15 research outputs found

    Dietary Inclusion of Halobacterium salinarum Modulates Growth Performances and Immune Responses in Farmed Gilthead Seabream (Sparus aurata L.)

    Get PDF
    The use of natural immunostimulants is considered the most promising alternative to promote fish health, productive performance and quality, increasing the aquaculture profitability, sustainability and social acceptance. The purpose of this study was to evaluate the effect of the integration of a potential probiotic strain, Halobacterium salinarum, belonging to the Archaea domain, in the formulated diets of farmed gilthead seabream (Sparus aurata L.) in terms of growth performances and immunity responses. The experiment was set up to test two different levels of inclusion of the bacteria in the diet: 0.05% (D1) and 0.1% (D2). The effects on fish growth performances; humoral (peroxidase, protease, antiprotease and IgM levels) and cellular immunity parameters (phagocytosis, respiratory burst and myeloperoxidase), along with bactericidal activity, were evaluated after 15 and 30 days of experimental feeding. The obtained results showed that the inclusion of H. salinarum at the highest concentration (D2 0.1%) improved growth performances, bactericidal activity against Vibrio anguillarum and some parameters related both to the humoral and cellular immune response, suggesting exploring other aspects of welfare in view of future supplementations of this probiotic strain in the diet of S. aurata

    Sub-lethal Doses of Polybrominated Diphenyl Ethers, in Vitro, Promote Oxidative Stress and Modulate Molecular Markers Related to Cell Cycle, Antioxidant Balance and Cellular Energy Management

    Get PDF
    In the present study, we evaluated the effects of different concentrations of the polybrominated diphenyl ethers (PBDEs) BDE-209, BDE-47 and BDE-99, on the vitality and oxidative stress of a HS-68 human cell culture exposed to the compounds for three days. The results showed that for this exposure time, only the highest concentrations produced a significant vitality reduction and oxidative stress induction (p < 0.05), measured as reactive oxygen species (ROS). Subsequently, in order to verify the effects of sub-lethal doses, cells were exposed for a longer time and data collected, after 12 and 20 days, to study ROS production and some molecular markers related to cell cycle and stress (p53, pRB, PARP, c-Jun and c-Fos), antioxidant status and proliferation (ERK, c-Jun and c-Fos), energy balance (NRF2, AMPK, HIF). Most of the biomarkers were influenced by the treatments, indicating that sub-lethal doses of PBDEs, for longer time, can enhance the production of ROS, altering the energetic metabolism, cell cycle and antioxidant balance, determining possible negative effects on the cell proliferation equilibrium

    Oxidative Stress, Induced by Sub-Lethal Doses of BDE 209, Promotes Energy Management and Cell Cycle Modulation in the Marine Fish Cell Line SAF-1

    Get PDF
    The effects of sub-lethal doses of polybrominated diphenyl ether (PBDE)-209 in terms of toxicity, oxidative stress, and biomarkers were evaluated in the Sparus aurata fibroblast cell line (SAF-1). Vitality and oxidative stress status were studied after incubation with PBDE for 72 h. Concomitantly, the quantification of proteins related to cell cycle and DNA repair (p53), cell proliferation (extracellular signal⁻regulated kinase 1 (ERK1)), energetic restriction (hypoxia-inducible factor 1 (HIF1)), and redox status (Nuclear factor erythroid 2⁻related factor 2 (NRF2)) was also determined after prolonged exposure (7⁻15 days) by immunoblotting. Our results demonstrated that rising concentrations of PBDEs exposure-induced oxidative stress, and that this event modulates different cell pathways related to cell cycle, cell signaling, and energetic balance in the long term, indicating the negative impact of sub-lethal dose exposure to cell homeostasis

    The Inclusion of a Supercritical Fluid Extract, Obtained From Honey Bee Pollen, in the Diet of Gilthead Sea Bream (Sparus aurata), Improves Fish Immune Response by Enhancing Anti-oxidant, and Anti-bacterial Activities

    Get PDF
    In the present study, the immune-stimulatory effect of two levels of honey bee pollen (5 and 10%, P5 and P10 treatment, respectively) and its supercritical fluid extract (0. 5 and 1%, E0.5 and E1, respectively) included in the diet, was tested in gilthead seabream (Sparus aurata). The in vivo trial was preceded by the evaluation of antioxidant properties of three different bee pollen extracts obtained by water, ethanol 80%, and Supercritic Fluids Extraction (SFE). The preliminary evaluation attested that the SFE showed the lowest extraction yield (10.47%) compared to ethanol 80% (48.61%) and water (45.99%). SFE extract showed good antioxidant properties with high polyphenol content (13.06 mg GAE/g), radical scavenging activity (3.12 mg/ml), reducing power (38.68 mg/mL EC50). On the contrary, the water extract showed the significantly lowest polyphenol content (2 mg GAE/g; P < 0.05). The results of in vivo trial demonstrate that the diets supplemented with SFE bee pollen extract had a stimulatory effect on fish serum immunity, respect to the inclusion of raw pollen, this latter revealing some inhibitory effects in the immune response, such a decrease of serum peroxidase and lysozyme activities, particularly in P10 group significantly different (P < 0.05) from the control group. On the contrary, serum peroxidase, protease, antiprotease, were significantly increased in fish fed the diets supplemented with supercritical fluid extract, respect to the fish fed on control and on diets supplemented with 5 and 10% of raw pollen. For what concerns the bactericidal activity against Vibrio harveyii, all the treatments containing bee pollen regardless of the type showed their serum bactericidal activity significantly increased with respect to the control groups (p < 0.05). Given its high antioxidant properties, the absence of toxic solvents and the positive action carried out on improving the humoral response in gilthead seam bream, honey bee pollen SFE extract can be taken into account in the formulation of fish feeds

    Dall’approccio ecotossicologico a quello molecolare, dai test in vitro a quelli in vivo: la sfida per l’individuazione di biomarcatori per il monitoraggio dell’ambiente marino

    No full text
    Il presente lavoro riporta una selezione di alcuni risultati ottenuti impiegando sistemi modello rappresentati da colture cellulari di pesce, invertebrati e vertebrati marini, adottando biomarcatori finora poco indagati in organismi di questi ambienti, allo scopo di individuare sensori dello stato metabolico, la cui variazione, a lungo termine, è noto che porti a drammatiche variazioni dell’omeostasi, del ciclo cellulare e conseguenti alterazioni. Per semplificare la valutazione comparativa tra le risposte ottenute nei vari sistemi modello, riportiamo gli effetti determinati da una classe di contaminanti su cui si è concentrato, negli ultimi anni, l’interesse della ricerca in ambito ecotossicologico e ambientale, i poli-bromo-difenil-eteri (PBDE)

    In vitro testing of alternative synthetic and natural antiparasitic compounds against the monogenean sparicotyle chrysophrii

    No full text
    © 2021 by the authors.Gill monogenean Sparicotyle chrysophrii is considered the most detrimental fish parasite to the Mediterranean aquaculture. Treatment of sparicotylosis relies on frequent gill inspections correlated with the seasonal increase in seawater temperature, application of functional feeds, and treatments with formalin baths where permitted. While the latter is bound to be banned in Europe, other synthetic anthelminthics, such as praziquantel and ivermectin, are prone to induce resistance in the parasites. Therefore, we investigated, in vitro, 14 synthetic and natural compounds against adult S. chrysophrii, developing dose–response modelsm and estimated toxicity levels at 20%, 50%, and 80% parasite mortality. Bactericidal activity of target compounds was also tested in two important aquaculture bacteria; Vibrio harveyi and V. anguillarum, while their potential host toxicity was evaluated in gilthead seabream SAF-1 cell line. Synthetic compound bithionate sodium exerted the most potent toxicity against the monogenean, no host cytotoxicity, and a medium and high potency against two bacterial pathogens. In comparison, target natural compounds were approximately 20 (cedrol) or up to 154 times (camphor) less toxic for the monogenean. Rather than completely dismissing natural compounds, we suggest that their application in combination with synthetic drugs, especially if administered in the feed, might be useful in sparicotylosis treatment.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 634429 (ParaFishControl) and additional support from the Spanish Ministry of Science, Innovation and Universities to the project Sparicontrol (RTI2018-098664-B-100A). This publication reflects the views of the authors only, and the European Commission cannot be held responsible for any usewhichmay bemade of the information contained therein. The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Animal Welfare Committee of Institute of Aquaculture Torre de la Sal (IATS-CSIC),with the permit number 2018/VSC/PEA/0240 by the “GeneralitatValenciana”

    Poly-ε-Caprolactone-Hydroxyapatite-Alumina (PCL-HA-α-Al2O3) Electrospun Nanofibers in Wistar Rats

    No full text
    Biodegradable polymers of natural origin are ideal for the development of processes in tissue engineering due to their immunogenic potential and ability to interact with living tissues. However, some synthetic polymers have been developed in recent years for use in tissue engineering, such as Poly-"-caprolactone. The nanotechnology and the electrospinning process are perceived to produce biomaterials in the form of nanofibers with diverse unique properties. Biocompatibility tests of poly-"-caprolactone nanofibers embedded with hydroxyapatite and alumina nanoparticles manufactured by means of the electrospinning technique were carried out inWistar rats to be used as oral dressings. Hydroxyapatite as a material is used because of its great compatibility, bioactivity, and osteoconductive properties. The PCL, PCL-HA, PCL- -Al2O3, and PCL-HA- -Al2O3 nanofibers obtained in the process were characterized by infrared spectroscopy and scanning electron microscopy. The nanofibers had an average diameter of (840 230) nm. The nanofiber implants were placed and tested at 2, 4, and 6 weeks in the subcutaneous tissue of the rats to give a chronic inflammatory infiltrate, characteristic foreign body reaction, which decreased slightly at 6 weeks with the addition of hydroxyapatite and alumina ceramic particles. The biocompatibility test showed a foreign body reaction that produces a layer of collagen and fibroblasts. Tissue loss and necrosis were not observed due to the coating of the material, but a slight decrease in the inflammatory infiltrate occurred in the last evaluation period, which is indicative of the beginning of the acceptance of the tested materials by the organism
    corecore