The Keller-Segel model is a system of partial differential equations
modelling chemotactic aggregation in cellular systems. This model has blowing
up solutions for large enough initial conditions in dimensions d >= 2, but all
the solutions are regular in one dimension; a mathematical fact that crucially
affects the patterns that can form in the biological system. One of the
strongest assumptions of the Keller-Segel model is the diffusive character of
the cellular motion, known to be false in many situations. We extend this model
to such situations in which the cellular dispersal is better modelled by a
fractional operator. We analyze this fractional Keller-Segel model and find
that all solutions are again globally bounded in time in one dimension. This
fact shows the robustness of the main biological conclusions obtained from the
Keller-Segel model