190 research outputs found
Fractional photon-assisted tunneling in an optical superlattice: large contribution to particle transfer
Fractional photon-assisted tunneling is investigated both analytically and
numerically for few interacting ultra-cold atoms in the double-wells of an
optical superlattice. This can be realized experimentally by adding periodic
shaking to an existing experimental setup [Phys. Rev. Lett. 101, 090404
(2008)]. Photon-assisted tunneling is visible in the particle transfer between
the wells of the individual double wells. In order to understand the physics of
the photon-assisted tunneling, an effective model based on the rotating wave
approximation is introduced. The validity of this effective approach is tested
for wide parameter ranges which are accessible to experiments in double-well
lattices. The effective model goes well beyond previous perturbation theory
approaches and is useful to investigate in particular the fractional
photon-assisted tunneling resonances. Analytic results on the level of the
experimentally realizable two-particle quantum dynamics show very good
agreement with the numerical solution of the time-dependent Schr\"odinger
equation. Far from being a small effect, both the one-half-photon and the
one-third-photon resonance are shown to have large effects on the particle
transfer.Comment: 9 pages, 11 png-figure
Tunneling of polarized fermions in 3D double wells
We study the tunneling of a spin polarized Fermi gas in a three-dimensional
double well potential, focusing on the time dynamics starting from an initial
state in which there is an imbalance in the number of particles in the two
wells. Although fermions in different doublets of the double well tunnel with
different frequencies, we point out that (incoherent) oscillations of a large
number of particles can arise, as a consequence of the presence of transverse
degrees of freedom. Estimates of the doublet structure and of the occupation of
transverse eigenstates for a realistic experimental setup are provided.Comment: 10 pages, Typos corrected and figures changed - published in Laser
Physics, issue on the LPHYS'11 conference (Sarajevo, 2011
Effect of rejection on electrophysiologic function of canine intestinal grafts: Correlation with histopathology and na-k-ATPase activity
To investigate whether electrophysiologic changes can detect the early onset and progress of intestinal rejection, changes in in vitro electrophysiologic function, intestinal histopathology, and Na-K-ATPase activity were studied in dogs. Adult mongrel dogs of both sexes, weighing 18-24 kg, were used for auto and allo small bowel transplantation. The entire small bowels, except for short segments at the proximal and distal ends, were snitched between a pair of dogs (allograft). Animals receiving intestinal autotransplantation were used as controls. AIIograji recipients were sacrificed 3, 4, 5, 7, or 9 days after transplantation, and autograft recipients were sacrificed 3, 7, or 14 days afier transplantation. Immunosuppression was not used. Electrophysiologic measurements were done with an Ussing chamber. Histological analysis was performed blindly using whole thickness sections. Na-K-ATPase activity in the mucosal tissue, which is said to regulate the potential difference, was also measured. Potential difference, resistance, and Na-K-ATPase activity of the allografi intestine decreased with time and were significantly lower 7 and 9 days after transplantation compared to host intestine, normul intestine, and graft intestine of controls (autograft). Potential difference, resistance, and Na-K-ATPase activity of the native intestinal tissue and the autografts did not decrease with time. Detection of histologically mild rejection of the intestine, which is important for appropriate immunosup-pressive treatment in clinical cases, could not be achieved based on electrophysiology or Na-K-ATPase activity. Deterioration of electrophysiologic function during rejection correlated with the histological rejection process and Na-K-ATPase activity; however, electrophysiology my not be a reliable tool for monitoring grafrs, since it cannot detect early intestinal rejection. © 1995 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted
Scaling rules in optomechanical semiconductor micropillars
International audienceSemiconductor pillar microcavities have recently emerged as a promising optomechanical platform in the unprecedented 20-GHz frequency range. Currently established models for the mechanical behavior of micropillars, however, rely on complete numerical simulations or semianalytical approaches, which makes their application to experiments notoriously difficult. Here we overcome this challenge with an effective model by reducing the full, hybridized mechanical mode picture of a micropillar to an approach that captures the observed global trends. We show experimentally the validity of this approach by studying the lateral size dependence of the frequency, amplitude, and lifetime of the mechanical modes of square-section pillar microcavities, using room-temperature pump-probe microscopy. General scaling rules for these quantities are found and explained through simple phenomenological models of the physical phenomena involved. We show that the energy shift ω m of the modes due to confinement is dependent on the inverse of their frequency ω 0 and lateral size L (ω m ∝ 1/ω 0 L 2) and that the mode lifetime τ is linear with pillar size and inversely proportional to their frequency (τ ∝ L/ω 0). The mode amplitude is in turn inversely proportional to the lateral size of the considered resonators. This is related to the dependence of the optomechanical coupling rate (g 0 ∝ 1/L) with the spatial extent of the confined electromagnetic and mechanical fields. Using a numerical model based on the finite-element method, we determine the magnitude and size dependence of g 0 and, by combining the results with the experimental data, we discuss the attainable single-photon cooperativity in these systems. The effective models proposed and the scaling rules found constitute an important tool in micropillar optomechanics and in the future development of more complex micropillar based devices
Common variants in LEPR, IL6, AMD1, and NAMPT do not associate with risk of juvenile and childhood obesity in Danes:a case-control study
BACKGROUND: Childhood obesity is a highly heritable disorder, for which the underlying genetic architecture is largely unknown. Four common variants involved in inflammatory-adipokine triggering (IL6 rs2069845, LEPR rs1137100, NAMPT rs3801266, and AMD1 rs2796749) have recently been associated with obesity and related traits in Indian children. The current study aimed to examine the effect of these variants on risk of childhood/juvenile onset obesity and on obesity-related quantitative traits in two Danish cohorts. METHODS: Genotype information was obtained for 1461 young Caucasian men from the Genetics of Overweight Young Adults (GOYA) study (overweight/obese: 739 and normal weight: 722) and the Danish Childhood Obesity Biobank (TDCOB; overweight/obese: 1022 and normal weight: 650). Overweight/obesity was defined as having a body mass index (BMI) ≥25 kg/m(2); among children and youths, this cut-off was defined using age and sex-specific cut-offs corresponding to an adult body mass index ≥25 kg/m(2). Risk of obesity was assessed using a logistic regression model whereas obesity-related quantitative measures were analyzed using a general linear model (based on z-scores) stratifying on the case status and adjusting for age and gender. Meta-analyses were performed using the fixed effects model. RESULTS: No statistically significant association with childhood/juvenile obesity was found for any of the four gene variants among the individual or combined analyses (rs2069845 OR: 0.94 CI: 0.85–1.04; rs1137100 OR: 1.01 CI: 0.90–1.14; rs3801266: 0.96 CI: 0.84–1.10; rs2796749 OR: 1.02 CI: 0.90–1.15; p > 0.05). However, among normal weight children and juvenile men, the LEPR rs1137100 A-allele significantly associated with lower BMI (β = −0.12, p = 0.0026). CONCLUSIONS: The IL6, LEPR, NAMPT, and AMD1 gene variants previously found to associate among Indian children did not associate with risk of obesity or obesity-related quantitative measures among Caucasian children and juvenile men from Denmark
The Hidradenitis Suppurativa Quality of Life (HiSQOL) score: development and validation of a measure for clinical trials
Background
Hidradenitis suppurativa (HS) is a chronic, inflammatory condition that can have a large negative impact on health‐related quality of life (HRQOL). A reliable and validated measure of HS‐specific HRQOL in clinical studies is needed.
Objective
To develop and validate the Hidradenitis Suppurtiva Quality Of Life (HiSQOL©) scale, for clinical trial measurement of HS‐specific HRQOL.
Methods
Stage 1: Qualitative concept elicitation (CE) interviews were conducted with HS patients in Denmark (DK) (n = 21) and the United States (US) (n=21). Stage 2: Cognitive debriefing (CD) interviews were performed with US HS patients (n = 30) and Danish HS patients (n=30). Stage 3: Observational study of 222 HS patients in the US was conducted for item reduction, measure validation and assessment of psychometric properties. Stage 4: Observational study of 215 HS patients in Denmark was conducted to confirm the psychometric structure derived in stage 3. In both studies ‐ the Dermatology Life Quality Index, Hospital Anxiety and Depression Scale, and numerical rating scale for pain ‐ were also included.
Results
In CE, 99 items were generated and reduced to 41 after removing duplicates. In CD, 2 items were added and 1 items removed. A 42‐item instrument was psychometrically assessed. Based on psychometric analyses and patient input, the instrument was reduced to 17 items that had strong psychometric properties in both US and DK samples
Electron spin resonance in membrane research: protein–lipid interactions from challenging beginnings to state of the art
Conventional electron paramagnetic resonance (EPR) spectra of lipids that are spin-labelled close to the terminal methyl end of the acyl chains are able to resolve the lipids directly contacting the protein from those in the fluid bilayer regions of the membrane. This allows determination of both the stoichiometry of lipid–protein interaction (i.e., number of lipid sites at the protein perimeter) and the selectivity of the protein for different lipid species (i.e., association constants relative to the background lipid). Spin-label EPR data are summarised for 20 or more different transmembrane peptides and proteins, and 7 distinct species of lipids. Lineshape simulations of the two-component conventional spin-label EPR spectra allow estimation of the rate at which protein-associated lipids exchange with those in the bulk fluid regions of the membrane. For lipids that do not display a selectivity for the protein, the intrinsic off-rates for exchange are in the region of 10 MHz: less than 10× slower than the rates of diffusive exchange in fluid lipid membranes. Lipids with an affinity for the protein, relative to the background lipid, have off-rates for leaving the protein that are correspondingly slower. Non-linear EPR, which depends on saturation of the spectrum at high radiation intensities, is optimally sensitive to dynamics on the timescale of spin-lattice relaxation, i.e., the microsecond regime. Both progressive saturation and saturation transfer EPR experiments provide definitive evidence that lipids at the protein interface are exchanging on this timescale. The sensitivity of non-linear EPR to low frequencies of spin exchange also allows the location of spin-labelled membrane protein residues relative to those of spin-labelled lipids, in double-labelling experiments
A core domain set for hidradenitis suppurativa trial outcomes: an international Delphi process
Background
There is no consensus on core outcome domains for hidradenitis suppurativa (HS). Heterogeneous outcome measure instruments in clinical trials likely leads to outcome reporting bias and limits the ability to synthesise evidence.
Objectives
To achieve global multi‐stakeholder consensus on a Core Outcome Set (COS) of domains regarding what to measure in clinical trials for HS.
Methods
Six stakeholder groups participated in a Delphi process which included five anonymous e‐Delphi rounds and four face‐to‐face consensus meetings to reach consensus on the final COS. The aim was for a 1:1 ratio of patients: Health Care Professionals (HCPs).
Results
A total of 41 patients and 52 HCPs from 19 countries in four continents participated in the consensus process which yielded a final COS that included five domains: pain, physical signs, HS specific quality of life, global assessment and progression of course. A sixth domain, symptoms, was highly supported by patients and not by healthcare professionals but is recommended for the core domain set.
Conclusions
Routine adoption of the COS in future HS trials should ensure that core outcomes of importance to both patients and HCPs are collected
Respiratory Syncytial Virus Binds and Undergoes Transcription in Neutrophils From the Blood and Airways of Infants With Severe Bronchiolitis
Background. Neutrophils are the predominant cell in the lung inflammatory infiltrate of infants with respiratory syncytial virus (RSV) bronchiolitis. Although it has previously been shown that neutrophils from both blood and bronchoalveolar lavage (BAL) are activated, little is understood about their role in response to RSV infection. This study investigated whether RSV proteins and mRNA are present in neutrophils from blood and BAL of infected infants
- …