research

The fractional Keller-Segel model

Abstract

The Keller-Segel model is a system of partial differential equations modelling chemotactic aggregation in cellular systems. This model has blowing up solutions for large enough initial conditions in dimensions d >= 2, but all the solutions are regular in one dimension; a mathematical fact that crucially affects the patterns that can form in the biological system. One of the strongest assumptions of the Keller-Segel model is the diffusive character of the cellular motion, known to be false in many situations. We extend this model to such situations in which the cellular dispersal is better modelled by a fractional operator. We analyze this fractional Keller-Segel model and find that all solutions are again globally bounded in time in one dimension. This fact shows the robustness of the main biological conclusions obtained from the Keller-Segel model

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019
    Last time updated on 27/12/2021