pattern is
“any invariance detected from a data set, or from observation; also,
any invariance proposed based on top—down considerations.” The
definition adds: “an occurrence of a pattern is an 'observable’, or
detected Situation”. In the same way, an occurrence of a tao:Prim-
itive is a detected tao:Episode. To complete the alignment, and con-

5 http://ontologydesignpatterns.org/wiki/Submissions:DescriptionAndSituation

sidering that a tao:Episode is a dul:Situation, it must satisfies the
following DUL existential restriction,

Situation C 3satisfies.Description (37)

this can be proved using Eqgs. (23) and (29), and taken into account
that dul:Pattern is a subclass of dul:Description,

Pattern C Relation C Description. (38)

The mapping presented in Eq. (26) gives to tao:QR Scheme a for-
mal context to state its semantic. In DUL, a dul:Theory is a
dul:Description that represents a set of assumptions for describing
something. These assumptions are the “components” of the theory
which must be instances of the class dul:Relation. This means that
dul:Theory members have to satisfy the restriction,

Theory C 3has component.Relation (39)

As it was enunciated in Section 3.3, a tao:QR scheme encloses a
set of primitives that provide a qualitative context to interpret the
dynamic of a process. In other words, primitives are the compo-
nent of the theory enclosed in a QR Scheme,

QR Scheme C Juse primitive.Primitive (40)

Furthermore, note that tao:Primitive is a subclass of dul:Relation
(see Eqgs. (23) and (38)) and tao:use primitive is a subproperty of
dul:has component (see Eq. (30)). Therefore Eq. (39) is true for every
tao:QR Scheme class member.

In Eq. (25), tao:TA Quality is considered a dul:Social attribute
because tao:TA Quality is an attribute of a qualitative episode
and, in the terms of DUL, tao:Episode is essentially a Social Object
(i.e. tao : Episode C dul : Situation T dul : Social Object).

By Eq. (27), it can be enunciated that “an Episode is conceptual-
ized by an Agent”. In DUL, dul:is conceptualized by is a relation stat-
ing that an Agent is internally representing a Description. e.g., ‘John
believes in the conspiracy theory’; ‘Jacques assumes all swans are
white’. Similar formulations can be made about the building of
qualitative episodes. For instance, “a software agent believes that
the plant reactor is faulty”, “the clinician thinks the patient has a
cold”.

In Eq. (31), tao:isAbstractionOf is subsumed by dul:has constitu-
ent. “Constituency” is a DUL relation that depends on some layering
of the world described by the ontology (e.g. the layering social-
mental-biological-physical). A constituent is a part belonging to
a lower layer (e.g. the persons constituting a social system). In
the TA domain, layers are built on the basis of a given set of
abstraction goals. As it was explained in Section 3.3, qualitative
episodes are constituted by entities of a lower abstraction level
(Observation or other Episodes). tao:isAbstarctionOf is the TAO rela-
tion that allows to link these episodes across different abstraction
layers, thus enabling the building of multilayer abstraction
hierarchies.

One important implication of this alignment is that TAO gets
from DOLCE the 4D-fluent (perdurantist) approach for representing
temporal information. tao:Episode is the main perdurant entity on
TAO; it becomes a perdurant because dul:Situation is essentially
perdurant (see Eq. (22)). On the other hand, classes such as
tao:Primitive, ssn:Property and tao:TA Agent play an endurant role
because they do not change over time.

4.3.1. TAO-SSN alignment

The semantic alignment with DUL presented in the previous
sections is an essential prerequisite to consistently integrate TAO,
SSN and SWRLTO into a single KB. However, some extra correspon-
dences have been added to improve the association between TAO
and SSN.

In order to minimize coupling between KB modules and to
increase the whole KB cohesion, some SSN entities have been
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copied into TAO instead of just to import them. In particular,
ssn:Observation, ssn:Property, ssn:Feature of Interest and its main
objects properties have been replicated in TAO (see Fig. 5). As a
result, two occurrences of each ones appear when integrating the
ontologies. In order to state that these entities refer to the same
things the following equivalence mappings need to be added.

tao : Obserwvation = ssn : Observation (
tao : Property = ssn : Property (
tao : Feature of Interest = ssn : Feature of Interest (43
tao : feature of interest = ssn : feature of interest (
tao : has property = ssn : has property (
tao : observedproperty = ssn : observed property (46

It must be noted that these duplications acts at the conceptual
level (class level) and they not involve data redundancy (i.e.
instances are not duplicated).

4.3.2. Refining the temporal model alignment

In Section 4.2, the alignment between SWRLTO and DUL has
been presented. In this section, the alignments DUL-SSN and
DUL-TAO are completed to ensure that the valid-time temporal
model from SWRLTO is available for SSN and TAO. Entities such
as tao:Episode or ssn:Observation must be linked with valid-times
representing their temporal location.

SSN defines only two object properties to temporarily locate
observations: ssn:observation result time and ssn:observation sam-
pling time. However, SSN does not include a model for representing
time, in fact the range of these properties is not provided. When
aligning SSN and DUL, the authors stated,

ssn : observation sampling time C dul : has region (47)
ssn : observation result time C dul : has region (48)

dul:has region is defined in DUL as a general relation that links
entities (class dul:Entity) with data regions (class dul:Region).

In order to facilitate the integration of SSN and SWRLTO
through DUL, and also to improve the SSN-DUL alignment, in this
work the following correspondences are proposed,

ssn : observation sampling time C dul : is observable at (49)
ssn : observation result time C dul : is observable at (50)

These axioms are added to the aligned ontologies without
altering or contradicting the original SSN-DUL alignment. This is
true because Eqgs. (49) and (50) are consistent with Eqgs. (47) and
(48) and due to the fact that,

dul : is observable at C dul : has region (51)

In addition, a similar mapping is defined between TAO and DUL:

tao : hasTemporalExtent C dul : is observable at (52)

Tanks to the inheritance relationships between the aligned
ontologies, SSN and TAO can leverage the temporal reasoning
capabilities of SWRLTO. Fig. 6 shows how temporal properties
are inferred by the reasoner. tao:Episode and ssn:Observation inherit
the temporal role and the properties of swrlto:Extended Proposition
through dul:Situation (see the mapping Eqgs. (4), (13) and (22)).

Due to the mapping Eqgs. (7), (49), (50) and (52), the properties
ssn:observation sampling time, ssn:observation result time and
tao:hasTemporalExtent became subproperties of swrlto:hasValid-
Time. In that way, the property swrlto:hasValidTime can be
employed to link the instances of tao:Episode or ssn:Observation
with  time instants  (swrlto:Validinstant) or  periods
(swrlto:ValidPeriod).

As a consequence, the SWRLTO built-in predicates that allow to
reason over temporal facts (i.e. instances of swrlto:ExtendedProposi-
tion) became available to operate over episodes and observations.

5. [llustrative example

In order to illustrate the framework capabilities to support IDA
tasks, it has been used to supervise a Continuously Stirred-Tank
Reactor (CSTR). CSTR is a common reactor widely used in industrial
chemical plants. In the example, it is assumed that a set of sensors
are mounted to measure some important variables that allows to
control the process (e.g. tank temperature, effluent concentration,
tank level, etc). The implementation required the construction of
an application ontology and its instantiation with domain
knowledge.

In this example, the ontology editor Protégé 3.57 has been used
with the SWRL tab plug-in activated, which enables the processing of
SWRL expressions using the Drools rule engine. HermiT has been
used for DL reasoning. In the following section it is explained how
measurements are stored and managed in the knowledge base for
this case study.

5.1. KB instantiation

Consider the observations realized by a temperature sensor (T1)
located in the reactor tank. T1 is sampled each minute, Fig. 7 shows
an interpolated view of three samples of T1 together with its
qualitative representation (i.e. the primitive “A”). In the KB, this
information is represented as a set of interconnected instances,
which are distributed through the four aligned ontologies.

Observations T_01, T_02 and T_O3 correspond to SensorOutputs
T_SO1, T_SO2 and T_SO3 respectively. Measured values are
represented by instances of the class TemperatureValue (a ssn:Obser-
vationValue subclass). T_episode001 represents the signal slice that
has been abstracted as the “A” primitive. This episode has been
identified and instantiated by an external software agent (QRPT_A-
gent) that implements the “Qualitative Representation of Process
Trends” (QRPT_Method) due to Cheung and Stephanopoulos
(1990). Since in QRPT the primitives are identified with the sign
of the first and second derivatives, A_primitive is asociated with
XML literals that store these signs and the symbol (“A”). Note that
this primitive must be linked by the property usesPrimitive with the
method used to extract the episode (QRPT_Method). Otherwise the
reasoning results in a logic inconsistency.

The relationship isAbstractionOf can be deduced by the DL
reasoner using the time reference and the involved property, or
it may be provided by the external agent. In the latter case, the
DL reasoner check their consistency. In addition, both Observations
and its qualitative representation are associated to the same Prop-
erty (ReactorTemperature) and the same Feature of Interest (Reactor)
to be consistent.

All temporal references are represented by instances of
SWRLTO. T_episode001 spans over the time interval (vp1) starting
at 09:00 and finishing at 09:03. Likewise, each Observation (T_O1,
T_02 and T_0O3) is associated with the time instants of sensing
(t1, t2 and t3) by the property observationSampleTime. The
association labeled «contains», between vp1 and the Valid Instants
represents the Allen temporal relation which are inferred by the
rule engine through the SWRLTO built-in predicates. These are
implicit facts stating that t1, t2 and t3 are temporally inside the
interval vpl.

7 http://protege.stanford.edu/.
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Fig. 6. The scheme shows the inheritance relationships that make the SWRLTO valid-time model available for both SSN and TAO ontologies.
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Fig. 7. Ontology instantiation to represent a qualitative episode in the Reactor Temperature.
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5.2. Knowledge exploitation

Temporal reasoning joined to TA management provides
a valuable tool for data analysis as the expressive power of
rules and queries is improved. The following example show the

use of rules to check temporal consistency. As explained
above, a data stream abstracted by an episode must be
temporally located inside the time period of the episode,
otherwise data is inconsistent. The next rules let to verify this
constraint.
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SEARCHED
PATTERN

vARs | /NFERRED PROCESS CONDITION

SIMPLIFIED SWRL RULE

NORMAL FAULT

hasEpisode(ta:T1,?Dt1) A hasEpisode(ta:T1,?At1) A
hasEpisode(ta:T1,?Ct1) » hasEpisode(ta:X,?Bx) #
hasEpisode(ta:X,?Ex) » hasPrimitive(?Dt1,ta:D) »
hasPrimitive(?At1,ta:A) A hasPrimitive(?Ct1,ta:C) A
hasPrimitive(?Bx,ta:B) » hasPrimitive(?Ex,ta:E) *
during(?Dt1,to:w) » during(?At1,to:w) A
during(?Ct1,to:w) A during(?Bx,to:w) ? during(?Ex,to:w)
A meet(?Dt1,?At1) ~ before(?At1,?Ct1) » meet(?Bx,?Ex)
- hasEpisode(ta:ReactorCondition, ta:Fault)

W: OBSERVED INTERVAL

Fig. 8. Multivariate qualitative temporal reasoning example.

isAbstractionOf (?a,‘?‘o)A hasValidTime ('.r’a,,‘?ta)A has
ValidTime (?o,?to)A before (?ta,?to) -> isNotAb-
stractionOf (?a,?0).

isAbstractionOf(%a,?0)”" hasValidTime(%a,?ta)” has
ValidTime(?0,%2to0)” after(?ta,?to) -> isNotAbstract
ionOf(?a,?0).

These rules state that, if an entity (a sensor measurement or a
qualitative episode) (?0) is temporally located after or before the
Valid Period of its abstraction (?a), then the fact i sNotAbstract-
ionOf is inferred between the correspondent instances. Since an
axiom in the ontology states that isAbstractionOf is disjoint
with isNotAbstractionOf, the DL reasoner can detect the
contradiction.

Temporal operators are also helpful in queries and rules to
support multivariate data analysis. The presented approach let
temporal patterns (e.g. a fault pattern) to be defined and searched
using high-level expressions that are closer to process experts.

Consider for example that we are interested in analyzing the
dynamic of T1 in periods of high concentration in the effluent F
(i.e. High X). Its must be noted that this query involves two prop-
erties and two QR schemes. The dynamic of T1 may be studied
through its QRPT episodes. However, concentrations are better
interpreted as deviation classes such as High, Low, etc. The upper
and lower bounds of each class can be set by a Hazard identifica-
tion analysis or by a PAA-based method such as SAX (Lin et al.,
2003). Then, the concentration episodes can be achieved by a sim-
ple limit checking algorithm.

hasEpisode (tao:effluentConcentration,?ce)” has
Primitive (?ce,tao:x_Hight)A
hasEpisode (tao:reactorTemperature,?te )A obtained
By (?te, tao:qrtp_agent)’\ during (?te,?ce)/\
hasPrimitive (%te,?tp)” hasStartTime (%te,?tes)”
hasFinishTime (?te, te]i“?)A hasSymbol (?tp,?s)
->select (?s,?teS,?tel)

It returns the symbols (?s) and the temporal locations (?teS and
?teF) of the QRPT episodes of T1.

Multivariate temporal reasoning is also valuable to infer a pro-
cess condition. Fig. 8 shows an example of a rule expression that
states a Fault Condition based on the observed dynamic.

Here, a particular combination of episodes must be found on T1
and in the concentration (X) in the same time interval w. As it is
shown in the T1 search pattern, a flexible formulation is allowed,
since any episode could be placed between A and C.

6. Conclusions

In this paper an ontology-based framework to support intelli-
gent data analysis (IDA) of sensed data is presented. It takes advan-
tages of semantic technologies to arrive at high-level qualitative
descriptions about the state or condition of a dynamic process of
interest.

This function is crucial to analyze and to interpret raw sensor
data in several domains; such as in detecting and diagnosing faults
in industrial plants, in medical patients monitoring and in warning
severe weather conditions.

The main contribution of this work is a novel knowledge model
that integrates four featured ontologies: TAO, SSN, SWRLTO and
DUL. This includes the development of a new Temporal Abstraction
Ontology (TAO).

Unlike other IDA approaches, this framework has been designed
to support both knowledge-based (e.g. KBTA) and shaped-based
(e.g. QTA, QRPT) temporal abstractions together. This brings flexi-
bility to data representation thus enhancing analytical possibilities.

This work leverages the SSN initiative to integrate semantic
data about sensors and sensor observations of all type through
the web. The SSN alignment assures a full compatibility with the
open standards of OCG for sensor web and enables abstraction
tasks to be traced, as qualitative episodes remain linked to the sen-
sor outputs and the TA methods.

The proposed tool is able to monitor dynamic processes through
time by mean of a lightweight solution for temporal modeling and
reasoning (i.e. SWRLTO). An important consequence of handling
temporal relations (e.g. before, during, overlap, etc) is that qualita-
tive temporal pattern can be formulated like regular expression
using incomplete sequences of symbols. Temporal Patterns can
be placed in both rules and queries, and are interpreted by any
off-the-shelf SWRL-enabled reasoner.

The domain ontologies (TAO, SSN, SWRLTO) have been aligned
through the foundational concepts of DOLCE Ultra-Lite (DUL). Since
DOLCE is a rigorous conceptualization widely used in several
domains, its alignment facilitates the interpretation of the domain
primitives and boosts future integrations with other ontologies.
Additionally, the KB has been developed following a modular
design that minimizes the coupling between the ontologies. As a
consequence, any component of the model can be reused individ-
ually. For instance, another DUL-based application may take
advantages of the DUL-SWRLTO alignment for incorporating tem-
poral modeling and reasoning.

The presented example illustrated how this approach can be
applied for supervising a chemical process. It has been shown that
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it is able to maintain temporal consistency among entities from
different abstraction levels. But more importantly, it has been
shown how a process condition (e.g. a fault in an industrial plant)
can be inferred by tracking multivariate qualitative temporal
patterns.

Instead of the promising results, some weaknesses of the frame-
work can be identified. For future works we are considering the fol-
lowing issues. First, we plan to incorporate pattern recognition
methods based on similarity measures. These methods can
enhance queries by relaxing the matching functions using the
semantic distances between the qualitative episodes.

With regards to temporal reasoning we are considering to
improve the used approach with stream reasoning capabilities.
Stream reasoning is a subject of topical interest for the Semantic
Web that aims at providing high-level skills for processing time
stamped data. For instance, with this technology the IDA system
could query about the number of A episodes in the last hour.
Another hot spot of future work will be the extension of the IDA
framework to support multiresolution data analysis (e.g. wavelet
transform, multigrid method).
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