214 research outputs found

    Wigner-Poisson and nonlocal drift-diffusion model equations for semiconductor superlattices

    Full text link
    A Wigner-Poisson kinetic equation describing charge transport in doped semiconductor superlattices is proposed. Electrons are supposed to occupy the lowest miniband, exchange of lateral momentum is ignored and the electron-electron interaction is treated in the Hartree approximation. There are elastic collisions with impurities and inelastic collisions with phonons, imperfections, etc. The latter are described by a modified BGK (Bhatnagar-Gross-Krook) collision model that allows for energy dissipation while yielding charge continuity. In the hyperbolic limit, nonlocal drift-diffusion equations are derived systematically from the kinetic Wigner-Poisson-BGK system by means of the Chapman-Enskog method. The nonlocality of the original quantum kinetic model equations implies that the derived drift-diffusion equations contain spatial averages over one or more superlattice periods. Numerical solutions of the latter equations show self-sustained oscillations of the current through a voltage biased superlattice, in agreement with known experiments.Comment: 20 pages, 1 figure, published as M3AS 15, 1253 (2005) with correction

    Development and use of standardized white spot syndrome virus (WSSV) inoculation procedures for studies on pathogenesis and control

    Get PDF
    Development and use of standardized white spot syndrome virus (WSSV) inoculation procedures for studies on pathogenesis and contro

    Multiquantum well spin oscillator

    Full text link
    A dc voltage biased II-VI semiconductor multiquantum well structure attached to normal contacts exhibits self-sustained spin-polarized current oscillations if one or more of its wells are doped with Mn. Without magnetic impurities, the only configurations appearing in these structures are stationary. Analysis and numerical solution of a nonlinear spin transport model yield the minimal number of wells (four) and the ranges of doping density and spin splitting needed to find oscillations.Comment: 11 pages, 2 figures, shortened and updated versio

    Axisymmetric pulse recycling and motion in bulk semiconductors

    Full text link
    The Kroemer model for the Gunn effect in a circular geometry (Corbino disks) has been numerically solved. The results have been interpreted by means of asymptotic calculations. Above a certain onset dc voltage bias, axisymmetric pulses of the electric field are periodically shed by an inner circular cathode. These pulses decay as they move towards the outer anode, which they may not reach. As a pulse advances, the external current increases continuously until a new pulse is generated. Then the current abruptly decreases, in agreement with existing experimental results. Depending on the bias, more complex patterns with multiple pulse shedding are possible.Comment: 8 pages, 15 figure

    Magnetoswitching of current oscillations in diluted magnetic semiconductor nanostructures

    Get PDF
    Strongly nonlinear transport through Diluted Magnetic Semiconductor multiquantum wells occurs due to the interplay between confinement, Coulomb and exchange interaction. Nonlinear effects include the appearance of spin polarized stationary states and self-sustained current oscillations as possible stable states of the nanostructure, depending on its configuration and control parameters such as voltage bias and level splitting due to an external magnetic field. Oscillatory regions grow in size with well number and level splitting. A systematic analysis of the charge and spin response to voltage and magnetic field switching of II-VI Diluted Magnetic Semiconductor multiquantum wells is carried out. The description of stationary and time-periodic spin polarized states, the transitions between them and the responses to voltage or magnetic field switching have great importance due to the potential implementation of spintronic devices based on these nanostructures.Comment: 14 pages, 4 figures, Revtex, to appear in PR

    Free boundary problems describing two-dimensional pulse recycling and motion in semiconductors

    Full text link
    An asymptotic analysis of the Gunn effect in two-dimensional samples of bulk n-GaAs with circular contacts is presented. A moving pulse far from contacts is approximated by a moving free boundary separating regions where the electric potential solves a Laplace equation with subsidiary boundary conditions. The dynamical condition for the motion of the free boundary is a Hamilton-Jacobi equation. We obtain the exact solution of the free boundary problem (FBP) in simple one-dimensional and axisymmetric geometries. The solution of the FBP is obtained numerically in the general case and compared with the numerical solution of the full system of equations. The agreement is excellent so that the FBP can be adopted as the basis for an asymptotic study of the multi-dimensional Gunn effect.Comment: 19 pages, 9 figures, Revtex. To appear in Phys. Rev.

    Mini Review: Virus Interference: History, Types and Occurrence in Crustaceans

    Get PDF
    Virus interference is a phenomenon in which two viruses interact within a host, affecting the outcome of infection of at least one of such viruses. The effect of this event was first observed in the XVIII century and it was first recorded even before virology was recognized as a distinct science from microbiology. Studies on virus interference were mostly done in the decades between 1930 and 1960 in viruses infecting bacteria and different vertebrates. The systems included in vivo experiments and later, more refined assays were done using tissue and cell cultures. Many viruses involved in interference are pathogenic to humans or to economically important animals. Thus the phenomenon may be relevant to medicine and to animal production due to the possibility to use it as alternative to chemical therapies against virus infections to reduce the severity of disease/mortality caused by a superinfecting virus. Virus interference is defined as the host resistance to a superinfection caused by a pathogenic virus causing obvious signs of disease and/or mortality due to the action of an interfering virus abrogating the replication of the former virus. Different degrees of inhibition of the superinfecting virus can occur. Due to the emergence of novel pathogenic viruses in recent years, virus interference has recently been revisited using different pathogens and hosts, including commercially important farmed aquatic species. Here, some highly pathogenic viruses affecting farmed crustaceans can be affected by interference with other viruses. This review presents data on the history of virus interference in hosts including bacteria and animals, with emphasis on the known cases of virus interference in crustacean hosts.Life Science Identifiers (LSIDs)Escherichia coli [(Migula 1895) Castellani & Chalmers 1919]Aedes albopictus (Skuse 1894)Liocarcinus depurator (Linnaeus 1758): urn:lsid:marinespecies.org:taxname:107387Penaeus duorarum (Burkenroad 1939): urn:lsid:marinespecies.org:taxname:158334Carcinus maenas (Linnaeus 1758): urn:lsid:marinespecies.org:taxname:107381Macrobrachium rosenbergii (De Man 1879): urn:lsid:marinespecies.org:taxname:220137Penaeus vannamei (Boone 1931): urn:lsid:zoobank.org:pub:C30A0A50-E309-4E24-851D-01CF94D97F23Penaeus monodon (Fabricius 1798): urn:lsid:zoobank.org:act:3DD50D8B-01C2-48A7-B80D-9D9DD2E6F7ADPenaeus stylirostris (Stimpson 1874): urn:lsid:marinespecies.org:taxname:58498

    Self-sustained spin-polarized current oscillations in multiquantum well structures

    Get PDF
    Nonlinear transport through diluted magnetic semiconductor nanostructures is investigated. We have considered a II–VI multiquantum well nanostructure whose wells are selectively doped with Mn. The response to a dc voltage bias may be either a stationary or an oscillatory current. We have studied the transition from stationary to time-dependent current as a function of the doping density and the number of quantum wells. Analysis and numerical solution of a nonlinear spin transport model shows that the current in a structure without magnetic impurities is stationary, whereas current oscillations may appear if at least one well contains magnetic impurities. For long structures having two wells with magnetic impurities, a detailed analysis of nucleation of charge dipole domains shows that self-sustained current oscillations are caused by repeated triggering of dipole domains at the magnetic wells and motion towards the collector. Depending on the location of the magnetic wells and the voltage, dipole domains may be triggered at both wells or at only one. In the latter case, the well closer to the collector may inhibit domain motion between the first and the second well inside the structure. Our study could allow design of oscillatory spin-polarized current injectors

    <i>In vivo</i> titration of white spot syndrome virus (WSSV) in specific pathogen-free <i>Litopenaeus vannamei</i> by intramuscular and oral routes

    Get PDF
    White spot syndrome virus (WSSV) is a devastating pathogen in shrimp aquaculture. Standardized challenge procedures using a known amount of infectious virus would assist in evaluating strategies to reduce its impact. In this study, the shrimp infectious dose 50% endpoint (SID50 ml-1) of a Thai isolate of WSSV was determined by intramuscular inoculation (i.m.) in 60 and 135 d old specific pathogen-free (SPF) Litopenaeus vannamei using indirect immunofluorescence (IIF) and 1-step polymerase chain reaction (PCR). Also, the lethal dose 50% endpoint (LD50 ml-1) was determined from the proportion of dead shrimp. The median virus infection titers in 60 and 135 d old juveniles were 10(6.8) and 10(6.5) SID50 ml-1, respectively. These titers were not significantly different (p >= 0.05). The titration of the WSSV stock by oral intubation in 80 d old juveniles resulted in approximately 10-fold reduction in virus titer compared to i.m. inoculation. This lower titer is probably the result of physical and chemical barriers in the digestive tract of shrimp that hinder WSSV infectivity. The titers determined by infection were identical to the titers determined by mortality in all experiments using both i.m. and oral routes at 120 h post inoculation (hpi), indicating that every infected shrimp died. The determination of WSSV titers for dilutions administered by i.m. and oral routes constitutes the first step towards the standardization of challenge procedures to evaluate strategies to reduce WSSV infection
    • …
    corecore