22 research outputs found
Manganese-Rich Sandstones as an Indicator of Ancient Oxic Lake Water Conditions in Gale Crater, Mars
Manganese has been observed on Mars by the NASA Curiosity rover in a variety of contexts and is an important indicator of redox processes in hydrologic systems on Earth. Within the Murray formation, an ancient primarily fine-grained lacustrine sedimentary deposit in Gale crater, Mars, have observed up to 45× enrichment in manganese and up to 1.5× enrichment in iron within coarser grained bedrock targets compared to the mean Murray sediment composition. This enrichment in manganese coincides with the transition between two stratigraphic units within the Murray: Sutton Island, interpreted as a lake margin environment, and Blunts Point, interpreted as a lake environment. On Earth, lacustrine environments are common locations of manganese precipitation due to highly oxidizing conditions in the lakes. Here, we explore three mechanisms for ferromanganese oxide precipitation at this location: authigenic precipitation from lake water along a lake shore, authigenic precipitation from reduced groundwater discharging through porous sands along a lake shore, and early diagenetic precipitation from groundwater through porous sands. All three scenarios require highly oxidizing conditions and we discuss oxidants that may be responsible for the oxidation and precipitation of manganese oxides. This work has important implications for the habitability of Mars to microbes that could have used Mn redox reactions, owing to its multiple redox states, as an energy source for metabolism.This article is published as Gasda, P. J., Lanza, N. L., Meslin, P.‐Y., Lamm, S. N., Cousin, A., Anderson, R., et al. (2024). Manganese‐rich sandstones as an indicator of ancient oxic lake water conditions in Gale crater, Mars. Journal of Geophysical Research: Planets, 129, e2023JE007923. https://doi.org/10.1029/2023JE007923. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA
Recommended from our members
Overview of the Morphology and Chemistry of Diagenetic Features in the Clay‐Rich Glen Torridon Unit of Gale Crater, Mars
The clay-rich Glen Torridon region of Gale crater, Mars, was explored between sols 2300 and 3007. Here, we analyzed the diagenetic features observed by Curiosity, including veins, cements, nodules, and nodular bedrock, using the ChemCam, Mastcam, and Mars Hand Lens Imager instruments. We discovered many diagenetic features in Glen Torridon, including dark-toned iron- and manganese-rich veins, magnesium- and fluorine-rich linear features, Ca-sulfate cemented bedrock, manganese-rich nodules, and iron-rich strata. We have characterized the chemistry and morphology of these features, which are most widespread in the higher stratigraphic members in Glen Torridon, and exhibit a wide range of chemistries. These discoveries are strong evidence for multiple generations of fluids from multiple chemical endmembers that likely underwent redox reactions to form some of these features. In a few cases, we may be able to use mineralogy and chemistry to constrain formation conditions of the diagenetic features. For example, the dark-toned veins likely formed in warmer, highly alkaline, and highly reducing conditions, while manganese-rich nodules likely formed in oxidizing and circumneutral conditions. We also hypothesize that an initial enrichment of soluble elements, including fluorine, occurred during hydrothermal alteration early in Gale crater history to account for elemental enrichment in nodules and veins. The presence of redox-active elements, including Fe and Mn, and elements required for life, including P and S, in these fluids is strong evidence for habitability of Gale crater groundwater. Hydrothermal alteration also has interesting implications for prebiotic chemistry during the earliest stages of the crater’s evolution and early Mars
Recommended from our members
The Chemistry and Morphology of Diagenetic Features in Glen Torridon, Gale Crater
Grouping chemcam targets by visual characteristics improved by automatic partitioning
International audienc
Grouping chemcam targets by visual characteristics improved by automatic partitioning
International audienc
Evidence of multiple fluid events in elevated-mn chemcam targets in the brad-bury rise, gale crater, mars
International audienc
Evidence of multiple fluid events in elevated-mn chemcam targets in the brad-bury rise, gale crater, mars
International audienc
CHEMCAM OBSERVATIONS OF THE MARKER BAND, GALE CRATER, MARS
International audienc