13 research outputs found

    Autologous humanized PDX modeling for immuno-oncology recapitulates features of the human tumor microenvironment.

    Get PDF
    BACKGROUND: Interactions between immune and tumor cells are critical to determining cancer progression and response. In addition, preclinical prediction of immune-related drug efficacy is limited by interspecies differences between human and mouse, as well as inter-person germline and somatic variation. To address these gaps, we developed an autologous system that models the tumor microenvironment (TME) from individual patients with solid tumors. METHOD: With patient-derived bone marrow hematopoietic stem and progenitor cells (HSPCs), we engrafted a patient\u27s hematopoietic system in MISTRG6 mice, followed by transfer of patient-derived xenograft (PDX) tissue, providing a fully genetically matched model to recapitulate the individual\u27s TME. We used this system to prospectively study tumor-immune interactions in patients with solid tumor. RESULTS: Autologous PDX mice generated innate and adaptive immune populations; these cells populated the TME; and tumors from autologously engrafted mice grew larger than tumors from non-engrafted littermate controls. Single-cell transcriptomics revealed a prominent vascular endothelial growth factor A (VEGFA) signature in TME myeloid cells, and inhibition of human VEGF-A abrogated enhanced growth. CONCLUSIONS: Humanization of the interleukin 6 locus in MISTRG6 mice enhances HSPC engraftment, making it feasible to model tumor-immune interactions in an autologous manner from a bedside bone marrow aspirate. The TME from these autologous tumors display hallmarks of the human TME including innate and adaptive immune activation and provide a platform for preclinical drug testing

    Comparison of the Effects of Different Organ Preservation Surgeries on Voice Quality by Perceptual and Acoustic Methods

    No full text
    Objective: As a result of partial or total surgical removal of the larynx due to larynx cancer, there are several aspects of patient's life that are altered, such as the anatomical, physiological, psychological, and social aspects. One of the key elements that affect the quality of life of postoperative patients in organ-preserving surgeries is the vocal function

    Endoscopic photoconversion reveals unexpectedly broad leukocyte trafficking to and from the gut

    No full text
    Given mounting evidence of the importance of gut-microbiota/immune-cell interactions in immune homeostasis and responsiveness, surprisingly little is known about leukocyte movements to, and especially from, the gut. We address this topic in a minimally perturbant manner using Kaede transgenic mice, which universally express a photoconvertible fluorescent reporter. Transcutaneous exposure of the cervical lymph nodes to violet light permitted punctual tagging of immune cells specifically therein, and subsequent monitoring of their immigration to the intestine; endoscopic flashing of the descending colon allowed specific labeling of intestinal leukocytes and tracking of their emigration. Our data reveal an unexpectedly broad movement of leukocyte subsets to and from the gut at steady state, encompassing all lymphoid and myeloid populations examined. Nonetheless, different subsets showed different trafficking proclivities (e.g., regulatory T cells were more restrained than conventional T cells in their exodus from the cervical lymph nodes). The novel endoscopic approach enabled us to evidence gut-derived Th17 cells in the spleens of K/BxN mice at the onset of their genetically determined arthritis, thereby furnishing a critical mechanistic link between the intestinal microbiota, namely segmented filamentous bacteria, and an extraintestinal autoinflammatory disease

    Tissue-resident memory T cell reactivation by diverse antigen-presenting cells imparts distinct functional responses

    No full text
    CD8+ tissue-resident memory T cells (TRM cells) are poised at the portals of infection and provide long-term protective immunity. Despite their critical roles, the precise mechanics governing TRM cell reactivation in situ are unknown. Using a TCR-transgenic Nur77-GFP reporter to distinguish "antigen-specific" from "bystander" reactivation, we demonstrate that lung CD8+ TRM cells are reactivated more quickly, yet less efficiently, than their counterparts in the draining LNs (TLN cells). Global profiling of reactivated memory T cells revealed tissue-defined and temporally regulated recall response programs. Unlike the reactivation of CD8+ TLN cells, which is strictly dependent on CD11c+XCR1+ APCs, numerous antigen-presenting partners, both hematopoietic and non-hematopoietic, were sufficient to reactivate lung CD8+ TRM cells, but the quality of TRM cell functional responses depended on the identity of the APCs. Together, this work uncovers fundamental differences in the activation kinetics, mechanics, and effector responses between CD8+ memory T cells in peripheral vs. lymphoid organs, revealing a novel tissue-specific paradigm for the reactivation of memory CD8+ T cells.Fil: Low, Jun Siong. University of Yale. School of Medicine; Estados UnidosFil: Farsakoglu, Yagmur. The Salk Institute for Biological Studies; Estados UnidosFil: Amezcua Vesely, Maria Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Sefik, Esen. University of Yale. School of Medicine; Estados UnidosFil: Kelly, Joseph B.. Stony Brook University; Estados UnidosFil: Harman, Christian C. D.. University of Yale. School of Medicine; Estados UnidosFil: Jackson, Ruaidhri. University of Yale. School of Medicine; Estados UnidosFil: Shyer, Justin A.. University of Yale. School of Medicine; Estados UnidosFil: Jiang, Xiaodong. University of Yale. School of Medicine; Estados UnidosFil: Cauley, Linda S.. University of Connecticut; Estados UnidosFil: Flavell, Richard A.. University of Yale. School of Medicine; Estados UnidosFil: Kaech, Susan M.. University of Yale. School of Medicine; Estados Unido
    corecore