4 research outputs found

    Differences in molecular evolutionary rates among microRNAs in the human and chimpanzee genomes

    No full text
    Background: The rise of the primate lineage is accompanied by an outstanding emergence of microRNAs, small non-coding RNAs with a prominent role in gene regulation. In spite of their biological importance little is known about the way in which natural selection has influenced microRNAs in the human lineage. To study the recent evolutionary history of human microRNAs and to analyze the signatures of natural selection in genomic regions harbouring microRNAs we have investigated the nucleotide substitution rates of 1,872 human microRNAs in the human and chimpanzee lineages. Results: We produced a depurated set of microRNA alignments of human, chimpanzee and orang-utan orthologs combining BLAT and liftOver and selected 1,214 microRNA precursors presenting optimal secondary structures. We classified microRNAs in categories depending on their genomic organization, duplication status and conservation along evolution. We compared substitution rates of the aligned microRNAs between human and chimpanzee using Tajima’s Relative Rate Test taking orang-utan as out-group and found several microRNAs with particularly high substitution rates in either the human or chimpanzee branches. We fitted different models of natural selection on these orthologous microRNA alignments and compared them using a likelihood ratio test that uses ancestral repeats and microRNA flanking regions as neutral sequences. We found that although a large fraction of human microRNAs is highly conserved among the three species studied, significant differences in rates of molecular evolution exist among microRNA categories. Particularly, primate-specific microRNAs, which are enriched in isolated and single copy microRNAs, more than doubled substitution rates of those belonging to older, non primate-specific microRNA families. Conclusions: Our results corroborate the remarkable conservation of microRNAs, a proxy of their functional relevance, and indicate that a subset of human microRNAs undergo nucleotide substitutions at higher rates, which may be suggestive of the action of positive selection.This work was supported by the Ministerio de Ciencia e Innovación, España (BFU2012-38236, BFU2010-18477, BFU2009-06974, and CGL2009-09013), Direcció General de Recerca de la Generalitat de Catalunya” (2009SGR-1101, 2014SGR-866 and SGR2014-1311) and European Union Seventh Framework Programme (PIOF-GA-2009-236836 and PIRSES-GA-2013-612583)

    Allele variants in functional MicroRNA target sites of the neurotrophin-3 receptor gene (NTRK3) as susceptibility factors for anxiety disorders

    No full text
    Genetic and functional data indicate that variation in the expression of the neurotrophin-3 receptor gene (NTRK3) may have an impact on neuronal plasticity, suggesting a role for NTRK3 in the pathophysiology of anxiety disorders. MicroRNA (miRNA) posttranscriptional gene regulators act by base-pairing to specific sequence sites, usually at the 3'UTR of the target mRNA. Variants at these sites might result in gene expression changes contributing to disease susceptibility. We investigated genetic variation in two different isoforms of NTRK3 as candidate susceptibility factors for anxiety by resequencing their 3'UTRs in patients with panic disorder (PD), obsessive-compulsive disorder (OCD), and in controls. We have found the C allele of rs28521337, located in a functional target site for miR-485-3p in the truncated isoform of NTRK3, to be significantly associated with the hoarding phenotype of OCD. We have also identified two new rare variants in the 3'UTR of NTRK3, ss102661458 and ss102661460, each present only in one chromosome of a patient with PD. The ss102661458 variant is located in a functional target site for miR-765, and the ss102661460 in functional target sites for two miRNAs, miR-509 and miR-128, the latter being a brain-enriched miRNA involved in neuronal differentiation and synaptic processing. Interestingly, these two variants significantly alter the miRNA-mediated regulation of NTRK3, resulting in recovery of gene expression. These data implicate miRNAs as key posttranscriptional regulators of NTRK3 and provide a framework for allele-specific miRNA regulation of NTRK3 in anxiety disorders.This work was supported by the “Instituto Carlos III and Fondo de Investigaciones Sanitarias” [CIBER-CB06/02/0058, CIBER-SAM, FIS/ISCIII:P1052565, ISCIII:GO3/184], the “Fundació la Marató-TV3” [014331], the “Departament d’Universitats Innovació i Empresa, Generalitat de Catalunya” [2005SGR00008] and the European Union Sixth Framework Programme Integrated Project SIROCCO [Grant LSHG-CT-2006-037900]. The Spanish National Genotyping Center (CeGen) is supported by “Genoma España” and the “Ministerio de Educación y Ciencia” (Spanish Government). M.M is a recipient of a FIS fellowship [FI05/0006]. Y.E was supported by the “Ramón y Cajal” Program [Spanish Ministry of Science and Education]. We would like to thank J.M. Mercader for his help in technical issues and suggestions as well as B. Cormand, A. Macaya, R. Corominas and E. Cuenca (Hospital Universitari Vall d'Hebron, Barcelona) for kindly proving us with control samples

    rs12416605:C>T in MIR938 associates with gastric cancer through affecting the regulation of the CXCL12 chemokine gene

    Get PDF
    Background: MicroRNAs are small regulatory RNAs with important roles in carcinogenesis. Genetic variants in these regulatory molecules may contribute to disease. We aim to identify allelic variants in microRNAs as susceptibility factors to gastric cancer using association studies and functional approaches. Methods: Twenty-one single nucleotide variants potentially functional, because of their location in either the seed, mature or precursor region of 22 microRNAs, were selected for association studies. Genetic association with gastric cancer in 365 cases and 1,284 matched controls (European Prospective Investigation into Cancer and Nutrition Cohort) was analysed using logistic regression. MicroRNA overexpression, transcriptome analysis, and target gene validation experiments were performed for functional studies. Results: rs3746444:T>C, in the seed of MIR499A and mature MIR499B, associated with the cardia adenocarcinoma location; rs12416605:C>T, in the seed of MIR938, associated with the diffuse subtype; and rs2114358:T>C, in the precursor MIR1206, associated with the noncardia phenotype. In all cases, the association was inverse, indicating a protective affect against gastric cancer of the three minor allelic variants. MIR499 rs3746444:T>C and MIR1206 rs2114358:T>C are reported to affect the expression of these miRNAs, but the effect of MIR938 rs12416605:C>T is unknown yet. Functional approaches showed that the expression of MIR938 is affected by rs12416605:C>T and revealed that MIR938 could regulate a subset of cancer-related genes in an allele-specific fashion. Furthermore, we demonstrated that CXCL12, a chemokine participating in gastric cancer metastasis, is specifically regulated by only one of the rs12416605:C>T alleles. Conclusion: rs12416605 appears to be involved in gastric cancer by affecting the regulatory function of MIR938 on genes related to this cancer type, particularly on CXCL12 posttranscriptional regulation.This work was funded by the “Ministerio de Educación, Gobierno de Chile, Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) ‐ Fondo de Fomento al Desarrollo Científico y Tecnológico (FONDECYT regular)” [grant Nº 1170446]; the Spanish “Ministerio de Ciencia e Innovación” [grant BFU2010‐18477]; “the Spanish Ministerio de Economía y Competitividad ‐ Instituto de Salud Carlos III”; the European Regional Development Funds (ERDF/FEDER) ‘A way to build Europe' [grants PI070130 and PI12/01187] and “LaCaixa” Foundation [grant BM06‐130‐0]. We also thank CERCA Program / Generalitat de Catalunya for their institutional support. MRV and DZC were employed by the Fondecyt regular grant 1170446

    Functional implications of human-specific changes in great ape microRNAs

    No full text
    microRNAs are crucial post-transcriptional regulators of gene expression involved in a wide range of biological processes. Although microRNAs are highly conserved among species, the functional implications of existing lineage-specific changes and their role in determining differences between humans and other great apes have not been specifically addressed. We analyzed the recent evolutionary history of 1,595 human microRNAs by looking at their intra- and inter-species variation in great apes using high-coverage sequenced genomes of 82 individuals including gorillas, orangutans, bonobos, chimpanzees and humans. We explored the strength of purifying selection among microRNA regions and found that the seed and mature regions are under similar and stronger constraint than the precursor region. We further constructed a comprehensive catalogue of microRNA species-specific nucleotide substitutions among great apes and, for the first time, investigated the biological relevance that human-specific changes in microRNAs may have had in great ape evolution. Expression and functional analyses of four microRNAs (miR-299-3p, miR-503-3p, miR-508-3p and miR-541-3p) revealed that lineage-specific nucleotide substitutions and changes in the length of these microRNAs alter their expression as well as the repertoires of target genes and regulatory networks. We suggest that the studied molecular changes could have modified crucial microRNA functions shaping phenotypes that, ultimately, became human-specific. Our work provides a frame to study the impact that regulatory changes may have in the recent evolution of our species.This work was funded by Spanish National Institute for Bioinformatics (www.inab.org); “Ministerio de Ciencia e Innovación de España” [grant numbers BFU2012-38236, BFU2010-18477, BFU2009-06974, CGL2009-09013 and FPI-MINECO to ITL]; “Direcció General de Recerca de la Generalitat de Catalunya” [2009SGR-1101, 2014SGR-866 and SGR2014-1311]; European Union Seventh Framework Programme [grant number PIOF-GA-2009-236836 and PIRSES-GA-2013-612583]; “Ministerio de Educación, Cultura y Deporte de España” [grant FPU-MEC to AG]; FEDER European Regional Development Fund “A way to build Europe”. Three authors of this work were employed by the funding organizations of either the “Parc Zoológic de Barcelona” or the Copenhagen Zoo. The funder “Parc Zoológic de Barcelona” provided support in the form of salaries for authors HFB and TA and the funder Copenhagen Zoo for author CH, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore