103 research outputs found

    Bcl-2 proteins and mitochondria—Specificity in membrane targeting for death

    Get PDF
    AbstractThe localization and control of Bcl-2 proteins on mitochondria is essential for the intrinsic pathway of apoptosis. Anti-apoptotic Bcl-2 proteins reside on the outer mitochondrial membrane (OMM) and prevent apoptosis by inhibiting the activation of the pro-apoptotic family members Bax and Bak. The Bcl-2 subfamily of BH3-only proteins can either inhibit the anti-apoptotic proteins or directly activate Bax or Bak. How these proteins interact with each other, the mitochondrial surface and within the OMM are complex processes we are only beginning to understand. However, these interactions are fundamental for the transduction of apoptotic signals to mitochondria and the subsequent release of caspase activating factors into the cytosol. In this review we will discuss our knowledge of how Bcl-2 proteins are directed to mitochondria in the first place, a crucial but poorly understood aspect of their regulation. This article is part of a Special Issue entitled Mitochondria: the deadly organelle

    Alpha proteobacterial ancestry of the [Fe-Fe]-hydrogenases in anaerobic eukaryotes

    Get PDF
    Eukaryogenesis, a major transition in evolution of life, originated from the symbiogenic fusion of an archaea with a metabolically versatile bacterium. By general consensus, the latter organism belonged to α proteobacteria, subsequently evolving into the mitochondrial organelle of our cells. The consensus is based upon genetic and metabolic similarities between mitochondria and aerobic α proteobacteria but fails to explain the origin of several enzymes found in the mitochondria-derived organelles of anaerobic eukaryotes such as Trichomonas and Entamoeba. These enzymes are thought to derive from bacterial lineages other than α proteobacteria, e.g., Clostridium - an obligate anaerobe. [FeFe]-hydrogenase constitues the characteristic enzyme of this anaerobic metabolism and is present in different types also in Entamoeba and other anaerobic eukaryotes. Here we show that α proteobacteria derived from metagenomic studies possess both the cytosolic and organellar type of [FeFe]-hydrogenase, as well as all the proteins required for hydrogenase maturation. These organisms are related to cultivated members of the Rhodospirillales order previously suggested to be close relatives of mitochondrial ancestors. For the first time, our evidence supports an α proteobacterial ancestry for both the anaerobic and the aerobic metabolism of eukaryotes. Reviewers: This article was reviewed by William Martin and Nick Lane, both suggested by the Authors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13062-016-0136-3) contains supplementary material, which is available to authorized users

    Challenge 8: Digital Citizenship

    Get PDF
    Digital relations are deeply transforming our lives : from the nature of political participation to the relationship between digital and non-digital environments ; from the reorganization of the public sphere to the ethics of responsibility, transparency or inclusiveness. We are witnessing fundamental changes in the infrastructures of democracy and the emergence of new forms of digital citizenship.Peer reviewe
    • 

    corecore