3,026 research outputs found

    Chemical Oscillations out of Chemical Noise

    Full text link
    The dynamics of one species chemical kinetics is studied. Chemical reactions are modelled by means of continuous time Markov processes whose probability distribution obeys a suitable master equation. A large deviation theory is formally introduced, which allows developing a Hamiltonian dynamical system able to describe the system dynamics. Using this technique we are able to show that the intrinsic fluctuations, originated in the discrete character of the reagents, may sustain oscillations and chaotic trajectories which are impossible when these fluctuations are disregarded. An important point is that oscillations and chaos appear in systems whose mean-field dynamics has too low a dimensionality for showing such a behavior. In this sense these phenomena are purely induced by noise, which does not limit itself to shifting a bifurcation threshold. On the other hand, they are large deviations of a short transient nature which typically only appear after long waiting times. We also discuss the implications of our results in understanding extinction events in population dynamics models expressed by means of stoichiometric relations

    A Cholinergic Synaptically Triggered Event Participates in the Generation of Persistent Activity Necessary for Eye Fixation

    Get PDF
    An exciting topic regarding integrative properties of the nervous system is how transient motor commands or brief sensory stimuli are able to evoke persistent neuronal changes, mainly as a sustained, tonic action potential firing. A persisting firing seems to be necessary for postural maintenance after a previous movement. We have studied in vitro and in vivo the generation of the persistent neuronal activity responsible for eye fixation after spontaneous eye movements. Rat sagittal brainstem slices were used for the intracellular recording of prepositus hypoglossi (PH) neurons and their synaptic activation from nearby paramedian pontine reticular formation (PPRF) neurons. Single electrical pulses applied to the PPRF showed a monosynaptic glutamatergic projection on PH neurons, acting on AMPA-kainate receptors. Train stimulation of the PPRF area evoked a sustained depolarization of PH neurons exceeding (by hundreds of milliseconds) stimulus duration. Both duration and amplitude of this sustained depolarization were linearly related to train frequency. The train-evoked sustained depolarization was the result of interaction between glutamatergic excitatory burst neurons and cholinergic mesopontine reticular fibers projecting onto PH neurons, because it was prevented by slice superfusion with cholinergic antagonists and mimicked by cholinergic agonists. As expected, microinjections of cholinergic antagonists in the PH nucleus of alert behaving cats evoked a gaze-holding deficit consisting of a re-centering drift of the eye after each saccade. These findings suggest that a slow, cholinergic, synaptically triggered event participates in the generation of persistent activity characteristic of PH neurons carrying eye position signals

    Nonlinear field theories during homogeneous spatial dilation

    Full text link
    The effect of a uniform dilation of space on stochastically driven nonlinear field theories is examined. This theoretical question serves as a model problem for examining the properties of nonlinear field theories embedded in expanding Euclidean Friedmann-Lema\^{\i}tre-Robertson-Walker metrics in the context of cosmology, as well as different systems in the disciplines of statistical mechanics and condensed matter physics. Field theories are characterized by the speed at which they propagate correlations within themselves. We show that for linear field theories correlations stop propagating if and only if the speed at which the space dilates is higher than the speed at which correlations propagate. The situation is in general different for nonlinear field theories. In this case correlations might stop propagating even if the velocity at which space dilates is lower than the velocity at which correlations propagate. In particular, these results imply that it is not possible to characterize the dynamics of a nonlinear field theory during homogeneous spatial dilation {\it a priori}. We illustrate our findings with the nonlinear Kardar-Parisi-Zhang equation

    FCNCs in supersymmetric multi-Higgs doublet models

    Full text link
    We conduct a general discussion of supersymmetric models with three families in the Higgs sector. We analyse the scalar potential, and investigate the minima conditions, deriving the mass matrices for the scalar, pseudoscalar and charged states. Depending on the Yukawa couplings and the Higgs spectrum, the model might allow the occurrence of potentially dangerous flavour changing neutral currents at the tree-level. We compute model-independent contributions for several observables, and as an example we apply this general analysis to a specific model of quark-Higgs interactions, discussing how compatibility with current experimental data constrains the Higgs sector.Comment: 30 pages, 9 figures. Comments and references added. Final version published in Physical Review

    A Data Fusion Technique to Detect Wireless Network Virtual Jamming Attacks

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Wireless communications are potentially exposed to jamming due to the openness of the medium and, in particular, to virtual jamming, which allows more energy-efficient attacks. In this paper we tackle the problem of virtual jamming attacks on IEEE 802.11 networks and present a data fusion solution for the detection of a type of virtual jamming attack (namely, NAV attacks), based on the real-time monitoring of a set of metrics. The detection performance is evaluated in a number of real scenarios

    Two species coagulation approach to consensus by group level interactions

    Get PDF
    We explore the self-organization dynamics of a set of entities by considering the interactions that affect the different subgroups conforming the whole. To this end, we employ the widespread example of coagulation kinetics, and characterize which interaction types lead to consensus formation and which do not, as well as the corresponding different macroscopic patterns. The crucial technical point is extending the usual one species coagulation dynamics to the two species one. This is achieved by means of introducing explicitly solvable kernels which have a clear physical meaning. The corresponding solutions are calculated in the long time limit, in which consensus may or may not be reached. The lack of consensus is characterized by means of scaling limits of the solutions. The possible applications of our results to some topics in which consensus reaching is fundamental, like collective animal motion and opinion spreading dynamics, are also outlined

    The fractional Keller-Segel model

    Full text link
    The Keller-Segel model is a system of partial differential equations modelling chemotactic aggregation in cellular systems. This model has blowing up solutions for large enough initial conditions in dimensions d >= 2, but all the solutions are regular in one dimension; a mathematical fact that crucially affects the patterns that can form in the biological system. One of the strongest assumptions of the Keller-Segel model is the diffusive character of the cellular motion, known to be false in many situations. We extend this model to such situations in which the cellular dispersal is better modelled by a fractional operator. We analyze this fractional Keller-Segel model and find that all solutions are again globally bounded in time in one dimension. This fact shows the robustness of the main biological conclusions obtained from the Keller-Segel model
    • …
    corecore