214 research outputs found

    Moderate beer consumption does not change early or mature atherosclerosis in mice

    Get PDF
    BACKGROUND: Although the consumption of wine in particular has been associated with a lower risk of atherothrombotic cardiovascular disease, systematic reviews differ as to the relative protective effect of beer, wine and spirits. Two previous studies showed that red wine reduces fatty streak formation (early atherosclerosis) but not mature atherosclerosis in apolipoprotein (apo) E-deficient (apoE-/-) mice. AIM OF THE STUDY: To determine whether a moderate beer intake would affect early and mature atherosclerotic lesion formation using control C57BL/6 and apoE-/- mice, respectively, as models. METHODS: Control C57BL/6 and apoE-/- mice were randomized to receive either water, ethanol, mild beer, dark beer or ethanol-free beer. The level of beer was designed to approximate the alcohol intake currently believed to be beneficial in reducing human vascular risk. Control C57BL/6 mice were fed a Western diet for 24 weeks, and apoE-/- mice a chow diet for 12 weeks. At the end of the trial period, mice were euthanized and atherosclerotic lesions quantified. Plasma lipid concentrations were also measured. RESULTS: The amount of atherosclerosis and average number of lesions in the proximal aortic region did not differ among groups in control C57BL/6 mice (p = 0.32 and p = 0.29, respectively) and apoE-/- mice (p = 0.19 and p = 0.59, respectively). No consistent differences were observed in plasma lipid and lipoprotein concentrations among water, ethanol and beer groups. CONCLUSIONS: Moderate beer consumption does not change the development of early or mature atherosclerosis in mice. Our findings do not support the hypothesis of an anti-atherogenic effect of beer. Other potential protective actions of moderate beer consumption such as plaque stabilization, a reduction in plaque intrinsic thrombogenicity, or a reduction in the systemic propensity to thrombosis, remain to be studied

    Variable rate dosing in precision viticulture: Use of electronic devices to improve application efficiency

    Get PDF
    Two different spray application methods were compared in three vine varieties at different crop stages. A conventional spray application with a constant volume rate per unit ground area (1 ha(-1)) was compared with a variable rate application method designed to compensate electronically for measured variations in canopy dimensions. An air-blast sprayer with individual multi-nozzle spouts was fitted with three Ultrasonic sensors and three electro valves on one side, in order to modify the emitted flow rate of the nozzles according to the variability of canopy dimensions in real time. The Purpose of this prototype was to precisely apply the required amount of spray liquid and avoid over dosing. On average, a 58% saving in application volume was achieved with the variable rate method, obtaining similar or even better leaf deposits.This work was funded by the Spanish Ministry of Education and Science, and was part of research project AGL2007-66093-C04-02/AGR. We are grateful to Professor Jordi Valero from Universitat Politècnica de Catalunya for his help in the statistical analysis and Xavier Vidal director of the School of Viticulture “Mercè Rosell” at Espiells (Barcelona) for his help during the field experiments

    Lipid-Laden Macrophages and Inflammation in Atherosclerosis and Cancer : An Integrative View

    Get PDF
    Altres ajuts: Wihuri Foundation; Pulsus Foundation.Atherosclerotic arterial plaques and malignant solid tumors contain macrophages, which participate in anaerobic metabolism, acidosis, and inflammatory processes inherent in the development of either disease. The tissue-resident macrophage populations originate from precursor cells derived from the yolk sac and from circulating bone marrow-derived monocytes. In the tissues, they differentiate into varying functional phenotypes in response to local microenvironmental stimulation. Broadly categorized, the macrophages are activated to polarize into proinflammatory M1 and anti-inflammatory M2 phenotypes; yet, noticeable plasticity allows them to dynamically shift between several distinct functional subtypes. In atherosclerosis, low-density lipoprotein (LDL)-derived cholesterol accumulates within macrophages as cytoplasmic lipid droplets thereby generating macrophage foam cells, which are involved in all steps of atherosclerosis. The conversion of macrophages into foam cells may suppress the expression of given proinflammatory genes and thereby initiate their transcriptional reprogramming toward an anti-inflammatory phenotype. In this particular sense, foam cell formation can be considered anti-atherogenic. The tumor-associated macrophages (TAMs) may become polarized into anti-tumoral M1 and pro-tumoral M2 phenotypes. Mechanistically, the TAMs can regulate the survival and proliferation of the surrounding cancer cells and participate in various aspects of tumor formation, progression, and metastasis. The TAMs may accumulate lipids, but their type and their specific roles in tumorigenesis are still poorly understood. Here, we discuss how the phenotypic and functional plasticity of macrophages allows their multifunctional response to the distinct microenvironments in developing atherosclerotic lesions and in developing malignant tumors. We also discuss how the inflammatory reactions of the macrophages may influence the development of atherosclerotic plaques and malignant tumors, and highlight the potential therapeutic effects of targeting lipid-laden macrophages in either disease

    Obesity-induced changes in cancer cells and their microenvironment : Mechanisms and therapeutic perspectives to manage dysregulated lipid metabolism

    Get PDF
    Obesity has been closely related to cancer progression, recurrence, metastasis, and treatment resistance. We aim to review recent progress in the knowledge on the obese macroenvironment and the generated adipose tumor microenvironment (TME) inducing lipid metabolic dysregulation and their influence on carcinogenic processes. Visceral white adipose tissue expansion during obesity exerts systemic or macroenvironmental effects on tumor initiation, growth, and invasion by promoting inflammation, hyperinsulinemia, growth-factor release, and dyslipidemia. The dynamic relationship between cancer and stromal cells of the obese adipose TME is critical for cancer cell survival and proliferation as well. Experimental evidence shows that secreted paracrine signals from cancer cells can induce lipolysis in cancer-associated adipocytes, causing them to release free fatty acids and acquire a fibroblast-like phenotype. Such adipocyte delipidation and phenotypic change is accompanied by an increased secretion of cytokines by cancer-associated adipocytes and tumor-associated macrophages in the TME. Mechanistically, the availability of adipose TME free fatty acids and tumorigenic cytokines concomitant with the activation of angiogenic processes creates an environment that favors a shift in the cancer cells toward an aggressive phenotype associated with increased invasiveness. We conclude that restoring the aberrant metabolic alterations in the host macroenvironment and in adipose TME of obese subjects would be a therapeutic option to prevent cancer development. Several dietary, lipid-based, and oral antidiabetic pharmacological therapies could potentially prevent tumorigenic processes associated with the dysregulated lipid metabolism closely linked to obesity

    ApoA-I mimetic administration, but not increased apoA-I-containing HDL, inhibits tumour growth in a mouse model of inherited breast cancer

    Get PDF
    Low levels of high-density lipoprotein cholesterol (HDLc) have been associated with breast cancer risk, but several epidemiologic studies have reported contradictory results with regard to the relationship between apolipoprotein (apo) A-I and breast cancer. We aimed to determine the effects of human apoA-I overexpression and administration of specific apoA-I mimetic peptide (D-4F) on tumour progression by using mammary tumour virus-polyoma middle T-antigen transgenic (PyMT) mice as a model of inherited breast cancer. Expression of human apoA-I in the mice did not affect tumour onset and growth in PyMT transgenic mice, despite an increase in the HDLc level. In contrast, D-4F treatment significantly increased tumour latency and inhibited the development of tumours. The effects of D-4F on tumour development were independent of 27-hydroxycholesterol. However, D-4F treatment reduced the plasma oxidized low-density lipoprotein (oxLDL) levels in mice and prevented oxLDL-mediated proliferative response in human breast adenocarcinoma MCF-7 cells. In conclusion, our study shows that D-4F, but not apoA-I-containing HDL, hinders tumour growth in mice with inherited breast cancer in association with a higher protection against LDL oxidative modification.This work was partly funded by Ministerio de Sanidad y Consumo, Instituto de Salud Carlos III: FIS PI11/01076 (to F.V-B.), PI12/00291 (to J.C.E-G.) and PI13/02507 (to A.C.), and RETIC RIC RD12/0042/0055 (to A.C.); by Ministerio de Economía y Competitividad, SAF2011-23402 (to A.F.V); by an intramural project of the Institut de Recerca de l’Hospital de la Santa Creu I Sant Pau (IR15-P5); and by grant from the Academy of Finland #257545 (to M.J.). CIBER de Diabetes y Enfermedades Metabólicas Asociadas is an Instituto de Salud Carlos III Project. A.M.F. and S.T.R. were funded by HL-30568 and by a Leducq Foundation Network grant, and J.M.C. is an APIF fellowship recipient (Universitat de Barcelona).Peer Reviewe
    corecore