40 research outputs found

    Vesículas extracelulares derivadas de células madre mesenquimales : potencial terapéutico en el daño pulmonar agudo

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Medicina, Departamento de Farmacología y Toxicología, leída el 04-05-2022Acute respiratory distress syndrome (ARDS) is a pathology characterized by pulmonary vascular dysfunction, inflammatory phenomena, coagulation disorders and pulmonary oedema leading to alveolar collapse and severe arterial hypoxaemia. Although protective ventilatory and haemodynamic support strategies have improved prognosis, the mortality associated remains high and the discovery of new effective treatments would have a major impact on patient survival. Mesenchymal stem cells (MSCs) have been proposed as a possible therapy in different pathologies due to their low immunogenicity and their ability to repair damage (due to their anti-inflammatory, anti-apoptotic, proangiogenic and anti-fibrotic properties). However, this therapeutic capacity has been shown to be due to the involvement of paracrine mechanisms, such as the release of extracellular vesicles (EVs). Several studies have demonstrated the therapeutic potential of extracellular vesicles in different models of acute lung injury and pulmonary hypertension. In addition, MSCs have been shown to exhibit different responses depending on the environment in which they are found, which has led to a growing interest in the search for strategies to increase their beneficial effects. Among the preconditioning strategies, hypoxia and exposure to TLR3 agonists have been shown to enhance the immunomodulatory and angiogenic capacity of EVs...El síndrome de distrés respiratorio agudo (SDRA) es una patología que se caracteriza por disfunción vascular pulmonar, fenómenos inflamatorios, alteraciones de la coagulación y edema pulmonar que produce colapso alveolar e hipoxemia arterial grave. Aunque las estrategias protectoras de soporte ventilatorio y hemodinámico han permitido mejorar el pronóstico, la mortalidad asociada se mantiene elevada por lo que el descubrimiento de nuevos tratamientos efectivos tendría un gran impacto en la supervivencia de los pacientes. Las células madre mesenquimales (MSCs) se han propuesto como una posible terapia en diferentes patologías debido a su baja inmunogenicidad y a su capacidad de reparar el daño (debido a sus propiedades antiinflamatorias, antiapoptóticas, proangiogénicas y antifibróticas). Sin embargo, se ha demostrado que esta capacidad terapéutica se debe a la participación de mecanismos paracrinos, como puede ser la liberación de vesículas extracelulares (VEs). Varias evidencias han demostrado el potencial terapéutico de las vesículas extracelulares en diferentes modelos de daño pulmonar agudo e hipertensión pulmonar. Además, se ha demostrado que las MSCs presentan diferentes respuestas en función del ambiente en el que se encuentren, por lo que ha crecido el interés en la búsqueda de estrategias para incrementar sus efectos beneficiosos. Dentro de las estrategias de preacondicionamiento la hipoxia y la exposición a agonistas TLR3 han demostrado una mejora de la capacidad inmunomoduladora y angiogénica de las VEs...Fac. de MedicinaTRUEunpu

    Impact of a TAK-1 inhibitor as a single or as an add-on therapy to riociguat on the metabolic reprograming and pulmonary hypertension in the SUGEN5416/hypoxia rat model.

    Get PDF
    Background: Despite increasing evidence suggesting that pulmonary arterial hypertension (PAH) is a complex disease involving vasoconstriction, thrombosis, inflammation, metabolic dysregulation and vascular proliferation, all the drugs approved for PAH mainly act as vasodilating agents. Since excessive TGF-β signaling is believed to be a critical factor in pulmonary vascular remodeling, we hypothesized that blocking TGFβ-activated kinase 1 (TAK-1), alone or in combination with a vasodilator therapy (i.e., riociguat) could achieve a greater therapeutic benefit. Methods: PAH was induced in male Wistar rats by a single injection of the VEGF receptor antagonist SU5416 (20 mg/kg) followed by exposure to hypoxia (10%O2) for 21 days. Two weeks after SU5416 administration, vehicle, riociguat (3 mg/kg/day), the TAK-1 inhibitor 5Z-7-oxozeaenol (OXO, 3 mg/kg/day), or both drugs combined were administered for 7 days. Metabolic profiling of right ventricle (RV), lung tissues and PA smooth muscle cells (PASMCs) extracts were performed by magnetic resonance spectroscopy, and the differences between groups analyzed by multivariate statistical methods. Results: In vitro, riociguat induced potent vasodilator effects in isolated pulmonary arteries (PA) with negligible antiproliferative effects and metabolic changes in PASMCs. In contrast, 5Z-7-oxozeaenol effectively inhibited the proliferation of PASMCs characterized by a broad metabolic reprogramming but had no acute vasodilator effects. In vivo, treatment with riociguat partially reduced the increase in pulmonary arterial pressure (PAP), RV hypertrophy (RVH), and pulmonary vascular remodeling, attenuated the dysregulation of inosine, glucose, creatine and phosphocholine (PC) in RV and fully abolished the increase in lung IL-1β expression. By contrast, 5Z-7-oxozeaenol significantly reduced pulmonary vascular remodeling and attenuated the metabolic shifts of glucose and PC in RV but had no effects on PAP or RVH. Importantly, combined therapy had an additive effect on pulmonary vascular remodeling and induced a significant metabolic effect over taurine, amino acids, glycolysis, and TCA cycle metabolism via glycine-serine-threonine metabolism. However, it did not improve the effects induced by riociguat alone on pulmonary pressure or RV remodeling. None of the treatments attenuated pulmonary endothelial dysfunction and hyperresponsiveness to serotonin in isolated PA. Conclusion: Our results suggest that inhibition of TAK-1 induces antiproliferative effects and its addition to short-term vasodilator therapy enhances the beneficial effects on pulmonary vascular remodeling and RV metabolic reprogramming in experimental PAH.This work was supported by the Instituto de Salud Carlos III-ISCIII (Grant numbers: PI15/01100 and PI19/01616 to LM), the Spanish Ministry of Science and Innovation MCIN (Grant numbers: PID 2019-107363RB-I00 to FP-V, PID 2020-117939RBI00 to AC and PID 2021-123238OB-I00, PDC 2021-121696-I00 to JRC and PID2019-106564RJ-I00 to JI-G), the Comunidad de Madrid-CAM (CM S2017/BMD-3727 to AC and LM and B2017/ BMD3875 to JI-G) and, as appropriate, by “ERDF A way of making Europe”, co-funded by the “European Union”. FP-V received funding from Fundación Contra la Hipertensión Pulmonar (Empathy grant) and JR-C from La Caixa Foundation (Health Research Call 2020: HR20-00075). This work was performed under the Maria de Maeztu Units of Excellence Programme–Grant MDM-2017-0720 funded by MCIN/AEI/10.13039/501100011033.S

    Total, Bioavailable, and Free Vitamin D Levels and Their Prognostic Value in Pulmonary Arterial Hypertension

    Get PDF
    Introduction: Epidemiological studies suggest a relationship between vitamin D deficiency and cardiovascular and respiratory diseases. However, whether total, bioavailable, and/or free vitamin D levels have a prognostic role in pulmonary arterial hypertension (PAH) is unknown. We aimed to determine total, bioavailable, and free 25-hydroxy-vitamin D (25(OH)vitD) plasma levels and their prognostic value in PAH patients. Methods: In total, 67 samples of plasma from Spanish patients with idiopathic, heritable, or drug-induced PAH were obtained from the Spanish PH Biobank and compared to a cohort of 100 healthy subjects. Clinical parameters were obtained from the Spanish Registry of PAH (REHAP). Results: Seventy percent of PAH patients had severe vitamin D deficiency (total 25(OH)vitD < 10 ng/mL) and secondary hyperparathyroidism. PAH patients with total 25(OH)vitD plasma above the median of this cohort (7.17 ng/mL) had better functional class and higher 6-min walking distance and TAPSE (tricuspid annular plane systolic excursion). The main outcome measure of survival was significantly increased in these patients (age-adjusted hazard ratio: 5.40 (95% confidence interval: 2.88 to 10.12)). Vitamin D-binding protein (DBP) and albumin plasma levels were downregulated in PAH. Bioavailable 25(OH)vitD was decreased in PAH patients compared to the control cohort. Lower levels of bioavailable 25(OH)vitD (<0.91 ng/mL) were associated with more advanced functional class, lower exercise capacity, and higher risk of mortality. Free 25(OH)vitD did not change in PAH; however, lower free 25(OH)vitD (<1.53 pg/mL) values were also associated with high risk of mortality. Conclusions: Vitamin D deficiency is highly prevalent in PAH, and low levels of total 25(OH)vitD were associated with poor prognosis

    Oxygen-sensitivity and Pulmonary Selectivity of Vasodilators as Potential Drugs for Pulmonary Hypertension

    Get PDF
    Current approved therapies for pulmonary hypertension (PH) aim to restore the balance between endothelial mediators in the pulmonary circulation. These drugs may exert vasodilator effects on poorly oxygenated vessels. This may lead to the derivation of blood perfusion towards low ventilated alveoli, i.e., producing ventilation-perfusion mismatch, with detrimental effects on gas exchange. The aim of this study is to analyze the oxygen-sensitivity in vitro of 25 drugs currently used or potentially useful for PH. Additionally, the study analyses the effectiveness of these vasodilators in the pulmonary vs. the systemic vessels. Vasodilator responses were recorded in pulmonary arteries (PA) and mesenteric arteries (MA) from rats and in human PA in a wire myograph under different oxygen concentrations. None of the studied drugs showed oxygen selectivity, being equally or more effective as vasodilators under conditions of low oxygen as compared to high oxygen levels. The drugs studied showed low pulmonary selectivity, being equally or more effective as vasodilators in systemic than in PA. A similar behavior was observed for the members within each drug family. In conclusion, none of the drugs showed optimal vasodilator profile, which may limit their therapeutic efficacy in PH

    Impact of a TAK-1 inhibitor as a single or as an add-on therapy to riociguat on the metabolic reprograming and pulmonary hypertension in the SUGEN5416/hypoxia rat model

    Get PDF
    Background: Despite increasing evidence suggesting that pulmonary arterial hypertension (PAH) is a complex disease involving vasoconstriction, thrombosis, inflammation, metabolic dysregulation and vascular proliferation, all the drugs approved for PAH mainly act as vasodilating agents. Since excessive TGF-β signaling is believed to be a critical factor in pulmonary vascular remodeling, we hypothesized that blocking TGFβ-activated kinase 1 (TAK-1), alone or in combination with a vasodilator therapy (i.e., riociguat) could achieve a greater therapeutic benefit.Methods: PAH was induced in male Wistar rats by a single injection of the VEGF receptor antagonist SU5416 (20 mg/kg) followed by exposure to hypoxia (10%O2) for 21 days. Two weeks after SU5416 administration, vehicle, riociguat (3 mg/kg/day), the TAK-1 inhibitor 5Z-7-oxozeaenol (OXO, 3 mg/kg/day), or both drugs combined were administered for 7 days. Metabolic profiling of right ventricle (RV), lung tissues and PA smooth muscle cells (PASMCs) extracts were performed by magnetic resonance spectroscopy, and the differences between groups analyzed by multivariate statistical methods.Results:In vitro, riociguat induced potent vasodilator effects in isolated pulmonary arteries (PA) with negligible antiproliferative effects and metabolic changes in PASMCs. In contrast, 5Z-7-oxozeaenol effectively inhibited the proliferation of PASMCs characterized by a broad metabolic reprogramming but had no acute vasodilator effects. In vivo, treatment with riociguat partially reduced the increase in pulmonary arterial pressure (PAP), RV hypertrophy (RVH), and pulmonary vascular remodeling, attenuated the dysregulation of inosine, glucose, creatine and phosphocholine (PC) in RV and fully abolished the increase in lung IL-1β expression. By contrast, 5Z-7-oxozeaenol significantly reduced pulmonary vascular remodeling and attenuated the metabolic shifts of glucose and PC in RV but had no effects on PAP or RVH. Importantly, combined therapy had an additive effect on pulmonary vascular remodeling and induced a significant metabolic effect over taurine, amino acids, glycolysis, and TCA cycle metabolism via glycine-serine-threonine metabolism. However, it did not improve the effects induced by riociguat alone on pulmonary pressure or RV remodeling. None of the treatments attenuated pulmonary endothelial dysfunction and hyperresponsiveness to serotonin in isolated PA.Conclusion: Our results suggest that inhibition of TAK-1 induces antiproliferative effects and its addition to short-term vasodilator therapy enhances the beneficial effects on pulmonary vascular remodeling and RV metabolic reprogramming in experimental PAH

    HIV transgene expression impairs K+ channel function in the pulmonary vasculature

    Get PDF
    Human immunodeficiency virus (HIV) infection is an established risk factor for pulmonary arterial hypertension (PAH), however the pathogenesis of HIV-related PAH remains unclear. Since K+ channel dysfunction is a common marker in most forms of PAH, our aim was to analyse if the expression of HIV proteins is associated with impairment of K+ channel function in the pulmonary vascular bed. HIV transgenic mice (Tg26) expressing seven of the nine HIV viral proteins and wild type (Wt) mice were used. Hemodynamic assessment was performed by echocardiography and catheterization. Vascular reactivity was studied in endothelium-intact pulmonary arteries (PA). K+ currents were recorded in freshly isolated PA smooth muscle cells (PASMC) using the patch-clamp technique. Gene expression was assessed using RT-PCR. PASMC from Tg26 mice had reduced K+ currents and were more depolarized that those from Wt. While Kv1.5 currents were preserved, pH-sensitive non-inactivating background currents (IKN) were nearly abolished in PASMC from Tg26 mice. Tg26 mice had reduced lung expression of Kv7.1 and Kv7.4 channels and decreased responses to the Kv7.1 channel activator L634,373 assessed by vascular reactivity and patch-clamp experimental approaches. While we found pulmonary vascular remodelling and endothelial dysfunction in Tg26 mice, this was not accompanied by changes in hemodynamic parameters. In conclusion, the expression of HIV proteins in vivo impairs pH-sensitive IKN and Kv7 currents. This negative impact of HIV proteins in K+ channels, was not sufficient to induce PAH, at least in mice, but may play a permissive or accessory role in the pathophysiology of HIV-associated PAH

    Restoration of Vitamin D Levels Improves Endothelial Function and Increases TASK-Like K+ Currents in Pulmonary Arterial Hypertension Associated with Vitamin D Deficiency

    Get PDF
    Vitamin D (vitD) deficiency is highly prevalent in patients with pulmonary arterial hypertension (PAH). Moreover, PAH-patients with lower levels of vitD have worse prognosis. We hypothesize that recovering optimal levels of vitD in an animal model of PAH previously depleted of vitD improves the hemodynamics, the endothelial dysfunction and the ionic remodeling. Methods: Male Wistar rats were fed a vitD-free diet for five weeks and then received a single dose of Su5416 (20 mg/Kg) and were exposed to vitD-free diet and chronic hypoxia (10% O2) for three weeks to induce PAH. Following this, vitD deficient rats with PAH were housed in room air and randomly divided into two groups: (a) continued on vitD-free diet or (b) received an oral dose of 100,000 IU/Kg of vitD plus standard diet for three weeks. Hemodynamics, pulmonary vascular remodeling, pulmonary arterial contractility, and K+ currents were analyzed. Results: Recovering optimal levels of vitD improved endothelial function, measured by an increase in the endothelium-dependent vasodilator response to acetylcholine. It also increased the activity of TASK-1 potassium channels. However, vitD supplementation did not reduce pulmonary pressure and did not ameliorate pulmonary vascular remodeling and right ventricle hypertrophy. Conclusions: Altogether, these data suggest that in animals with PAH and severe deficit of vitD, restoring vitD levels to an optimal range partially improves some pathophysiological features of PAH
    corecore