13 research outputs found
Amphioxus makes the cut Again
The cephalochordate amphioxus is now established as an important model system for understanding the evolution of vertebrate novelties from an invertebrate chordate ancestor. It is also emerging as a serious candidate for studies of organ regeneration. We extend here our previous observations on the European amphioxus´ extensive adult regenerative capacity. The expression of Wnt5 and the presence of β-catenin protein in the early bud-stage blastema support a role for Wnt signaling during tail regeneration in amphioxus. We also present data showing that Branchiostoma lanceolatum continues to regenerate well after repeated amputation of the post-anal tail. These results are discussed in relation to vertebrate regeneration and other stem cell systems, and in the context of regeneration decline with aging
JNK mediates differentiation, cell polarity and apoptosis during amphioxus development by regulating actin cytoskeleton dynamics and ERK signalling
c-Jun terminal kinase (JNK) is a multi-functional protein involved in a diverse array of context-dependent processes, including apoptosis, cell cycle regulation, adhesion and differentiation. It is integral to a number of signalling cascades, notably downstream of non-canonical Wnt and MAPK signalling pathways. As such, it is a key regulator of cellular behaviour and patterning during embryonic development across the animal kingdom. The cephalochordate amphioxus is an invertebrate chordate model system straddling the invertebrate to vertebrate transition and is thus ideally suited for comparative studies of morphogenesis. However, next to nothing is known about JNK signalling or cellular processes in this lineage. Pharmacological inhibition of JNK signalling using SP600125 during embryonic development arrests gastrula invagination and causes convergence extension-like defects in axial elongation, particularly of the notochord. Pharynx formation and anterior oral mesoderm derivatives like the preoral pit are also affected. This is accompanied by tissue-specific transcriptional changes, including reduced expression of six3/6 and wnt2 in the notochord, and ectopic wnt11 in neurulating embryos treated at late gastrula stages. Cellular delamination results in accumulation of cells in the gut cavity and a dorsal fin-like protrusion, followed by secondary Caspase3-mediated apoptosis of polarity-deficient cells, a phenotype only partly rescued by co-culture with the pan-caspase inhibitor Z-VAD-fmk. Ectopic activation of ERK signalling in the neighbours of extruded notochord and neural cells, possibly due to altered adhesive and tensile properties
Amphioxus makes the cut-again
The cephalochordate amphioxus is now established as an important model system for understanding the evolution of vertebrate novelties from an invertebrate chordate ancestor. It is also emerging as a serious candidate for studies of organ regeneration. We extend here our previous observations on the European amphioxus´ extensive adult regenerative capacity. The expression of Wnt5 and the presence of β-catenin protein in the early bud-stage blastema support a role for Wnt signaling during tail regeneration in amphioxus. We also present data showing that Branchiostoma lanceolatum continues to regenerate well after repeated amputation of the post-anal tail. These results are discussed in relation to vertebrate regeneration and other stem cell systems, and in the context of regeneration decline with aging
Development of a semi-closed aquaculture system for monitoring of individual amphioxus (Branchiostoma lanceolatum), with high survivorship
The European amphioxus Branchiostoma lanceolatum is becoming an important model for developmental studies, and as such requires more study both in the field and in the laboratory. We present an experimental set-up with temperature and flow rate control that allows easy care and monitoring of individual amphioxus. Over the course of several months, 98/100 individuals in two size categories and experiencing different levels of handling stress survived. Flow cytometry and gut contents indicate that the system meets the nutritional needs of the amphioxus. This simple and effective system for separate aquaculture of individual amphioxus prevents infections due to crowding. It should be particularly useful for future breeding, genetic, behavioural and life history studies, and can be easily adapted to other marine organisms
Characterization of the TLR family in branchiostoma lanceolatum and discovery of a novel TLR22-like involved in dsRNA recognition in amphioxus
Toll-like receptors (TLRs) are important for raising innate immune responses in both invertebrates and vertebrates. Amphioxus belongs to an ancient chordate lineage which shares key features with vertebrates. The genomic research on TLR genes in Branchiostoma floridae and Branchiostoma belcheri reveals the expansion of TLRs in amphioxus. However, the repertoire of TLRs in Branchiostoma lanceolatum has not been studied and the functionality of amphioxus TLRs has not been reported. We have identified from transcriptomic data 30 new putative TLRs in B. lanceolatum and all of them are transcribed in adult amphioxus. Phylogenetic analysis showed that the repertoire of TLRs consists of both non-vertebrate and vertebrate-like TLRs. It also indicated a lineage-specific expansion in orthologous clusters of the vertebrate TLR11 family. We did not detect any representatives of the vertebrate TLR1, TLR3, TLR4, TLR5 and TLR7 families. To gain insight into these TLRs, we studied in depth a particular TLR highly similar to a B. belcheri gene annotated as bbtTLR1. The phylogenetic analysis of this novel BlTLR showed that it clusters with the vertebrate TLR11 family and it might be more related to TLR13 subfamily according to similar domain architecture. Transient and stable expression in HEK293 cells showed that the BlTLR localizes on the plasma membrane, but it did not respond to the most common mammalian TLR ligands. However, when the ectodomain of BlTLR is fused to the TIR domain of human TLR2, the chimeric protein could indeed induce NF-κB transactivation in response to the viral ligand Poly I:C, also indicating that in amphioxus, specific accessory proteins are needed for downstream activation. Based on the phylogenetic, subcellular localization and functional analysis, we propose that the novel BlTLR might be classified as an antiviral receptor sharing at least partly the functions performed by vertebrate TLR22. TLR22 is thought to be viral teleost-specific TLR but here we demonstrate that teleosts and amphioxus TLR22-like probably shared a common ancestor. Additional functional studies with other lancelet TLR genes will enrich our understanding of the immune response in amphioxus and will provide a unique perspective on the evolution of the immune system
Wnt evolution and function shuffling in liberal and conservative chordate genomes
Background What impact gene loss has on the evolution of developmental processes, and how function shuffling has affected retained genes driving essential biological processes, remain open questions in the fields of genome evolution and EvoDevo. To investigate these problems, we have analyzed the evolution of the Wnt ligand repertoire in the chordate phylum as a case study. Results We conduct an exhaustive survey of Wnt genes in genomic databases, identifying 156 Wnt genes in 13 non-vertebrate chordates. This represents the most complete Wnt gene catalog of the chordate subphyla and has allowed us to resolve previous ambiguities about the orthology of many Wnt genes, including the identification of WntA for the first time in chordates. Moreover, we create the first complete expression atlas for the Wnt family during amphioxus development, providing a useful resource to investigate the evolution of Wnt expression throughout the radiation of chordates. Conclusions Our data underscore extraordinary genomic stasis in cephalochordates, which contrasts with the liberal and dynamic evolutionary patterns of gene loss and duplication in urochordate genomes. Our analysis has allowed us to infer ancestral Wnt functions shared among all chordates, several cases of function shuffling among Wnt paralogs, as well as unique expression domains for Wnt genes that likely reflect functional innovations in each chordate lineage. Finally, we propose a potential relationship between the evolution of WntA and the evolution of the mouth in chordates
Wnt evolution and function shuffling in liberal and conservative chordate genomes
Background What impact gene loss has on the evolution of developmental processes, and how function shuffling has affected retained genes driving essential biological processes, remain open questions in the fields of genome evolution and EvoDevo. To investigate these problems, we have analyzed the evolution of the Wnt ligand repertoire in the chordate phylum as a case study. Results We conduct an exhaustive survey of Wnt genes in genomic databases, identifying 156 Wnt genes in 13 non-vertebrate chordates. This represents the most complete Wnt gene catalog of the chordate subphyla and has allowed us to resolve previous ambiguities about the orthology of many Wnt genes, including the identification of WntA for the first time in chordates. Moreover, we create the first complete expression atlas for the Wnt family during amphioxus development, providing a useful resource to investigate the evolution of Wnt expression throughout the radiation of chordates. Conclusions Our data underscore extraordinary genomic stasis in cephalochordates, which contrasts with the liberal and dynamic evolutionary patterns of gene loss and duplication in urochordate genomes. Our analysis has allowed us to infer ancestral Wnt functions shared among all chordates, several cases of function shuffling among Wnt paralogs, as well as unique expression domains for Wnt genes that likely reflect functional innovations in each chordate lineage. Finally, we propose a potential relationship between the evolution of WntA and the evolution of the mouth in chordates
RECL 278 - 1-Jul-87
Toll-like receptors (TLRs) are important for raising innate immune responses in both invertebrates and vertebrates. Amphioxus belongs to an ancient chordate lineage which shares key features with vertebrates. The genomic research on TLR genes in Branchiostoma floridae and Branchiostoma belcheri reveals the expansion of TLRs in amphioxus. However, the repertoire of TLRs in Branchiostoma lanceolatum has not been studied and the functionality of amphioxus TLRs has not been reported. We have identified from transcriptomic data 30 new putative TLRs in B. lanceolatum and all of them are transcribed in adult amphioxus. Phylogenetic analysis showed that the repertoire of TLRs consists of both non-vertebrate and vertebrate-like TLRs. It also indicated a lineage-specific expansion in orthologous clusters of the vertebrate TLR11 family. We did not detect any representatives of the vertebrate TLR1, TLR3, TLR4, TLR5 and TLR7 families. To gain insight into these TLRs, we studied in depth a particular TLR highly similar to a B. belcheri gene annotated as bbtTLR1. The phylogenetic analysis of this novel BlTLR showed that it clusters with the vertebrate TLR11 family and it might be more related to TLR13 subfamily according to similar domain architecture. Transient and stable expression in HEK293 cells showed that the BlTLR localizes on the plasma membrane, but it did not respond to the most common mammalian TLR ligands. However, when the ectodomain of BlTLR is fused to the TIR domain of human TLR2, the chimeric protein could indeed induce NF-κB transactivation in response to the viral ligand Poly I:C, also indicating that in amphioxus, specific accessory proteins are needed for downstream activation. Based on the phylogenetic, subcellular localization and functional analysis, we propose that the novel BlTLR might be classified as an antiviral receptor sharing at least partly the functions performed by vertebrate TLR22. TLR22 is thought to be viral teleost-specific TLR but here we demonstrate that teleosts and amphioxus TLR22-like probably shared a common ancestor. Additional functional studies with other lancelet TLR genes will enrich our understanding of the immune response in amphioxus and will provide a unique perspective on the evolution of the immune system
Additional file 1: of Wnt evolution and function shuffling in liberal and conservative chordate genomes
Figure S1. Evolution of Wnt5 in ascidians. Figure S2. Expression of WntA in two ascidian species. Figure S3. Chordate Wnt expression. Figure S4. Wnt subfamilies in A. lucayanum, P. marinus, and C. milii. Table S1. Chordate Wnt genes analyzed in this study. Table S2. Branchiostoma lanceolatum and Halocynthia roretzi primer and probe sequences. Table S3. Wnt synteny in lancelets (B. lanceolatum, B. belcheri and B. floridae) and vertebrates (H. sapiens and P. marinus). Text S1.Branchiostoma lanceolatum Wnt expression as shown in Fig. 2. Text S2. References for Figure S3. (PDF 11566 kb
Additional file 2: of Wnt evolution and function shuffling in liberal and conservative chordate genomes
Wnt sequence alignment for Fig. 1. (FASTA 307 kb