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“The roots of Science are bitter, but the fruits are sweet” - Aristotle (384-322 BC) 
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INTRODUCTION 

 

1.1 Shrimp aquaculture 

Shrimp culture probably originated thousands of years ago when people living in coastal 

areas incidentally harvested shrimp growing in estuaries and tidal ponds (Fast 1992; 

Martínez-Córdoba & Peña-Messina 2005). In Asia, shrimp larvae entered milkfish 

ponds during tidal exchange or were intentionally collected from the wild and directly 

stocked in ponds. Here, the production was dependent on the seasonal abundance of 

wild larvae which has yearly variations (Kungvankij 1985). This practice later evolved 

into the extensive culture systems performed nowadays. Coastal lagoons of several 

hectares (ha) in size are stocked at a low density (≤ 10 animals m-2) with wild larvae. 

These larvae develop into juvenile or subadult stages with little human intervention 

(Fast 1992). In this system, production can reach up to 1 metric ton (MT) ha-1 year-1 and 

the culture may last for several months (Fast 1992, Wickins & Lee 2002). 

Modern shrimp farming started in Japan in the 1930s with the successful spawning and 

larviculture of Marsupenaeus japonicus under laboratory conditions (Rosenberry 2001). 

Later, technological advances of artificial fertilization, mass seed production and feed 

formulation for penaeid shrimp (Lotz 1997; Hsu et al. 2000) contributed to the 

appearance of the semi-intensive and intensive culture systems. In the semi-intensive 

system, wild or hatchery-raised postlarvae are stocked at densities of 20 - 60 shrimp m-2, 

the size of ponds is smaller (2 - 12 ha) and the productivity per hectare may reach 12 - 

15 MT ha-1 year-1. This system requires supply of artificial food, fertilization of the 

water, additional aeration and water exchange. The intensive system is performed in 

small ponds (≤ 1 ha), stocked at high density (> 60 shrimp m-2) with postlarvae from 

hatcheries. It gives a high production (up to 50 MT ha-1 year-1). This system requires a 

high water exchange rate and it relies exclusively on artificial feed. Such a system may 

yield more than two harvests per year (Fast 1992; Wickins & Lee 2002). 

The extensive and semi-intensive shrimp farming systems are currently practiced in 

more than 55 countries. In 2004, the major penaeid shrimp farming countries were: 

China (935 944 MT), Thailand (390 000 MT), Vietnam (275 569 MT), Indonesia (238 

341 MT), India (133 020 MT), Brazil (75 904 MT), Mexico (62 361 MT), Bangladesh 

(58 044 MT), Ecuador (56 300 MT), Philippines (37 947 MT) and Malaysia (30 838 
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MT). That year, world farmed penaeid shrimp production reached 2 475 508 MT worth 

9.74 billion USD. The main cultured species were Litopenaeus vannamei (56% of the 

world total farmed penaeid shrimp) and Penaeus monodon (29%) (FAO 2006). 

Shrimp aquaculture has developed and expanded rapidly and is currently recognized as 

a potential long-term sustainable industry for many tropical countries (Flegel 1997). 

However, the intensification has also produced a number of problems affecting the 

industry (Flegel 1997; Alabi et al. 2000). These include environmental (fluctuations in 

water quality and toxicants from industrial and agricultural origin) and physiological 

stress factors (overcrowding, overfeeding and lack of essential nutrients) that are often 

related to disease and mortality (Hsu et al. 2000; Yusoff et al. 2001). These elements 

have been related to an increased susceptibility to infectious diseases (Lightner & 

Redman 1998; Hsu et al. 2000). 

 

1.2 The shrimp Litopenaeus vannamei 

The white-legged shrimp Litopenaeus vannamei has been cultured in America since the 

beginning of the industry in 1969. Although species such as L. stylirostris are also 

attractive for aquaculture, a number of characteristics have made the white-legged 

shrimp the preferred species for aquaculture not only in America but also in many Asian 

countries: (1) its remarkable ability to acclimatize to broad environmental variations and 

(2) its good performance in conditions of limited food diversity. This characteristic is 

related to its omnivorous feeding habits that include organic matter and detritus from 

plants and animals. Also, L. vannamei has a relatively low requirement of dietary 

protein and good feed conversion efficiency. These features are very attractive in 

aquaculture (Moss & Pruder 1995; Martínez-Córdoba & Peña-Messina 2005). 

 

1.2.1 Biology 

The white-legged shrimp L. vannamei belongs to the decapod crustaceans which is 

probably one of the most diverse and complex arthropod groups. The taxonomic 

position of this species is described below (Pérez-Farfante & Kensley 1997; Martin & 

Davis 2001): 
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Domain Eukarya 

Kingdom Animalia, Linnaeus 1758 

Phylum Arthropoda, Latreille 1829 

Subphylum Crustacea, Brünnich 1772 

Class Malacostraca, Latreille 1802 

Subclass Eumalacostraca, Gröbben 1892 

Superorder Eucarida, Calman 1904 

Order Decapoda, Latreille 1802 

Suborder Dendrobranchiata, Bate 1888 

Superfamily Penaeoidea, Rafinesque 1815 

Family Penaeidae, Rafinesque 1815 

Genus Litopenaeus, Pérez Farfante 1969 

Species Litopenaeus vannamei Boone 1931 

 

The shrimp L. vannamei is an American species distributed in the Pacific coast, from 

the Gulf of California, Mexico (28° N, 112°W) to Peru (5° S, 83°W). This species 

inhabits muddy bottoms from the shoreline (3-5 m) down to 72 m. Adult shrimp are 

found in warm coastal waters up to 32 km off-shore while larvae and juveniles are 

found near protected coastal areas such as estuaries and coastal lagoons which serve as 

nursing grounds rich in food sources (Bailey-Brock & Moss 1992; Primavera, 1998, 

Sánchez 1997; Eggleston et al. 1999; Corona et al. 2000). The main parameters of water 

quality in natural environments and culture conditions include temperature, salinity, 

dissolved oxygen, turbidity, pH and presence of toxic metabolites such as ammonia, 

nitrites and hydrogen sulfide (Bray & Lawrence 1992; Brock & Main 1994). In 

estuaries, temperature and salinity show drastic variations according to the season and 

the interaction between these parameters often determines shrimp distribution and 

abundance (Lester & Pante 1992; Wyban et al. 1995). 

The white-legged shrimp mates and spawns in off-shore waters where fertilized eggs are 

released as zooplankton in the ocean. Embryological development begins within 

minutes after fertilization. Fourteen hours later, the first larval stage or nauplius hatches. 

This stage has six instars (the interval of time between molts) which are completed 1.5 

days after hatching. A nauplius has a pear-shaped form with only three pairs of 
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appendages: antennae 1, 2 and mandibles. A primitive carapace and a furcal tail develop 

later. Nauplii are zooplanktonic and migrate from oceanic waters to coastal nursing 

areas driven by tides and waves. The antennae are used for swimming which is very 

limited. The second larval stage or protozoea has three instars which are completed five 

days after nauplius. Here the carapace and rostrum develop; compound eyes and 

rudiments of maxillipeds, pereopods, uropods and telson appear. The third larval stage 

or mysis also has three instars lasting five days. Here, major metamorphoses occur: the 

carapace fuses to the pereon; maxillipeds, pereopods and uropods become fully 

functional and the pleopods first appear. The animal increases in size and the sixth 

pleonite is larger than all the other pleonites. The last stage of larval development or 

postlarva lasts several days. A postlarva is morphologically similar to the adult (Bray & 

Lawrence 1992). At this stage, shrimp enter into nursing coastal areas swimming with 

pleopods and change habits from zooplanktonic to epibenthic (Sánchez 1997; Corona et 

al. 2000). Shrimp reach full morphology and function within twenty days after reaching 

the postlarval stage (pl-20). Postlarvae only grow in size to become juvenile and leave 

nursing areas (Sánchez 1997). Juvenile still do not develop sexual characters. The ratio 

of the length of the sixth pleonite to carapace is higher (0.68) than adults (0.52). This 

stage lasts three to four months. Subadults first show sexual dimorphism (development 

of petasma and appendix masculina in male or thelycum in female) and usually perform 

the first copulation. This stage last up to four months after the juvenile stage. Adults 

appear four to seven months after subadult, are sexually mature and show complete 

dimorphism where females are somewhat larger than males (Bray & Lawrence 1992). 

The lifespan of shrimp is about 1.5 to 2 years, they can spawn several times and the 

females can produce in a single spawn between 100 to 500 thousand eggs (Bray & 

Lawrence 1992). 

Feeding habits of shrimp change according to the developmental stage. Larval stages 

feed upon phyto- or zoo-plankton. When postlarvae change from planktonic to 

epibenthic they feed upon detritus of animal and/or vegetal origin, epibenthic 

microalgae, plants, nematodes, copepods, tanaids and larvae from molluscs and other 

crustaceans. The size of prey increases as the shrimp grow, so the diet of juvenile 

shrimp include mysid and caridean shrimp, amphipods, polychaetes, molluscs and even 

fish (Bailey-Brock & Moss 1992). In culture conditions, the abundance of prey is 
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reduced; therefore shrimp has to rely heavily on the fraction of particulate organic 

matter and/or detritus generated by the dynamics of culture systems in addition to 

artificial diets (Moss & Pruder 1995; Martínez-Córdoba & Peña-Messina 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Life cycle of L. vannamei (size of the different stages is not in scale) 

 

 

1.2.2 Morphology 

The white-legged shrimp is well adapted to the aquatic environment. It has a laterally-

compressed, cylindrical body with bilateral symmetry. Three distinctive external 

regions are recognized: pereon, pleon and telson (Brusca & Brusca 1990) (Figure 2). 

The pereon is formed by the fusion of 13 body segments: five from the head (acron) and 

eight from the thorax. Each segment of the head bears a pair of limbs which perform 

sensory or feeding functions (two antennae, one mandible and two maxillae), while the 

limbs from the thorax perform preening and crawling functions (three pairs of 

maxillipeds and five pairs of pereopods) (Budd 2002). The pereon is covered by a 

carapace with a dorsal keel-shaped rostrum. 
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Figure 2. External morphology of L. vannamei 

 

The pleon has six segments mainly composed by muscle. Other structures present in this 

region are gonads, the posterior artery and digestive tract (midgut trunk and hindgut). 

This region is controlled by the ventral nerve cord and segmental ganglia. Each of the 

first five segments bears one pair of appendages (pleopods) used for swimming, 

burrowing and ventilation. The last segment has one pair of uropods. The telson is a 

flattened structure surrounded by the uropods, which together form the tail fan and is 

used in escape swimming (Ruppert & Barnes 1994). 

 

Integument - this organ covers and protects the body of shrimp and is a primary defense 

barrier against pathogen penetration into the body (Armstrong & Quigley 1999; Tincu 

& Taylor 2004). The integument consists of a bio-mineralized cuticle produced by a 

monolayer of epithelial cells, a basal membrane and subjacent connective tissues 

(Felgenhauer 1992a; Wilt et al. 2003; Compére et al. 2004). Chitin (a linear 

homopolymer of β-1,4-N-acetyl-D-glucosamine with a molecular weight of 103 KDa) is 

the major component of the cuticle (50-75% of decalcified dry weight) together with 

proteins which constitute 30-40%. 

Molting, also known as ecdysis, is a complex process for growth by which shrimp sheds 

the old exoskeleton and produces a new one. The molting cycle occurs within an instar 

and its duration increases as shrimp grow older. Molting influences other functions such 
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as development (from nauplius to larvae, juvenile and adult), growth, regeneration, 

hematopoiesis and defense response (Skinner 1985; Le Moullac et al. 1997; Chang et al. 

2001; Liu et al. 2004). Molting has four main phases: metecdysis (postmolt), anecdysis 

(intermolt), proecdysis (premolt) and ecdysis (molting) (Figure 3) (Kaestner 1970; 

Skinner 1985; Chan et al. 1988). Molting is controlled by neurohormones but it is also 

influenced by environmental factors such as temperature, light and salinity (Kaestner 

1970; Skinner 1985) which in turn influence metabolism and neurohormone production. 

 

 

 

 

 

 

 

 

 

 

Figure 3. Duration of molting stages in L. vannamei: (a) 22 °C and 30 g l-1 salinity 

(Chan et al. 1988); (b) 27°C and 35 g l-1 salinity (M. Corteel, unpublished results) 

 

Digestive system - the digestive tract of shrimp is divided in three regions: foregut, 

midgut and hindgut (Figure 4). The foregut and hindgut derive from the ectoderm and 

the epithelium in these regions is lined with cuticle that is continuous with the 

exoskeleton. The midgut derives from the endoderm and the epithelial tissues in this 

region are not covered by cuticle (Brusca & Brusca 1990; Icely & Nott 1992). 

The mouth is located sub-ventrally in the pereon underneath the labrum and anterior to 

the oral appendages. The labrum is a fleshy structure which may prevent reflux of 

ingested food. The mandibles are grinding structures composed of a molar, an incisor 

process and a flattened mandibular palp. This palp helps the labrum to push food items 

into the mouth (Pérez-Farfante & Kenlsey 1997; Garm 2004). The maxilla 1 assists in 

holding and pushing food items between the mandibles. The maxilla 2 is involved in 

preening food items and it has an exopod (scaphognatite) which serves as gill bailor 
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(Garm et al. 2003). The maxillipeds (three pairs) are appendages which assist in 

gathering and processing food and grooming the gills (Bell & Lightner 1988; Ceccaldi 

1997; Bauer 1999). 

The foregut is divided into the esophagus and stomach. The epithelium of the foregut is 

lined by cuticle (140 µm thick) which lacks the epicuticle layer (Icely & Nott 1992; 

Ceccaldi 1998). The esophagus is a short slender tube made of simple columnar 

epithelial cells surrounded by muscle acting as a sphincter. It contains numerous 

tegumental glands which secrete mucus that may lubricate the passage of food 

(Fingerman 1992; Ceccaldi 1998). 

 

 

 

 

 

 

 

 

 

 

Figure 4. Structure of the digestive system of L. vannamei 

 

The stomach performs: (1) physical breakdown of ingested material by mastication, (2) 

the chemical digestion of food, (3) separation of fine particles and fluids from coarse 

materials by filtration and (4) transport of fine particles and fluids to the hepatopancreas 

and transport of undigested materials to the intestine for excretion (Icely & Nott 1992). 

The stomach is divided into an anterior and posterior chamber: The anterior chamber is 

muscular and has cuticular tooth-like projections used in food grinding and for this 

reason it is called gastric mill. The posterior chamber is divided into a dorsal and a 

ventral sub-chamber. The ventral sub-chamber has a gastric sieve formed by spiny 

cuticular projections which filter tiny food particles and fluids into the hepatopancreas. 

Coarse food particles are sent back to the gastric mill for further grinding or towards the 

intestine for removal (Ceccaldi 1997). The dorsal chamber is beneath the anterior 
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midgut cecum. This chamber squeezes the residual bolus to extract fluids and fine 

particles which go to the filter gland, while the compact residues are sent to the intestine 

(Icely & Nott 1992; Ruppert & Barnes 1994). 

The midgut extends from the foregut in the pereon to the hindgut in the sixth segment of 

the pleon. It is composed by the anterior and posterior midgut ceca, the hepatopancreas 

or midgut gland and the midgut trunk or intestine (Figure 4) (Icely & Nott 1992; Martin 

& Chiu 2003). The anterior and posterior midgut ceca and midgut trunk are lined with 

simple columnar epithelial cells with a basal lamina which becomes thin (0.8 µm) in the 

intestine. These cells have many apical microvilli with electrondense tips. The anterior 

midgut cecum is a blind sack with large epithelial folds projecting into the lumen. 

Bacteria are usually found here and may help to perform biodigestion of food and 

synthesis of vitamins. The intestine is composed by the following layers from the lumen 

inside: peritrophic membrane, epithelium, basal lamina, hemocyte layer (exclusively 

composed by granulocytes), connective tissue layer (which contains one layer of 

circular muscles and another of longitudinal muscles) and the outer intima (Martin & 

Chiu 2003). The peritrophic membrane is produced by delamination of epithelial cells 

in the midgut and its function is to protect the midgut epithelium from mechanical 

damage, pathogens, toxins and other damaging chemicals (Lehane 1997). 

The hepatopancreas is the master digestive gland. It performs functions such as 

synthesis and secretion of digestive enzymes, absoption of nutrients, storage of mineral 

reserves and organic substances, lipid and carbohydrate metabolism, distribution of 

stored reserves during intermolt stage, calcium absorption, etc. (Icely & Nott 1992; 

Ceccaldi 1997, 1998). In the shrimp, the hepatopancreas is bilobed and surrounds the 

stomach. A duct connects the filter gland of the stomach with the hepatopancreas. The 

hepatopancreas is composed by a series of blind-ended, finger-like tubules. The tubule 

walls are composed by simple columnar epithelial cells. The hepatopancreas of L. 

vannamei has four cell types: embryonic (E) undifferentiated cells that undergo active 

cell division (Caceci et al. 1988); fibrilar (F) cells produce enzymes and store iron; 

secretory or blister (B) cells contain one or two very large vacuoles filled with a 

flocculent material and perform absorption of nutrients and storage of glycogen, fats 

and calcium (Ruppert & Barnes 1994) and reservoir (R) cells that store lipids and 

glycogen (Icely & Nott 1992; Ceccaldi 1997). 



Introduction 12 

The hindgut is the terminal part of the digestive tract. It is a simple epithelial tube lined 

with non-calcified cuticle that links the lumen at the posterior end of the intestine with 

the anus that opens onto the surface of the exoskeleton below the telson. The hindgut 

begins after the posterior midgut cecum. The junction between midgut and hindgut is 

composed of longitudinal folds in the hindgut wall. Tegumental glands are present in 

the hindgut. Some bacterial growth can be seen in hindgut due to secretions of the 

tegumental glands (Ceccaldi 1997). The anus is the posterior extremity of the 

gastrointestinal tract and is lined with a thick and calcified cuticle (Bell & Lightner 

1988). The epithelial cells of the digestive system are also involved in water and ion 

balance (Ahearn et al. 1999; Wheatley 1999). 

 

Respiratory system - the gills are the respiratory organs in shrimp. The genus 

Litopenaeus has 19 pairs of gills enclosed in a branchial chamber (Figure 5) (Foster & 

Howse 1976, 1978; Taylor & Taylor 1992; Pérez-Farfante & Kensely 1997). The gills 

are attached to the pereon by a tubular structure. The dendrobranchiate gills of shrimp 

have a tree-like shape, which consist of an axis that bears a series of paired branches at 

right angles along its length. Each branch gives rise to numerous perpendicularly-

oriented filaments that bifurcate at least twice. A longitudinal septum divides the lumen 

of each tubular structure, axis, branch and filament into afferent (towards the gill) and 

efferent (away from the gill) branchial channels, which are lined by a basal lamina. A 

third, smaller channel is located between a layer of nephrocytes that faces the efferent 

hemolymph and the septum that separates the afferent and efferent channels in the axis 

and branches (Taylor & Taylor 1992). The interstitial spaces of the branchial tissues are 

often filled with hemolymph carried by this auxiliary channel (Foster & Howse 1978). 

The gills are lined with uncalcified cuticle, which thickness varies from 16 µm in the 

axis to 2.5 µm in branches and less than 1.0 µm in the filaments. Pore canals (0.14 µm 

in diameter) enter the cuticle but they do not reach the epicuticle (0.16 µm thick in 

filaments) (Taylor & Taylor 1992). The gill epithelium is composed by a layer of 

cuboidal cells in the axis (8 - 10 µm thick in intermolt). In branches and filaments the 

epithelium is a thin sheet (1.1 - 0.1 µm) with a series of pillar processes (2 - 6 µm wide) 

that form lacunae beneath the cuticle (Foster & Howse 1978). 
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Figure 5. Location and general structure of the dendrobranchiate gills. This figure shows 

the secondary filaments and a cross-section detail of the tertiary filaments 

 

Gills have specialized epithelial cells: (1) flange cells are the main cell type and may 

form lacunae (Foster & Howse 1978; Taylor & Taylor 1992); (2) pillar cells are support 

structures that separate lamellar septa and often define hemolymph flow routes and 

prevent distortion of filament shape by hemolymph pressure (Bell & Lightner 1988; 

Taylor & Taylor 1992); (3) nephrocytes are large (20 - 50 µm), vacuolated cells similar 

to glomerular podocytes of vertebrates and cells of the crustacean antennal gland. 

Nephrocytes are mainly located in the axial efferent vessels and occasionally in the 

filaments. These cells do not form a continous epithelial layer but instead they form 

clusters up to 30 cells (Taylor & Taylor 1992). Fibroblasts, reserve cells and 

granulocytes are associated to connective tissues supporting the gills and 

branchiosteguites. Granulocytes are thought to play a role in cuticle formation. 

Tegumental glands are also present in gills and may play a role in epicuticle formation, 

tanning and defense against pathogens (Taylor & Taylor 1992). 
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The gills are protected from mechanical injury in the gill chamber. Here, water is 

pumped rapidly by the scaphognatite over the gill filaments facilitating gas exchange 

(Bauer 1999) which occurs as follows: hemolymph moves through the tissues and goes 

to gills via a pair of infrabranchial sinuses. There, hemolymph flows into the afferent 

branchial vein, which supplies to individual lamellae. In the lamellae, hemolymph flows 

along the marginal canal formed by pillar cells and here occurs gas exchange. Once 

hemolymph passed through the lamellae, it drains into the efferent branchial vein and 

continues into the branchio-cardiac vein, which carries arterial blood back to the heart 

(Taylor & Taylor 1992; McGaw & Reiber 2002). Regulation of hemolymph flow 

through the gills is thought to occur via the efferent valve, which acts as a dike in the 

efferent channels (Bell & Lightner 1988). 

Other functions performed by gill epithelium are: transport and excretion of carbon 

dioxide (CO2), salt and water balance, acid-base regulation of hemolymph, ammonia 

excretion and calcium uptake (Taylor & Taylor 1992; Ahearn et al. 1999; Bauer 1999). 

The gills also function in capture and elimination of foreign particles in hemolymph 

especially bacteria (Martin et al. 1993, 1996, 2000). 

 

Excretory system - the paired antennal glands are the main excretory organs located in 

the anterior part of the pereon. The excretory pore exits on the coxa of the antenna. In 

shrimp, the antennal gland has three regions: the coelomosac (end sac), labyrinth and 

bladder (Figure 6) (Felgenhauer 1992b; Fingerman 1992). 

The coelomosac derives from the mesoderm and its wall is composed by a single layer 

of podocytes lined by a basal lamina (Fingerman 1992). Podocytes perform ultra-

filtration in a similar way as the glomerular nephron of vertebrates. 

The labyrinth is a network of coiled simple columnar epithelial cells. It has two regions: 

labyrinth I with tall columnar cells with basal nuclei and apical membrane blebs that 

reach the lumen. The cells in labyrinth II are shorter, with central nuclei, brush border 

and larger vacuoles (Fingerman 1992). The labyrinth is bathed by hemolymph in a sinus 

as well as by capillaries that reach the base of the epithelial cells. The epithelium in the 

labyrinth changes according to its physiological state. Non-secretory cells (inactive 

secretory state) are cuboidal to low columnar with central or apical nuclei. Secretory 

cells (active secretory state) are tall columnar epithelial cells with basal nuclei and 



Chapter 1 15

vacuolated apical cytoplasm without microvilli (Fingerman 1992). In shrimp, the 

labyrinth is found scattered throughout the anterior part of the pereon. 

The bladder is a large multi-lobed reservoir for urine storage and may play a role in 

final urine modification (Felgenhauer 1992b). It has epithelial cells similar to the 

labyrinth (Fingerman 1992). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Structure of the antennal gland in L. vannamei (After Bell & Lightner 1988) 

showing details of (A) labyrinth and (B) coelomosac 

 

 

Hemolymph bathes the antennal gland and flows into the hemocoel through a series of 

channels in the gland. The excretion products are ammonia and residual salts (Bell & 

Lightner 1988). The urine of L. vannamei remains isosmotic with hemolymph (Lin et al. 

2000; Cheng et al. 2002). 

Other roles of the antennal gland include water and calcium balance, maintenance of 

hemolymph volume, ionic and osmotic regulation, gastric acidification and heavy metal 

detoxification (Ahearn et al. 1999; Wheatly 1999; Lin et al. 2000). 

Hemolymph sinuses

Bladder

Excretory
pore

Epithelial
cells

Lumen
of coelomosac

Podocytes

BA
Epithelial

cells

Hemocyte LumenHemolymph sinuses

Bladder

Excretory
pore

Epithelial
cells

Lumen
of coelomosac

Podocytes

BA
Epithelial

cells

Hemocyte Lumen



Introduction 16 

Circulatory system - this system is composed by hemolymph, heart, associated conduits 

and haemal sinuses, hematopoietic tissues and lymphoid organ. 

Hemolymph is the bodily fluid that transports nutrients, salts, water and oxygen to all 

tissues. It also carries metabolic waste, excess salts and/or water for excretion. The 

hemolymph is composed by proteins, lipoproteins, glycoproteins, free aminoacids, 

carbohydrates, fatty acids, electrolytes and metals (Shimizu et al. 2001). Hemocyanin (a 

glycosylated copper-containing protein) is dissolved in hemolymph of crustaceans and 

molluscs and has an oxygen-carrier function. Its oxygen-binding capacity might change 

as required under hypoxic or stress conditions (McMahon 2001). In L. vannamei, 

hemocyanin accounts for 87% of total hemolymph proteins (Figueroa-Soto et al. 1997; 

Cheng et al. 2002) and it has other functions such as an energy-storage protein (Sánchez 

et al. 2001; Pascual et al. 2003) and humoral defense (Destomieux-Garzón et al. 2001). 

The circulatory system consists of a single-chambered dorsal heart suspended in a 

pericardial chamber (Figure 7). The pericardial sinus is composed of spongy connective 

tissue. The heart wall is composed of an outer adventitia (or epicardium) and an inner 

muscular layer (Ruppert & Barnes 1994; Brusca & Brusca 1990). Cardiac muscle is 

transversally striated, separated from the hemolymph by a basal lamina. Cardiac cells 

are fed directly by hemolymph. 

The heart pumps out hemolymph through an anterior (ophthalmic), posterior (dorsal) 

and ventral (sternal) arteries (Figure 7). The diameter of these arteries decreases as they 

separate from the heart (Martin & Hose 1992). Large arteries such as the ophthalmic, 

contains a thick basal lamina lining the lumen of the vessel, an endothelial layer, loose 

connective tissue and an outer basal lamina. The dorsal artery also contains a single 

layer of striated muscle adjacent to the inner basal lamina (Martin et al. 1989). A pair of 

hematopoietic arteries branches from the ophthalmic artery shortly after leaving the 

heart. These pass in front of the dorsolateral surface of the foregut where they branch 

repeatedly to form the lymphoid organ. Here, the inner basal lamina is very thin and it 

entirely surrounds the endothelial cells and the rest of the vessel is composed of 

hemocyte-like cells (Martin et al. 1987; Martin & Hose 1992; van de Braak et al. 

2002a). 

Small vessels lose first the layer of connective tissue and as it decreases its size, the 

endothelium is also reduced. Here, less than four endothelial cells and often only one 
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cell encircle the vessel. Eventually, only the basal lamina or possibly the fusion between 

the internal and external basal lamina remains and lines the sinuses. Small vessels are 

thought to conduct hemolymph to sinuses which bathe the tissues and organs. The 

sinuses are interstitial spaces into which the hemolymph flows after leaving the arteries 

and vessels (Martin & Hose 1992). The hemolymph in tissues and sinuses is channeled 

into the infrabranchial sinus to be oxygenated in gills and transported to the heart (Bell 

& Lightner 1988; McGaw and Reiber 2002). 

 

 

 

 

 

 

 

 

 

 

Figure 7. Circulatory system and associated organs in L. vannamei 

 

Hematopoietic tissues are located dorsal to the anterior chamber of the stomach 

(thickness 20 - 600 µm) and it often continues towards the antennal gland. They are also 

found at the base of the maxillipeds (20 - 80 µm thick) (Figure 7) (Bell & Lightner 

1988; Martin & Hose 1992). These tissues are arranged as spherical and elongated 

lobules which are surrounded by fibrous connective tissues and are partly embedded in 

muscle or spongy connective tissue (Martin & Hose 1992; van de Braak et al. 2002a). 

Hematopoiesis is thought to occur in two main cell lines: the hyaline cell line and the 

granular cell line (Martin & Graves 1985; Hose et al. 1987; Omori et al. 1989; Hose & 

Martin 1989; Hose et al. 1990; Martin & Hose 1992). Mitosis has only been observed in 

stem cells, hyaline hemocytes and small granular hemocytes within hematopoietic 

tissues (Martin & Hose 1992). Four main cellular types were described in hematopoietic 

tissues of Penaeus monodon (van de Braak et al. 2002a): type 1 cells are considered to 

be undifferentiated giving rise to the other hemocyte types. Type 2 cells probably 
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differentiate into small granular hemocytes (Hose et al. 1987). Type 3 cells may 

differentiate into large granular hemocytes (Hose et al. 1987). The cell types 2 and 3 

probably represent the starting point of maturation of the hyaline and granular 

hemocytes respectively. The cell type 4 was considered to be an interstitial cell (van de 

Braak et al. 2002a). 

The lymphoid organ is a paired nodular structure located at the anterodorsal surface of 

the hepatopancreas (Martin et al. 1987; Bell & Lightner 1988). Each nodule (1 X 1.5 

mm to 1.5 X 4.0 mm) consists of a series of folded tubules with a central haemal lumen 

(van de Braak et al. 2002b). Each tubule is a modified artery that branches from each of 

the ophthalmic arteries just anterior to the heart. As the vessel approaches the cardiac 

stomach, it divides repeatedly to form a network of smaller tubules lying dorsolateral to 

the foregut (Figure 7). The tubules are circular and surround a central haemal space. 

Adjacent tubules can be contigous or separated by loose connective tissue. The wall of 

each small tubule has the same structure of a larger artery (Martin et al. 1987). A layer 

of flattened endothelial cells lines the inner wall of each small tubule and surrounds the 

haemal space. Cells are connected by desmosomal junctions and interdigitations of their 

lateral plasma membranes. The endothelial layer is covered by a thin intima layer that 

hemocytes have to cross to enter hemolymph circulation. The tubules of lymphoid 

organ are composed of mature hemocytes. These are embedded in stromal cells similar 

to fibroblasts which are arranged perpendicular to the long axis of the tubule. The tubule 

is partially surrounded by capsular cells. Hemocytes can also go into circulation through 

this outer layer (Martin & Hose 1992). 

The lymphoid organ is primarily involved in elimination of bacteria from the 

hemolymph (Martin et al. 1996; van de Braak et al. 2002b). A special change in the 

structure of this organ is observed upon viral infections. Spheroids or hyperplastic 

tubules lacking a central lumen and composed of cells with hypertrophied nuclei and 

prominent cytoplasmic inclusions are found in shrimp with viral infections. It is 

suggested that the lymphoid organ acts as a hemolymph-filtering organ that primarily 

removes bacteria and virus-infected cells. These are engulfed, destroyed or encapsulated 

by hemocyte-like cells in the spheroids. These structures detach from the lymphoid 

organ as ectopic metastatic bodies that migrate towards different epidermal surfaces 

(integument, gills, etc.) and may be eliminated from the body during molting 
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(Anggraeni & Owens 2000). 

 

Central nervous system - in Crustacea, this compartment originates as embryonic pairs 

of ganglia joined in the midline by commisures and longitudinally by connectives 

(Sandeman 1982). The brain is formed by three ganglia: proto-, deutero-, and trito-

cerebrum. These ganglia probably derive from pre-oral structures (Sandeman 1982; 

Govind 1992; Budd 2002). The protocerebrum innervates optic ganglia in eyestalks. 

Deuterocerebrum controls motor and sensory neurons such as mechanoreceptors, 

chemoreceptors and statocysts on eyestalk and antennae 1. Tritocerebrum controls 

motor neurons, proprioreceptors and mechanoreceptive hairs in antennae 2 and labrum 

and almost all sensory neurons in pereon (Sandeman 1982). 

The brain is located dorsally in the pereon and is connected to the ventral cord by two 

connectives passing around the esophagus (periesophageal ring). The paired thoracic 

and abdominal ganglia in shrimp are medially fused but separated from ganglia of 

adjacent segments by paired connectives (Figure 8) (Sandeman 1982; Govind 1992). 

 

 

 

 

 

 

 

 

 

Figure 8. Structure of the nervous system in L. vannamei 

 

The central nervous system is regulated through neurohormones secreted by (1) 

neuroendocrine glands such as X-organ/sinus gland (SG) complex, postcommisural and 

pericardial organs, and (2) epithelial endocrine glands such as Y-organ, mandibular 

organ and androgenic glands (Cooke & Sullivan 1982; Skinner 1985; Fingerman 1992; 

Subramoniam 2000; Diwan 2005). 
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Reproductive system - shrimp is a dioecious animal. Males and females are only 

recognized at late life stages when gonads mature and sexual characters develop. 

The male reproductive tract is composed by paired testes, a vas deferens or genital duct 

and an ejaculatory duct or terminal ampoule which exits at paired gonopores in the 

coxae of the 5th pereopods (Krol et al. 1992). 

Testes are multilobed and each lobe has one convoluted seminiferous tubule surrounded 

by haemal sinuses. Germinal cells in testes differentiate into spermatogonia or nurse 

cells. Spermatogonia produce spermatids that mature sequencially in different regions 

of the seminiferous tubule. Mature spermatids leave testes through the vas deferens. 

This conduct protects and transports sperm cells to the terminal ampoule where the 

spermatophore is produced. The spermatophore encloses sperm cells and contains 

attachment structures and adhesive materials. In L. vannamei, the spermatophore is 

placed externally on a hardened intermolt female. Shrimp sperm cells are nail-shaped. 

In males, the first two pairs of pleopods are modified into copulatory organs. The 

endopod of the first pair of pleopods is modified into a petasma, a slender, bag-like 

membrane interlocked by minute hooks which is used to collect and transfer the 

spermatophore to the female. The endopod of the second pair of pleopods bears an 

appendix masculina which is an oval structure with numerous marginal spine-like 

projections that divides the petasma into two halves to help in spermatophore transfer 

(Bailey-Brock & Moss 1992; Kroll et al. 1992). 

In females, the reproductive tract has paired ovaries and oviducts leading to gonopores 

opening at the base of the third pereopod. The thelycum is an external reproductive 

structure located between the 5th pair of pereopods. It is not enclosed by plates (open) 

and is formed by modifications of the sternites XII-XIII (Krol et al. 1992; Pérez-

Farfante & Kensley 1997). The spermatophore is placed on the thelycum of a female in 

intermolt (Bailey-Brock & Moss 1992). 

Ovaries are dorsolateral to the hepatopancreas, multilobed and may extend until the 

pleon. Ovaries contain germinal epithelium, oogonia and follicle cells. Follicle cells 

produce vitellogenin which is taken up and stored by oocytes as yolk. Follicle cells 

renew continouosly after ovulation and before each gametogenesis. Ovulation occurs by 

the separation of follicle cells from the oocytes. Ova go from the ovaries to the 

gonopores through the oviducts (Krol et al. 1992). Spawning takes place after ovulation. 
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Eggs are fertilized upon release into water (Brusca & Brusca 1990; Ruppert & Barnes 

1994; Bailey-Brock & Moss 1992). In L. vannamei, mating occurs mainly in the 

evening. In this process, the male places the spermatophore into the open thelycum of 

the female, which retains it for a few hours before spawning. Multiple spawns may 

occur within one molt cycle (Bray & Lawrence 1992). 

 

1.2.3 Defense - the defense system of crustaceans, like that of most organisms, is innate. 

This type of system appeared millions of years ago and as consequence, it is often 

regarded as ‘primitive’. Nonetheless, it is very complex and almost perfect in its 

function (Beutler 2004). The innate system is the most universal, rapidly acting and in 

some respects, the most important defense system. The innate system performs a series 

of defense functions such as (1) recognizing non-self molecules, (2) killing different 

types of pathogens and (3) limiting the host’s tissue damage (self-tolerance) (Beutler 

2004). 

In shrimp, the defense system is composed of a cellular and a humoral arm (Beutler 

2004). The defense cells are called hemocytes and they are classified into hyaline or 

granular according to the presence and relative size of cytoplasmic granules observed by 

light microscopy (Martin & Graves 1985). The humoral arm consists of several 

molecules present in hemolymph which perform different functions (Cerenius & 

Söderhäll 1998). 

In the cellular arm, the hyaline hemocytes do not contain cytoplasmic granules. Instead, 

they have abundant cytoplasmic glycoprotein deposits with staining properties similar to 

plasma coagulogen (Omori et al. 1989). A fraction of small granule hemocytes also 

contain these cytoplasmic deposits. About 54% of all hemocytes contain these deposits 

and trigger hemolymph coagulation within 30s upon body damage and contact with 

seawater (Omori et al. 1989). These cytoplasmic deposits form long filamentous strands 

which rapidly expand and form a fine filamentous matrix of extracellular clot. Lysed 

cells form the core of a sphere of clotted material. Several of these foci coalesce and 

form an extensive gel matrix. Two minutes after lysis, hemolymph becomes a soft gel 

and after 5 minutes, the coagulated hemolymph became a solid gel. This coagulation 

pattern is known as type C which occurs in spiny lobsters and shrimp (Omori et al. 

1989; Hose et al. 1990; Yeh et al. 1998). Coagulation is an essential defense mechanism 
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of crustaceans. It prevents hemolymph loss and pathogen entry (Yeh et al. 1998; Wang 

et al. 2001; Lee & Söderhäll 2002). 

The other cellular type is the granular hemocytes. These are divided into small or large 

granule subpopulations. These two subtypes appear to be different maturation stages 

(Hose et al. 1990). Both subpopulations synthesize α2-macroglobulins (Gollas-Galván 

et al. 2003) and upon microbial infection they release cytoplasmic granules containing 

peroxinectin (Sritunyalucksana et al. 2001), agglutinins such as peptidoglycan binding 

protein [PGBP], lipopolysaccharide binding protein [LBP] (Lee & Söderhäll 2002), β-

glucan binding protein (βGBP) (Vargas-Albores et al. 1996; Romo-Figueroa et al. 

2004), prophenoloxidase (proPO) (Hernández-López et al. 1996; Johansson et al. 2000; 

Lai et al. 2005), penaeidins (Muñoz et al. 2002) and other antimicrobial peptides, 

oxygen reactive species (ROS), acid phosphatase, lysozyme, β-glucuronidase (Hose et 

al. 1987, 1990; Sotelo-Mundo et al. 2003), non-specific esterase and serine proteinases 

(Jiménez-Vega et al. 2005). 

The small granule hemocytes perform phagocytosis and contain hydrolytic enzymes and 

lysosomes used to degrade foreign particles within phagosomes. These cells are also 

involved in encapsulation and nodule formation upon fungal infection. Large granule 

hemocytes mainly contain large refractile granules in their cytoplasm. These granules 

contain more proPO and less acid phosphatase than the small granule hemocytes. These 

hemocytes are primarily involved in fungal encapsulation and nodule formation (Hose 

& Martin 1989). Upon infection, degranulation of these cells activates the proPO 

cascade for cell adhesion, phagocytosis and cytotoxicity (Johansson et al. 2000). 

The humoral arm of shrimp is comprised of the prophenoloxidase (proPO) system, 

agglutinins and opsonizing lectins, bactericidins and antimicrobial peptides, lysozymes, 

reactive oxygen species (ROS), serine proteinases and proteinase inhibitors (Bachère et 

al. 1995; Söderhäll & Cerenius 1998; Gollas-Galván et al. 1999; Roch 1999; 

Sritunyalucksana & Söderhäll 2000; Cerenius & Söderhäll 2004; Lai et al. 2005). 

Hemolymph-soluble pattern recognition peptides (PRP) with cell attachment motifs 

(RGD, KGD) recognize foreign molecules and bind an integrin-like protein in the 

surface of shrimp hemocytes inducing hemocyte spreading and degranulation 

(Holmblad & Söderhäll 1999; Sritunyalucksana & Söderhäll 2000; Lee & Söderhäll 
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2002). A serine proteinase cascade activates the proPO activating enzyme (ppA) that 

cleaves proPO into the active phenoloxidase (PO) (Cerenius & Söderhäll 2004). 

The PO molecule is a copper oxidase that catalyzes the o-hydroxylation of tyrosine or 

monophenols such as L-3,4-dihydroxyphenilalanine (L-DOPA) to o-diphenol 

(monophenoloxidase activity) and oxidates o-diphenol to o-quinones (diphenoloxidase 

activity) to produce melanin (Sritunyalucksana & Söderhäll 2000; Lai et al. 2005). 

Melanin biosynthesis is important for cuticular sclerotization, wound healing and 

encapsulation of foreign materials (Lee & Söderhäll 2002; Cerenius & Söderhäll 2004). 

Several quinone intermediates are highly toxic and prevent or delay the replication of 

pathogens (fungistatic activity) (Sritunyalucksana & Söderhäll 2000). PO triggers other 

defense mechanisms such as cell adhesion (Holmblad & Söderhäll 1999), opsonization 

(Söderhäll & Cerenius 1998), phagocytosis (Roch 1999), encapsulation (Lee & 

Söderhäll 2002), melanization (Sritunyalucksana & Söderhäll 2000), antibacterial 

activity and bacterial clearance (Bachère et al. 1995; Vargas-Albores et al. 1996; Yeh et 

al. 1998; Yepiz-Plascencia et al. 1998; Marques & Barracco 2000; Gollas-Galván et al. 

2003; Pascual et al. 2003; Alpuche et al. 2005; Jimenez-Vega et al. 2005; Lai et al. 

2005). 

The innate system in shrimp has been studied for some years and much of it is still 

unknown. The presence of other defense mechanisms such as an antiviral defense 

response has just recently been explored. Two studies have shown the activation of an 

unspecific antiviral mechanism by injecting double-stranded RNA sequences of viral 

and eukaryotic origin (Robalino et al. 2004; Westenberg et al. 2005). 

The function of the innate system of invertebrates has been better studied in the fruit-fly 

Drosophila. In this species, the innate defense response is complex and not well 

understood. Two different systems are involved in defense against microbial infections. 

One is the Toll system and it detects and generates a defense response against fungi and 

gram-positive bacteria (see Beutler 2004). This pathway induces seven distinct 

antimicrobial peptides which have high specific activities against fungi and gram-

positive bacteria (Hoffman 2003; Beutler 2004). In bacterial infections, the activation of 

the Toll pathway begins with the recognition of specific structural motifs from the 

bacterial cell wall by a peptidoglycan binding protein (PGBP). This event triggers a 

proteolytic cascade inducing the cleavage of a protein called Spaetzle, which in turn 
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activates the Toll system (Hoffman 2003). This pathway may also be activated by two 

other proteins found in hemolymph called Semmelweis and Osiris (Hoffman 2003). 

These proteins are a PGBP and a gram-negative binding protein, respectively. The 

function of these two proteins is not completely known but they may induce the 

cleavage of Spaetzle by recognizing and binding to the cell wall of gram-positive 

bacteria (Hoffman 2003). In the case of fungal infections, cleavage of Spaetzle is 

mediated by a trypsin-like protease called Persephone (Hoffman 2003). 

A second system involved in the defense response of Drosophila is the 

immunodeficiency (Imd) pathway. This system induces the expression of several 

antimicrobial peptides such as diptericin, drosocin, cecropins and attacins which are 

active against gram-negative bacteria. The activation of this pathway also requires a 

putative transmembrane protein that belongs to the PGBP family. Such a protein may 

recognize and bind to the cell wall of gram-negative bacteria. Then, a eukaryotic 

transcription factor (NF-kB)-protein called Relish, is activated through a signal-induced 

endoproteolytic cleavage. The subsequent steps that lead to phosphorylation and 

cleavage of Relish as well as the molecular mechanism of Imd activation are not known 

(Hoffman 2003). 

The existence of the Toll and Imd pathways indicates the high specificity of the innate 

defense response in invertebrates (Kurtz 2004). Furthermore, the regulatory 

mechanisms shown in the proPO system, the Toll and the Imd pathways suggest a 

rudimentary form of short-term memory (Kurtz 2005). A more complex type of 

memory may be present in invertebrates. A group of lectin-like peptides known as 

fibrinogen-related proteins (FREPs) contain one or two immunoglobulin superfamily 

(IgSF) domains and a fibrinogen domain (Kurtz 2005). These molecules have a high 

rate of genome polymorphism. Analysis of a snail’s FREP3 showed the existence of a 

high number of individual (up to 45 different) sequences which are generated by a small 

set of source sequences (2 to 10 alleles). This finding suggests that such diversity may 

occur by somatic recombination following a different way from that of vertebrates 

(Kurtz 2005). 
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1.3 White spot syndrome virus 

In 1992, a new virus appeared in shrimp farms in northern Taiwan causing disease and 

massive mortality (Chou et al. 1995). In late 1993, the viral agent was first isolated from 

an outbreak in Japan (Inouye et al. 1994). In a few years, this new pathogenic agent 

spread to several shrimp farming countries (Flegel 1997). At first, it was thought that 

different viral agents simultaneously appeared in different regions and were given a 

specific name: hypodermal and hematopoietic necrosis baculovirus (HHNBV) (see 

Durand et al. 1996), third Penaeus monodon non-occluded baculovirus (PmNOB III) 

(see Wang et al. 1995; see Karunasagar & Karunasagar 1997), rod-shaped nuclear virus 

of Marsupenaeus japonicus (RV-PJ) (Inouye et al. 1994, 1996), penaeid rod-shaped 

DNA virus (PRDV) (see Venegas et al. 2000), systemic ectodermal and mesodermal 

baculovirus (SEMBV) (Wongteerasupaya et al. 1995; Sahul-Hameed et al. 1998) or 

white spot baculovirus (WSBV) (Chou et al. 1995; Lightner 1996). Later, it was 

recognized that a single viral agent was responsible for these outbreaks. Eventually an 

informal consensus was reached to call it white spot syndrome virus (WSSV). 

WSSV has become the major disease threat to shrimp aquaculture worldwide. In 1993, 

losses of 80% of farmed shrimp production in China were attributed to WSSV (Zhan et 

al. 1998) (Figure 9a). During the same interval, WSSV outbreaks were recorded in 

Japan (Inouye et al. 1994) and Korea (Park et al. 1998) and since then, it spread to 

several Asian countries such as Thailand (1994) (Lo et al. 1996a), India (1994) 

(Karunasagar & Karunasagar 1997), Indonesia (1996) (see Durand et al. 1996), 

Malaysia (1996) (Kasornchandra et al. 1998; Rajan et al. 2000), Vietnam (1997) 

(Bondad-Reantaso et al. 2001), the Philippines (1999) (Magbanua et al. 2000) and Iran 

(2002) (see Dieu et al. 2004). 

In 2000, crabs and crayfish were found WSSV-positive in Australia but later these 

results were proven to be false positive (Claydon et al. 2004). This country remains at 

risk of a WSSV outbreak given its proximity to south-east Asia where the pathogen is 

endemic (Chang et al. 1999, 2003). It is possible that some Asian crustaceans carrying 

WSSV may reach Australia and spread it to shrimp farming areas (Claydon et al. 2004). 

Furthermore, the introduction of WSSV-infected organisms through ballast water from 

cargo ships (Flegel & Fegan 2002) or even frozen commodities (Durand et al. 2000) 

may be possible. 
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In the American continent, WSSV was first recorded in 1995 from hatchery facilities in 

Texas and South Carolina in the U. S (Lightner 1996; Wang et al. 1999a). It was later 

reported in Peru (1998) (Rosenberry 2001), Ecuador (1999) (see Durand et al. 2000), 

Colombia (1999), Panama (1999), Honduras (1999), Nicaragua (1999), Guatemala 

(1999), Belize (1999), Mexico (1999) (Bondad-Reantaso et al. 2001; Houssain et al. 

2001; Wu et al. 2001) and most recently, Brazil (2005) (APHIS 2005). The impact of 

WSSV on shrimp production in Ecuador has been especially disastrous (Figure 9b). In 

2002, WSSV was found in wild crustaceans off the Mediterranean French coast (see 

Marks 2005). 

 

 

 

 

 

 

 

 

Figure 9. Impact on farmed shrimp production of viral outbreaks of white spot 

syndrome virus (WSSV) in Asia (a) and outbreaks of WSSV and Taura syndrome virus 

(TSV) in America (b) (FAO 2006) 
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1.3.1 Morphology - WSSV is a bacilliform, non-occluded enveloped virus (Chou et al. 

1995; Wang et al. 1995; Wongteerasupaya et al. 1995). Intact enveloped virions range 

between 210 and 380 nm in length and 70 to 167 nm of maximum width (Chang et al. 

1996; Flegel & Alday-Sanz 1998; Park et al. 1998; Rajendran et al. 1999). A 

characteristic feature is the presence of a tail-like appendage at one end 

(Wongteerasupaya et al. 1995; Durand et al. 1996) (Figure 10). 

 

 

 

 

 

 

 

 

Figure 10. Morphology of the WSSV virion 

 

The envelope is 6-7 nm thick and is a lipidic, trilaminar membranous structure with two 

electron-transparent layers divided by an electron-opaque layer (Wongteerasupaya et al. 

1995; Durand et al. 1997; Nadala et al. 1998). 

The nucleocapsid is located inside the envelope and it is a stacked-ring structure 

composed of globular protein subunits of 10 nm in diameter arranged in 14-15 vertical 

striations located every 22 nm along the long axis giving it a cross-hatched appearance 

(Durand et al. 1997; Nadala & Loh 1998). When released from the envelope, the 

nucleocapsid increases in length indicating that within the virion it is tightly packed. 

The size of the nucleocapsid varies from isolate to isolate and ranges between 180 and 

420 nm long and 54 to 85 nm width and with a 6 nm-thick external wall (Kasornchandra 

et al. 1998; Sahul-Hameed et al. 1998; Rajendran et al. 1999). 

A highly electrodense core comprised of the DNA binding protein VP15 and the viral 

DNA is found inside the nucleocapsid (Durand et al. 1997; Wang et al. 1999b; van 

Hulten et al. 2001a). 
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1.3.2 Structural proteins - about 41 WSSV proteins with a putative structural function 

have been characterized (Table 1, see references below). Of these, 14 have been located 

in the envelope, four in the tegument (a putative structure located between the envelope 

and nucleocapsid) and six in the nucleocapsid. 

A cell attachment motif that suggests a role in viral entry has been found in the envelope 

proteins VP31 and VP281 (Huang et al. 2002a; Tsai et al. 2004; Li et al. 2005a), the 

tegument protein VP36A and the nucleocapsid VP664 (Tsai et al. 2004; Leu et al. 2005) 

as well as in the uncharacterized proteins VP110 and VP136A (Tsai et al. 2004). Other 

proteins such as VP28, VP68, VP124, VP281, VP292, VP466 (van Hulten et al. 2001a, 

2001b, 2002; Huang et al. 2002a, 2002b; Zhang et al. 2004; Zhu et al. 2005; Wu et al. 

2005), and a collagen-like protein (Li et al. 2004) have been located in the envelope; 

whereas the proteins VP35 (Chen et al. 2002b), VP15 (van Hulten et al. 2002), VP664 

(Leu et al. 2005) and others have been located in the nucleocapsid and may have 

different putative functions (van Hulten et al. 2001a, Yang et al. 2001). 

In vivo neutralization assays using antibodies against different envelope proteins 

showed a significant delay of shrimp mortality, indicating that proteins such as VP28 

(van Hulten et al. 2001b; Yi et al. 2004) and the proteins VP68, VP281 and VP466 (Wu 

et al. 2005), might have an important role in virus penetration. 

 

1.3.3 Genome and classification - the WSSV genome is a circular, double-stranded 

DNA molecule with an A + T content of 59% homogeneously distributed. The genome 

size varies according to the viral isolate (Thailand 293 kilobase pairs (kbp), China 305 

kbp, Taiwan 307 kbp) (van Hulten et al. 2001a; Yang et al. 2001; Chen et al. 2002b). 

This viral genome is one of the largest sequenced so far, only behind a huge virus 

(mimivirus) infecting an amoeba (1’181 404 bp), a canarypox (359 853 bp), a virus 

from the brown algae Ectocarpus siliculosus (335 593 bp) and a virus from 

Paramecium bursaria (PBCV-1) (330 743 bp) (van Hulten et al. 2001b; Raoult et al. 

2004; http://www.giantvirus.org). 
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Table 1 - List of WSSV proteins so far characterized. 

*References: 1Chen et al. 2002b, 2Huang et al. 2002a, 3Huang et al. 2002b, 4Huang et al. 2005, 5Leu et al. 2005, 6Li et 

al. 2005a, 7Li et al. 2006, 8Tsai et al. 2004, 9Tsai et al. 2006, 10van Hulten et al. 2000b, 11van Hulten et al. 2002, 12Wu 

et al. 2005, 13Zhang et al. 2004, 14Zhu et al. 2005. 

 

Sequence analysis shows that the WSSV genome contains between 531 and 684 open 

reading frames (ORFs) with an ATG initiation codon. Of these, 181 to 184 ORFs are 

likely to encode functional proteins with sizes between 51 and 6077 aminoacids, which 

represent 92% of the genetic information contained in the genome (van Hulten et al. 

Protein name 
Size 

(Aminoacid 
residues) 

Apparent size 
(KDa) Putative function Location in WSSV virion * 

  VP11 433  11 Unknown Not determined 8  
VP12A (VP95) 95 11 Structural Tegument 8, 9 
VP12B (VP68) 68 7 Structural Envelope 8, 12, 13 

VP13A 100 13 Energy metabolism Not determined 8 
VP13B 117 13 Unknown Not determined 8 
VP15 80 15 DNA binding protein Nucleocapsid/core 8, 11 
VP19 121 19 Structural Envelope 8, 9, 11 

VP22 (VP184) 891 100 Unknown Not determined 8 
VP24 (VP208) 208 24 Structural Nucleocapsid 8, 10, 13 

VP26 204 26 Structural Tegument 8, 10 
VP28 204 28 Structural Envelope 8, 9, 10 
VP31 261 31 Cell attachment Envelope 6, 8, 9 
VP32 278 32 Unknown Not determined 8 
VP35 228 26 Structural Nucleocapsid 1 

VP36A 297 36 Cell attachment Tegument 8, 9 
VP36B (VP281) 281 32 Cell attachment Envelope 2, 8, 12 

VP38A 309 38 Structural Envelope 8, 9 
VP38B 321 38 Endonuclease Not determined 8 
VP39A 419 39 Structural Tegument 8, 9 
VP39B 283 39 Unknown Not determined 8 

VP41A (VP292) 292 33 Structural Envelope 2, 8, 13 
VP41B (VP300) 300 34 Unknown Not determined 8 

VP51A 486 51 Eggshell protein Envelope 8 
VP51B (VP384) 384 50 Structural Envelope 8, 9 
VP51C (VP466) 466 50 Structural Nucleocapsid 3, 8, 12 

VP53A 1301 53 Structural Envelope 8, 9 

VP53B 968 53 Signal transduction 
pathway Not determined 8 

VP53C 489 53 Unknown Not determined 8 
VP55 (VP448) 448 55 Unknown Not determined 8 

VP60A 465 60 Unknown Not determined 8 

VP60B (VP544) 544 60 Adenovirus fiber-like 
protein Nucleocapsid 8, 9, 13 

VP75 786 75 Unknown Not determined 8 

VP76 (VP73) 675 76 Class 1 cytokine 
receptor Envelope 4, 8 

VP110 972  110 Cell attachment Not determined 8 
VP124 1194 124 Structural Envelope 8, 14 

VP136A 1219 136 Cell attachment Not determined 8 
VP136B 1243 136 Unknown Not determined 8 

VP180 (VP1684) 1684 169 Collagen-like protein Envelope 8 
VP187 1606 187 Structural Envelope 7 
VP664 6077 664 Cell attachment Nucleocapsid 5, 8, 9 
VP800 800 90 Unknown Not determined 8 
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2001b; Yang et al. 2001). About 21 to 29% of such ORFs have been shown to encode 

WSSV proteins or share identity with other known proteins. These proteins include 

enzymes involved in nucleic acid metabolism and DNA replication such as DNA 

polymerase (Chen et al. 2002a), a non-specific nuclease (Witteveldt et al. 2001; Li et al. 

2005b), a small and a large subunits of ribonucleotide reductase (van Hulten et al. 

2000a; Tsai et al. 2000a), thymidine kinase, thymidylate kinase, a chimeric thymidine-

thymidylate kinase (Tsai et al. 2000b), a thymidylate synthase (Li et al. 2004), a 

dUTPase (Liu & Yang 2005) and two protein kinases (van Hulten et al. 2001b; van 

Hulten & Vlak 2001; Yang et al. 2001). Other proteins with a putative function include 

a collagen-like protein (Li et al. 2004), flagellin, a chitinase, a pupal cuticle-like protein, 

a cell surface flocculin, a kunitz-like proteinase inhibitor, a class 1 cytokine receptor, a 

sno-like peptide and a chimeric anti-apoptotic protein (van Hulten et al. 2001b; Yang et 

al. 2001; Marks 2005). Three ORFs (151, 366 and 427 of the Thailand isolate) may 

encode putative proteins involved in WSSV latency (Khadijah et al. 2003). 

Recently, it was found that WSSV also has three immediate early (IE) genes (ORFs 

126, 242 and 418 of the Taiwan isolate). These genes are transcribed independently of 

any viral protein synthesized de novo by the host cell machinery and are directly 

expressed in vitro. These IE genes may be important to determine host range and also 

can function as regulatory trans-acting factors during infection (Liu et al. 2005). 

Transcriptional analysis of genes coding for proteins required in DNA replication and 

nucleotide metabolism are synthesized early during virus replication. Early transcribed 

WSSV genes in general have a TATA box 20-30 nucleotides upstream of the 

transcription initiation site (TIS) (A/C)TCANT (Chen et al. 2002a; Liu et al. 2005; 

Marks 2005). Structural proteins are synthesized later during infection and generally 

have a degenerate TIS motif (A/TNAC/G) located 25 nucleotides downstream of an A/T 

rich region; which is similar to the TIS motif found in arthropods (Tsai et al. 2004; 

Marks 2005). 

Sequence analysis of the DNA polymerase and the organization of several ORFs known 

to encode WSSV structural proteins were different from those of known baculoviruses, 

demonstrating that WSSV is not closely related to this virus group (Nadala et al. 1998; 

van Hulten et al. 2000b, 2001b, 2002; Chen et al. 2002a, 2002b; Huang et al. 2002a, 
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2002b, 2005; Tsai et al. 2004; Zhan et al. 2004; Zhang et al. 2004; Leu et al. 2005; 

Marks 2005; Xie & Yang 2005; Zhu et al. 2005). As a result that WSSV is a distinct 

new virus, it has been assigned to its own virus family Nimaviridae (van Hulten & Vlak 

2001; Vlak et al. 2002). 

 

1.3.4 Genetic, antigenic and virulence variability in WSSV isolates - the genome of 

three WSSV isolates has been fully sequenced: Thailand 293 kilobase pairs (kbp), (van 

Hulten et al. 2001b), China 305 kbp (Yang et al. 2001), Taiwan 307 kbp (Chen et al. 

2002a). The nucleotide identity between these isolates is 99.3% (Marks 2005). 

In silico restriction analysis with the enzyme KpnI predicts 27 fragments for the Chinese 

and Taiwanese isolates and 25 for the Thai isolate (Figure 11). Nine fragments of 0.3, 

0.5, 0.7, 4.2, 4.7, 5.3, 5.4, 8.3 and 10.8 kbp are identical in size for all three isolates. 

Two fragments of approximate sizes of 9 and 20 kbp respectively are missing in the 

Thai isolate. The remaining 14 to 16 fragments vary in size from 1.2 to 18 kbp between 

the isolates. 

Experimental restriction analysis with HindIII done in several WSSV isolates also 

found differences in restriction fragment length polymorphism (RFLP) between a 

Chinese isolate (F. chinensis), two isolates from Indonesia (P. monodon) and one from 

the U.S. (F. setiferus). The latter two isolates were more similar to each other (Nadala & 

Loh 1998). 

Other WSSV isolates from China (F. chinensis), India (P. monodon), Thailand (P. 

monodon and L. vannamei) and U.S. (crayfish Orconectes punctimanus from 

Washington and L. vannamei from South Carolina and Texas) were compared by dot 

blot hybridization using a DNA probe from a Taiwanese isolate. With this method, 

negative results or a very faint signal were found in some samples from India, Thailand 

and Texas. This finding suggests important differences between these isolates. Further 

RFLP analysis of PCR products from 10 different primer sets showed that the Texas 

isolate was very different from the others (Lo et al. 1999). 
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Figure 11. Structure of the WSSV genome (Thailand isolate) 

 

 

Different regions of the WSSV genome display important sequence variations which 

can be used to establish the origin of a WSSV outbreak and its spread in a certain area 

(Dieu et al. 2004; Hoa et al. 2005) and also to differentiate isolates in the field 

(Wongteerasupaya et al. 2003; Marks 2005). Such variability may also induce false-

negative results when using certain PCR primers (Claydon 2004; Kiatpathomchai et al. 

2005). 

The protein profiles of the six WSSV isolates described in Lo et al. (1999) and isolates 

from India and Korea were very similar as all of them displayed at least three major 

structural proteins (VP28, VP24 and VP19). An additional band corresponding to VP15 

was found in four isolates. The sequence of the amino-terminal portion of these proteins 

was identical between isolates (Wang et al. 2000; Rajendran et al. 2004). 

Several WSSV isolates (from U.S. [F. setiferus, L. vannamei], Panama, China [F. 

chinensis, M. japonicus], Indonesia [P. monodon], Japan [M. japonicus], Thailand, 

Malaysia, Taiwan or different isolates from India) were shown to have low antigenic 

variability using polyclonal or monoclonal antibodies (from whole WSSV virions or 

raised against full or truncated recombinants of VP28) in different immunoassays such 
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as immunodot assays (Nadala & Loh 2000; You et al. 2002), western blot (WB) (Shih et 

al. 2001; Yoganandhan et al. 2004), indirect immunofluorescence (IIF) (Poulos et al. 

2001), immunohistochemistry [IHC]) (Anil et al. 2002) or enzyme-linked 

immunosorbent assay (ELISA) (Zhang et al. 2001). 

Differences in virulence of six WSSV isolates were found in postlarvae of L. vannamei 

and juveniles of F. duorarum inoculated per os. Virulence was determined as the time 

required to induce 100% mortality in L. vannamei. The Texas isolate was the most 

virulent while the Washington isolate (from crayfish) was the least virulent. The shrimp 

F. duorarum is known to be more resistant to WSSV infection. In this species, 

cumulative mortality was 60% with the Texas isolate and 35% with the WSSV isolate 

from crayfish (Wang et al. 1999a). Another study showed that differences in virulence 

and competitive fitness may be dependent of the genomic size. A putative ancestral 

WSSV isolate (WSSV-TH-96-II) with the largest genome size recorded (312 kbp), 

showed a lower virulence (median lethal time [LT50] = 14 d) and competitive fitness 

compared to another WSSV isolate (WSSV-TH) with a smaller genome size (292 kbp) 

(LT50 = 3.5 d). This study indicated that WSSV isolates with a smaller genome size may 

represent an advantage for virus replication (Marks 2005). 

 

1.4 WSSV infection 

 

1.4.1 Host range - WSSV has a broad host range within decapod crustaceans. At least, 

18 cultured and/or wild penaeid shrimp (Wongteerasupaya et al. 1996; Durand et al. 

1997; Lu et al. 1997; Chou et al. 1998; Lightner et al. 1998; Park et al. 1998), eight 

caridean species (Sahul-Hameed et al. 2000; Shi et al. 2000; Pramod-Kiran et al. 2002), 

seven species of lobster (Chang et al. 1998; Rajendran et al. 1999), seven of crayfish 

(Wang et al. 1998a; Corbel et al. 2001; Jiravanichpaisal et al. 2001, 2004; Edgerton 

2004), 38 crab species (Lo et al. 1996a; Kanchanaphum et al. 1998; Kou et al. 1998; 

Sahul-Hameed et al. 2001, 2003), six non-decapod crustacean species (Otta et al. 1999; 

Supamattaya et al. 1998; Hossain et al. 2001; Yan et al. 2004), members of the phyla 

Chaetognata and Rotifera (Ramirez-Douriet et al. 2005), polychaete worms (Vijayan et 

al. 2005) and some aquatic insect larvae (Lo et al. 1996b; Flegel 1997; Ramirez-Douriet 

et al. 2005) have been found to be WSSV-positive by a PCR method (Table 2). 
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Although many of these species have been confirmed to support WSSV replication 

under experimental conditions, some others may only be mechanical carriers of WSSV 

in the wild, such as the case of the polychaete worms (T.W. Flegel, pers. comm.). 

 

 



Table 2 - WSSV host range 
 

 

Type of infection Animal Species 
Natural Experimental 

Detection method Country * 

Farfantepenaeus aztecus  X Histopathology U.S.A. 10 
F. duorarum  X Histopathology U.S.A. 10 

Fenneropenaeus chinensis X X Histopathology, ISH, PCR China, Korea, Thailand 13, 25, 26 
F. indicus X X Histopathology, PCR, TEM India, Indonesia, Thailand 14, 15 

F. merguiensis X X Histopathology, PCR, IIF Malaysia, Thailand 3, 4, 18, 19 
Litopenaeus setiferus  X Histopathology U.S.A.  10 

L. stylirostris X X Histopathology U.S.A., Latin America 10, 13 
L. vannamei X X Histopathology, ISH, TEM U.S.A., Latin America 10, 13 

Marsupenaeus japonicus X X Histopathology, PCR, TEM China, Japan, India 11, 13, 23, 24, 26 
Metapenaeus dobsonii X X Histopathology, PCR, TEM India 4, 16 

M. ensis X X ISH, PCR Taiwan 1, 11, 23, 24 
M. monoceros  X PCR India 16 

Penaeus monodon X X Histopathology, ISH, PCR At least eight Asian countries 1, 11, 14, 15, 23, 24, 26 
P.penicillatus X  ISH, PCR Taiwan 11, 23 

P. semisulcatus X X ISH, PCR India, Taiwan 11, 15, 23 
Parapenaeopsis stylifera X  PCR India 4 

Solenocera indica X  PCR India 4 

Penaeid 
shrimp 

Trachypenaeus curvirostris X X ISH, PCR Taiwan 23, 24 
Alpheus sp.  X PCR Thailand 11 

Callianassa sp.  X PCR Thailand 11 
Exopalaemon orientalis  X ISH, PCR Taiwan 23, 24 

Palaemon sp. X  ISH, PCR Taiwan 11 
P. adspersus  X TEM, ISH, PCR, dot-blot France 2 

Macrobrachium idella  X Histopathology, WB India 15 
M. lamerrae  X Histopathology, WB India 17 

Caridean 
shrimp 

M. rosenbergii X X Histopathology, ISH, PCR India, Taiwan 4, 11, 15, 23, 24 
Panulirus homarus  X Histopathology India 15 

P. longipes X X ISH, PCR Taiwan 24 
P. ornatus X X Histopathology, ISH, PCR India, Taiwan 15, 23 

P. penicillatus  X ISH, PCR India, Taiwan 1, 23 
P. polyphagus X X Histopathology India 15 
P. versicolor X X ISH, PCR Taiwan 1, 23 

Lobster 

Scyllarus arctus  X TEM, ISH, PCR, dot-blot France 2 
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Table 2 - WSSV host range (continued) 
 

 
 
 
 
 

Type ofinfection Animal Species Natural Experimental Detection method Country * 

Astacus astacus  X PCR Sweden 7 
A. leptodactylus  X TEM, ISH, PCR, dot-blot France 2 

Cherax destructor  X Histopathology, dot-blot Australia 3 
C. quadricarinatus  X Histopathology, ISH, TEM China 20 

Pacifastacus leniusculus  X Histopathology, ISH Sweden 6 
Procambarus clarkii  X ISH, PCR Taiwan 1, 5, 23 

Crayfish 

Orconectes limosus  X TEM, ISH, PCR, dot-blot France 2 
Atergatis integerrimus  X PCR India 19 

Calappa philarigus X X Histopathology, ISH, PCR India, Taiwan 9, 19 
Callinectes lophos  X ISH, PCR Taiwan 23 
Cancer pagurus  X TEM, ISH, PCR, dot-blot France 2 
Carcinus maenas  X TEM, ISH, PCR, dot-blot France 2 

Charybdis annulata X X Histopathology, PCR India 4, 19 
C. cruciata  X PCR India 4 
C.feriatus X X Histopathology, ISH, PCR India, Taiwan 9, 11, 23 

C. granulata  X ISH Taiwan 1, 23 
C. lucifera X X Histopathology, PCR India 12, 19 
C. natatus X X Histopathology, ISH PCR India, Taiwan, Thailand 9, 19 

Demania splendida  X PCR India 19 
Doclea hybrida  X Histopathology, PCR India 19 

Gelasimus marionis nitidus X  PCR India 4 
Grapsus albolineatus  X Histopathology, PCR India 19 
Halimede ochtodes  X Histopathology, PCR India 19 

Helice tridens X  PCR Taiwan, Thailand 9, 11 
Liagore rubronaculata  X Histopathology, PCR India 19 
Liocarcinus depurator  X TEM, ISH, PCR, dot-blot France,India 8, 15 

L. puber  X TEM, ISH, PCR, dot-blot France, India 8, 15 

Crab 

Lithodes maja  X Histopathology, PCR India 19 

Introduction
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Table 2 - WSSV host range (continued) 

 

*References: 1Chang et al. 1998, 2Corbel et al. 2001, 3Edgerton 2004, 4Hossain et al. 2001, 5Huang et al. 2001, 6Jiravanichpaisal et al. 2001, 7Jiravanichpaisal et al. 2004, 8Kanchanaphum 
et al. 1998, 9Kou et al. 1998, 10Lightner et al. 1998, 11Lo et al. 1996b, 12Lo et al. 1999, 13Lu et al. 1997, 14Rajan et al. 2000, 15Rajendran et al. 1999, 16Ramírez-Douriet et al. 2005, 
17Sahul-Hameed et al. 2000, 18Sahul-Hameed et al. 2001, 19Sahul-Hameed et al. 2003, 20Shi et al. 2000, 21Supamattaya et al. 1998, 22Vijayan et al. 2005, 23Wang et al. 1998a, 24Wang et 
al. 1998b, 25Yan et al. 2004, 26Zhan et al. 1998. 

Type of infection Animal Species 
Natural Experimental 

Detection method Country * 

Macrophthalmus sulcatus X  PCR India 4 
Matuta miersi  X Histopathology, PCR India 19 
M. planipes X  PCR India 12 

Menippe rumphii  X PCR India 19 
Metapograpsus sp.  X Histopathology India, Taiwan 15 

Metapograpsus messor X  PCR India 4 
Paradorippe granulata  X Histopathology, PCR India 19 

Paratelphusa hydrodomous  X Histopathology, PCR,  India 18 
P. pulvinata  X Histopathology, PCR,  India 18 

Parthenope prensor  X Histopathology, PCR India 19 
Phylira syndactyla  X Histopathology, PCR India 19 

Podophthalmus vigil  X Histopathology, PCR India 19 
Portunus pelagicus X X Histopathology, ISH, TEM Taiwan, Thailand 9, 11, 21 
P. sanguinolentus X X Histopathology, ISH, PCR India, Taiwan 1, 9, 11, 19, 24 

Sesarma sp.  X Histopathology, ISH, PCR India, Thailand 8, 15 
S. oceanica X  PCR India 12 

Scylla serrata X X Histopathology, ISH, PCR India, Taiwan, Thailand 8, 9, 11, 15, 19, 21 
S. tranquebaricca  X Histopathology India 15 
Thalamite danae  X Histopathology, PCR India 19 

Crab 

Uca pugilator  X Histopathology, ISH Thailand 8 
Sergestoidea Acetes sp. X X Histopathology, ISH, PCR Thailand 21 
Cirripedia Balanus sp. X X PCR Mexico, Thailand 11, 16 

Branchiopoda Cladocera X  PCR Mexico 16 
Branchiopoda (Artemia sp.) X  PCR India 12 
Stomatopoda Squilla mantis X  PCR India 4 

Copepoda X  PCR Mexico, Thailand 11, 16 
Chaetognata X  PCR Mexico 16 

Rotifera X  PCR China 25 
Polychaeta Marphysa sp. X  PCR India 22 

Other 

Coleoptera (Ephydridae) X  PCR Taiwan 11 
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1.4.2 Pathogenesis - experimental methods of WSSV inoculation that simulate natural 

routes of virus entry have been developed. These inoculation methods are: (1) 

waterborne, by immersing animals in water containing WSSV cell-free suspensions 

(Chou et al. 1998; Supamattaya et al. 1998) and (2) feeding WSSV-infected tissues to 

the animals for a single time or once daily for up to seven days (Chang et al. 1998; 

Wang et al. 1998b; Lightner et al. 1998; Rajan et al. 2000). The latter route is 

considered the most important in natural and culturing conditions (Chou et al. 1998; Wu 

et al. 2001; Lotz & Soto 2002; Pramod-Kiran et al. 2002). 

The portals of WSSV entry into the shrimp have not yet been clearly identified. 

According to experimental data, putative sites of WSSV entry may be the foregut 

(Chang et al. 1996) or midgut (Di Leonardo et al. 2005), gills and integument (Chang et 

al. 1996, 1998). The mechanism of viral spread from the primary replication sites to 

other target organs has been controversial. Some studies have indicated that WSSV 

infects hemocytes in crayfish and travels throughout the body in these cells to reach 

distant target organs (Wang et al. 2002; Di Leonardo et al. 2005). Other studies have 

shown by ISH and IHC that circulating hemocytes in freshwater prawns and shrimp are 

refractory to WSSV infection (van de Braak et al. 2002c; Shi et al. 2005) thus indicating 

that WSSV might reach other target organs through hemolymph circulation in a cell-

free form. It is possible that these mechanisms of spread may be species-dependent. 

WSSV targets cells of organs of ectodermal and mesodermal origin, including the 

epidermis, gills, foregut, hindgut (Wongteerasupaya et al. 1995; Chang et al. 1996), 

antennal gland, lymphoid organ (Chang et al. 1998; Durand et al. 1996), muscle, eye-

stalk, heart (Kou et al. 1998), gonads (Lo et al. 1997), haematopoietic cells and cells 

associated to the nervous system (Wang et al. 1999b; Rajendran et al. 1999). Epithelial 

cells of organs of endodermal origin such as hepatopancreas, anterior and posterior 

midgut ceca and midgut trunk are refractory to WSSV infection (Sahul-Hameed et al. 

1998). In the late stages of infection, the epithelia of the stomach, gills and integument 

may become severely damaged (Chang et al. 1996; Wang et al. 1999b). This may cause 

multiple organ dysfunction and probably lead to death. 
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1.4.3 Clinical signs and pathology - under culture conditions, many Asian and 

American penaeid species infected with WSSV display obvious white spots or patches 

of 0.5 to 3.0 mm in diameter embedded in the exoskeleton (Lo et al. 1996b; 

Kasornchandra et al. 1998; Wu et al. 2001; T.W. Flegel, pers. comm.). These patches 

are probably formed by the accumulation of calcium salts that results from the 

vacuolization of the cuticular epithelium (Wang et al. 1999b). Other signs of disease 

include a reddish discoloration in body and appendages due to the expansion of 

chromatophores (Lightner et al. 1998; Nadala et al. 1998); a reduction in feed uptake 

(Chou et al. 1995; Durand et al. 1996; Flegel 1997) preening and response to stimulus 

(Wongteerasupaya et al. 1995; Durand et al. 1997), loose cuticle (Lo et al. 1996b), 

swelling of branchiostegites due to accumulation of fluid (Otta et al. 1999), enlargement 

and yellowish discoloration of the hepatopancreas (Sahul-Hameed et al. 1998), thinning 

and delayed clotting of hemolymph (Wang et al. 2000; Kiatpathomchai et al. 2001). 

In the field, WSSV-infected shrimp gather near the pond edge and display clinical signs 

one or two days before the first mortalities occur (Kou et al. 1998). Cumulative 

mortality may reach up to 100% within 10 days after the onset of disease (Karunasagar 

et al. 1997; Lotz & Soto 2002). In grow-out ponds, juvenile shrimp of all ages and sizes 

are susceptible to the disease but massive mortality usually occurs one or two months 

after stocking (Kasornchandra et al. 1998). 

By histopathology, WSSV infection is characterized by cells with hypertrophied nuclei 

showing amphophilic intranuclear inclusions and marginated chromatin (Durand et al. 

1997; Wang et al. 2000). These intranuclear inclusions are markedly distinct and bigger 

than the cowdry A-type inclusions characteristic of the infectious hypodermal and 

hematopoietic necrosis virus (IHHNV) (Wongteerasupaya et al. 1995). Infected nuclei 

become progressively more basophilic and enlarged (Chang et al. 1996; Lo et al. 1996b; 

Durand et al. 1996, 1997; Flegel 1997; Wang et al. 1998a; Otta et al. 1999; Takahashi et 

al. 2000). In the late stages of infection, karyorrhexis and cellular disintegration may 

occur, leading to the formation of necrotic areas characterized by vacuolization 

(Karunasagar et al. 1997; Kasornchandra et al. 1998; Wang et al. 1999b). 
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1.4.4 Diagnosis - detection methods for WSSV are used for two main purposes: (1) 

confirmation of WSSV infections in ponds (Lightner 1996; Anonymous 2003) and (2) 

certification of health status in broodstock and postlarvae used for larviculture and/or 

grow-out ponds (Anonymous 2003). Diagnostic techniques can be divided in: 

(1) presumptive, which includes: (i) on site pond observations of clinical signs such as 

white spots, reduction in feed uptake, locomotion and response to stimulus in cultured 

animals (Lightner 1996; Anonymous 2003), (ii) the recent history of disease outbreaks 

at the shrimp farm, (iii) the origin of stocked postlarvae and (iv) the presence of 

hypertrophied or vacuolated nuclei in rapid stainings (fresh mounted squashes or tissue 

smears) from gills or stomach from shrimp displaying signs of disease (Lightner 1996; 

Anonymous 2003). 

(2) Confirmatory, which includes: (i) histopathological analysis of target organs (Bell & 

Lightner 1988; Lightner 1996; Anonymous 2003); (ii) immunoassays, done with 

polyclonal or monoclonal antibodies raised against whole WSSV virions or recombinant 

WSSV envelope proteins. These include western blot (WB) (Nadala et al. 1997; Sahul-

Hameed et al. 1998), immuno-dot blot (Nadala & Loh 2000), enzyme-linked 

immunosorbent assay (ELISA) (Zhang et al. 2001), indirect immunofluorescence (IIF) 

(Escobedo-Bonilla et al. 2005) and immunohistochemistry (IHC) (Poulos et al. 2001). 

Recently, an immunochromatographic detection kit has been developed for rapid and 

specific diagnosis of WSSV in the field (Powell et al. 2006). (iii) Nucleic acid 

technology includes various polymerase chain reaction (PCR) protocols which may be 

qualitative (Lo et al. 1996a, 1996b; Tapay et al. 1999; Kiatpathomchai et al. 2001) or 

quantitative (Tang & Lightner 2000; Tan et al. 2001; Dhar et al. 2001; Durand & 

Lightner 2002). PCR is commonly used to screen potential WSSV-carriers and 

particularly to determine the sanitary status of postlarvae before stocking into grow-out 

ponds (Otta et al. 1999; Houssain et al. 2001). Other DNA based-methods include dot 

blot and in situ hybridization (ISH) (Chang et al. 1996; Durand et al. 1996; 

Wongteerasupaya et al. 1996; Nunan & Lightner 1997; Wang et al. 1998). These DNA-

based techniques have been used for the early detection of WSSV infection (Chang et 

al. 1996; Lo et al. 1997; Lightner & Redman 1998; van de Braak et al. 2002c). 
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1.4.5. Measures for WSSV control - to date, only preventive measures can be applied to 

reduce the risk of a WSSV outbreak in shrimp farming facilities (Lotz 1997; Lightner & 

Pantoja 2001). 

In farms, pathogen exclusion is done through the use of domesticated specific pathogen-

free shrimp stocks and by using screens at the inlet and outlet of the ponds. Fences 

around ponds prevent the entry of potential carriers of WSSV. In some Asian and 

American countries, a series of chemicals such as disinfectants (chlorine), pesticides 

(carbaryl, malathion) or other biocidal substances (tea seed cake), are commonly used to 

eliminate pathogens, their vectors and predators of shrimp (Weston 2000). 

The use of domesticated shrimp stocks may be a critical step for the sustainability of 

shrimp aquaculture in the future (Flegel & Alday-Sanz 1998). Stocking ponds with 

domesticated shrimp free of specific pathogens (SPF) has been practiced in recent years 

(Lotz 1997). By doing this, farmers ensure the absence of viral pathogens at the 

beginning of the culture; they improve the chance of a good production and 

significantly reduce the risk of an outbreak (Lotz 1997). 

Recently, several products aimed to reduce the negative impact of WSSV infection in 

shrimp aquaculture have been experimentally tested. These include (1) 

immunostimulants added to the diet to boost the proPO system (Chang et al. 2003; 

Chotigeat et al. 2004), (2) ‘vaccines’ with whole inactivated virus or with recombinant 

envelope proteins to stimulate an antiviral response in shrimp (Namikoshi et al. 2004; 

Witteveldt et al. 2004), (3) antimicrobial peptides or drugs with antiviral activity in vivo 

(Dupuy et al. 2004; Rahman et al. 2006), (4) non-specific RNA interference (Robalino 

et al. 2004; Westenberg et al. 2005) and (5) the manipulation of water temperature to ≥ 

32°C (Vidal et al. 2001, Granja et al. 2003). 

The experimental challenge tests currently used have a number of drawbacks that 

compromise the reproducibility of results. This situation has motivated the search for 

the standardization of experimental inoculation procedures. 
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Aims of the thesis 

 

White spot syndrome virus (WSSV) is the agent that causes disease and high mortality 

to cultured shrimp. This virus is also infectious to many decapod crustaceans. The 

devastating economic impact of WSSV to several Asian and American shrimp farming 

countries threatens the further development of shrimp aquaculture in these regions. 

Therefore, the search for effective control measures against WSSV is urgently needed. 

In the past, experimental WSSV challenge tests were developed to evaluate the efficacy 

of different products or methods to control the disease. Such challenge models used 

undefined viral doses and different routes of inoculation, which made it difficult to 

interpret the results and to compare different studies. Further, no effective control 

measures are available in the field. Therefore, novel and effective methods to control 

WSSV are needed. 

A better knowledge on the early events of WSSV pathogenesis may give useful 

information for the development of new methods for the prevention and/or treatment of 

the disease caused by this pathogen. 

The aims of this thesis were: 

 

(1) To develop standardized WSSV inoculation procedures using intramuscular 

and oral routes. 

(2) To study the pathogenesis of a WSSV infection with emphasis on the 

portal(s) of WSSV entry and the spread to other target organs in SPF 

Litopenaeus vannamei. 

(3) To use the standardized inoculation procedures developed in (1) for the 

evaluation and comparison of antiviral products and the manipulation of water 

temperature to control WSSV infection. 
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DEVELOPMENT OF STANDARDIZED WSSV 
INOCULATION PROCEDURES IN SPECIFIC 
PATHOGEN-FREE (SPF) Litopenaeus vannamei 
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“We learn from failure much more than from success; we often discover what we will do by 

finding out what we will not do; and probably he who never made a mistake, never made a 

discovery.” - Samuel Smiles 
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3.1 In vivo titration of white spot syndrome virus (WSSV) in 

SPF Litopenaeus vannamei by intramuscular and oral routes 
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ABSTRACT 

 

White spot syndrome virus (WSSV) is a devastating pathogen in shrimp aquaculture. 

Standardized challenge procedures using a known amount of infectious virus would 

assist in evaluating strategies to reduce its impact. In this study, the shrimp infectious 

dose 50% endpoint (SID50 ml-1) of a Thai isolate of WSSV was determined by 

intramuscular inoculation (IM) in 60 days-old and 135 days-old SPF Litopenaeus 

vannamei using indirect immunofluorescence (IIF) and one-step polymerase-chain 

reaction (PCR). Also the lethal dose 50% endpoint (LD50 ml-1) was determined from the 

proportion of dead shrimp. The median virus titers of infection in 60 days-old and 135 

days-old juveniles were 106.8 and 106.5 SID50 ml-1, respectively. These titers were not 

significantly different (P ≥ 0.05). The titration of the WSSV stock by oral intubation in 

80 days-old (PL 80) juveniles resulted in approximately ten - fold reduction in virus titer 

compared to IM route. This lower titer is probably the result of physical and chemical 

barriers in the digestive tract of shrimp that hinders WSSV infectivity. The titers 

determined by infection were identical to the titers determined by mortality in all 

experiments using IM and oral routes at 120 hours post inoculation (hpi) indicating that 

every infected shrimp died. The determination of WSSV titers by IM and oral routes 

constitutes the first step towards the standardization of challenge procedures to evaluate 

strategies to reduce WSSV infection. 
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INTRODUCTION 

 

White spot syndrome virus (WSSV) is a devastating pathogen causing disease and 

mortality in shrimp aquaculture. First recorded in 1992 in Taiwan (Chou et al. 1995), it 

has spread to several shrimp-farming countries in Asia and Latin America (Wang et al. 

2000, Hill 2002). 

In culture ponds, mortalities up to 100% may occur within 10 days after the onset of 

disease (Kasornchandra et al. 1998). In many Asian shrimp species the acute phase of 

disease is characterized by the presence of white spots on the inner surface of the 

exoskeleton (Lo et al. 1996) from which the disease name is derived. Other clinical 

signs include anorexia, lethargy and reddish discoloration of the body (Otta et al. 1999). 

WSSV is an enveloped, non-occluded bacilliform-shaped virus containing a double-

stranded DNA genome with a size between 293 and 308 kbp (van Hulten et al. 2001, 

Yang et al. 2001). This pathogen was first grouped with the non-occluded enveloped 

baculoviruses (Durand et al. 1996), but gene sequencing and characterization of its 

major structural proteins have shown low homology with this virus family. These 

molecular differences supported the formation of a new virus family for WSSV: the 

Nimaviridae (Vlak et al. 2002). Several decapod crustaceans (Chang et al. 1998, Sahul-

Hameed et al. 2003) and shrimp species (Wongteerasupaya et al. 1996, Chou et al. 

1998, Wang et al. 1999) are susceptible to WSSV infection. 

Several experiments have been carried out with WSSV to determine its pathogenicity in 

crustacean hosts using intramuscular (IM) inoculation (Jiravanichpaisal et al. 2001), the 

per os route by feeding WSSV-infected tissues to experimental animals (Rajendran et 

al. 1999, Wang et al. 1999) and by immersion (Chou et al. 1998, Rajan et al. 2000). In 

these studies, the dose of infectious virus given to each animal was not known. A 

standardized inoculation procedure requires two major components: (1) the use of 

animals with low genetic variability and high susceptibility to the virus, preferably free 

of specific pathogens (SPF) and (2) a WSSV stock with a known titer of infection. Such 

a standardized procedure is essential (i) to compare the susceptibility of different host 

species and life stages to WSSV, (ii) to determine the virulence of different WSSV 

strains, and (iii) to test the efficacy of strategies aimed to control the disease. 
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To date, no shrimp cell cultures are available for in vitro titration of WSSV therefore in 

vivo titration is the only alternative. Only one previous study has determined the LD50 of 

a WSSV tissue suspension. A South Carolina isolate was inoculated by IM route in 1 g 

SPF Litopenaeus vannamei and the virus titer was determined using probit analysis 

(Prior et al. 2003). 

The aims of the present study were: (1) to determine the shrimp infectious dose 50% 

endpoint (SID50 ml-1) and the lethal dose 50% endpoint (LD50 ml-1) of a Thai isolate of 

WSSV in two sizes of juvenile SPF Litopenaeus vannamei by IM route, (2) to 

determine these virus titers by oral inoculation and (3) to establish the relationship 

between WSSV infection and shrimp mortality for the two routes of inoculation. 

 

MATERIAL AND METHODS 

 

Experimental shrimp and rearing conditions. Specific pathogen-free (SPF) 

Litopenaeus vannamei of the Kona strain was used (Wyban et al. 1992). Batches of 

shrimps arrived as postlarvae (PL 8 - 12; mean body weight [MBW] = 0.0013 g) and 

were acclimatized and reared for a period of 36 to 50 days after arrival. Postlarvae were 

fed with Artemia nauplii once daily. Juveniles were fed with a commercial pelleted feed 

(A2 monodon high performance shrimp feed/shrimp complete grower, INVE 

aquaculture NV) at a rate of 2.5% MBW twice daily. Water temperature was kept at 

27°C ± 1°C, salinity between 30 and 35 g l-1, total ammonia-N less than 0.5 mg l-1 and 

nitrite-N between 0.05 and 0.15 mg l-1. 

Experimental conditions. Shrimp were acclimatized to a salinity of 15 g l-1 over four 

days prior to experimental infectivity trials. Shrimp were kept individually in 10 l 

plastic aquaria provided with aeration and covered with acrylic plates. Shrimp were fed 

a restricted diet of six pellets divided into two rations a day to maintain water quality. 

Water temperature was between 25 and 28°C, total ammonia levels were between 0 and 

5 mg l-1 and nitrite was between 0 and 0.15 mg l-1 as monitored daily. Artificial 

seawater at a salinity of 15 g l-1 was prepared with instant ocean (Marine systems, 

France) dissolved in distilled water. 

Virus and production of the WSSV stock. A Thai isolate of WSSV from naturally-

infected Penaeus monodon was used. This virus isolate was passaged once in crayfish 
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Pacifastacus leniusculus (Jiravanichpaisal et al. 2001). A gill suspension from crayfish 

(10-2 in L-15 medium) was kindly donated by P. Jiravanichpaisal and K. Söderhäll, 

(Uppsala University, Sweden). It was diluted 10-1 in phosphate-buffered saline (PBS) 

pH 7.4 and 50 µl were injected intramuscularly (IM) into SPF Litopenaeus vannamei to 

amplify the virus. The inoculated shrimp were collected at 48 hours post inoculation 

(hpi) and were frozen at -70°C. Tissues from these shrimps were analyzed by indirect 

immunofluorescence (IIF) to confirm WSSV infection. Thawed carcasses without 

hepatopancreas, gut and exoskeleton were minced. A 10-1 suspension was made in PBS 

and centrifuged (3000 x g at 4°C for 20 min). The supernatant was centrifuged (13000 x 

g at 4°C for 20 min), filtered (0.45 µm) and aliquoted for storage at -70°C. The total 

volume was 250 ml. Samples from tissues used to produce the viral stock were sent to 

Dr. James Brock (Moana Technologies LLC, Hawaii) for detection of the major viral 

pathogens of shrimp by polymerase-chain reaction (PCR). PCR analysis confirmed the 

sole presence of WSSV DNA in the tissues. 

In vivo titration by intramuscular inoculation. Virus titer of infection in 135 days- 

old juveniles and its relationship to the titer of mortality - Five experiments were 

performed using shrimp of this age (MBW = 13.34 ± 4.08 g, n = 172). In three 

experiments shrimp were inoculated by IM route with 200 µl of a tenfold serial dilution 

of WSSV. Four shrimp were used per dilution. Moribund and dead shrimp were 

recorded, removed from the aquaria and processed for detection of WSSV infection. 

Surviving shrimp were sacrificed at the end of the experiments and analyzed for WSSV 

infection. These experiments were terminated at 72, 96 and 168 hpi. In the other two 

experiments shrimp were inoculated by IM route with 50 µl of a tenfold serial dilution 

of WSSV. Twelve shrimp were used per dilution. Moribund, dead and surviving shrimp 

were analyzed for WSSV infection. These experiments were terminated at 120 and 168 

hpi (Table1). 

Virus titers in 60 days - old juveniles - Three experiments were performed with shrimp 

(MBW = 3.00 ± 1.18 g; n = 75) inoculated by IM route with 50 µl of a tenfold serial 

dilution of WSSV. Five shrimp were used per dilution. Moribund and dead shrimp were 

processed for detection of WSSV infection. These experiments were terminated at 120 

hpi (Table 2). 
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The statistical comparison of the virus titers in these two sizes of juvenile shrimp was 

undertaken using the non-parametric test of Mann-Whitney (Zar, 1996). 

In vivo titration by oral inoculation Virus titers in 80 days-old juvenile shrimp - The 

minimum size of shrimp that could be inoculated by oral route was 6 - 7 g. The virus 

titer of the WSSV stock by oral inoculation was evaluated using the overall median 

virus titer found by IM route as the basis to define five doses (103, 102, 101, 100 and 10-1 

SID50 [IM] in 50 µl). This procedure allowed a direct comparison of the infectivity of 

the virus stock between the IM and the oral routes. Two experiments were performed in 

80 days-old shrimp (MBW = 7.75 ± 2.83 g, n = 50). Five shrimp per dose were 

intubated using a sterile flexible pipette tip (Biozym, The Netherlands) and a 

magnifying glass (2.5 X) to locate the mouth. Shrimp were placed with the ventral side 

up, the pipette tip was introduced into the oral cavity and the viral inoculum was 

delivered into the lumen of the oral tract. Moribund and dead shrimp were analyzed for 

WSSV infection. 

Determination of the virus titers. The virus titers of infection (SID50 ml-1) and 

mortality (LD50 ml-1) were calculated using the method of Reed & Muench (1938). 

Briefly, data of infected and uninfected shrimp at each dilution were ordered. Infected 

shrimp were summed up from the lowest to the highest concentration as well as the 

uninfected ones but in the inverse direction to obtain the percentage of infected shrimp 

for each dilution. The two dilutions with the nearest percentage above (a) and below (b) 

50% were used to calculate a proportional distance (50% - b / a - b) which was added to 

the log10 of the dilution next below to 50% in order to determine the 50% endpoint of 

infection (SID50 ml-1) according to the volume inoculated. 

Evaluation of WSSV infection. Moribund, dead and surviving shrimp at the end of the 

experiments were processed to detect WSSV infection using indirect 

immunofluorescence (IIF) and one-step PCR. 

Indirect immunofluorescence analysis (IIF) - Tissues from the pereon were embedded 

in methylcellulose (Fluka, Germany) and frozen at -20°C. Cryosections (5 - 6 µm) were 

made and fixed in absolute methanol at -20°C, washed with PBS, incubated for 1 h at 

37°C with 2 mg ml-1 of the monoclonal antibody 8B7 specific for VP28 (Poulos et al. 

2001), washed and incubated for 1 h at 37°C with 0.02 mg ml-1 of fluorescein 

isothiocyanate (FITC) -labeled goat anti-mouse antibody (F-2761, Molecular Probes, 
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The Netherlands) in PBS, washed with PBS, rinsed in deionised water, dried and 

mounted. Slides were analyzed by fluorescence microscopy (Leica DM RBE, 

Germany). Tissues of moribund shrimp infected with WSSV and uninfected shrimp 

were stained and used as positive and negative controls respectively. 

One-step PCR - Total DNA was extracted from shrimp muscle with lysis buffer 

(Intelligene Corp. Taiwan). Primers F002 and R002 were used to amplify WSSV DNA 

and primers F and R3 which amplify β-actin from shrimp were used as control. The 

amplicon for WSSV was 306 bp, while that for β-actin was 339 bp (Dhar et al. 2001). 

Extracted DNA (2 µl) was added to a PCR tube containing 48 µl of a PCR master mix 

[1X PCR buffer (Eurogentec, Belgium), 1.5 mM MgCl2, 0.3 mM of each of the 

respective forward and reverse primers for WSSV or β-actin, 1.6 mM dNTPs 

(Eurogentec, Belgium), 1 U hot goldstar Taq polymerase (Eurogentec, Belgium) total 

reaction volume 50 µl]. One-step PCR was carried out as follows: a preheating step at 

95°C for 10 minutes followed by 35 cycles each with the following steps: denaturation 

(94°C for 45 s), annealing (55°C for 45 s), (72°C for 75 s) and a final extension at 72°C 

for 5 minutes. PCR products were stored at 4°C. PCR products (12 µl), negative 

(ultrapure water) and positive (DNA from a 10-2 dilution of WSSV stock) controls, as 

well as DNA markers (smart ladder, Eurogentec, Belgium) were resolved on a 1.2% 

agarose gel in tris-acetate-EDTA (TAE) buffer. The gel was stained with ethidium 

bromide (0.02 mg ml-1) and visualized by UV transillumination. 

 

RESULTS 

 

In vivo titration by intramuscular inoculation. Virus titer of infection in 135 days- 

old juveniles and its relationship to the titer of mortality - The number of shrimp that 

died before termination of the experiments at 72, 96, 120 and 168 hpi and the number of 

dead or euthanized shrimp found positive by IIF (Figure 1) and one-step PCR are 

presented in Table 1. The virus titers of infection in the experiments terminated at 72 

and 96 hpi were 106.0 and 106.4 SID50 ml-1 respectively, and the titer of infection in the 

experiment terminated at 168 hpi was 106.5 SID50 ml-1. The experiments performed with 

12 shrimps per dilution had virus titers of infection of 106.4 SID50 ml-1 at 120 hpi and 
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106.6 SID50 ml-1 at 168 hpi. The same proportion of infected shrimp was detected by IIF 

and one-step PCR in each of these experiments. 

 

 

 

 

 

 

 

 

Figure 1 - Presence (a) or absence (b) of WSSV-infected cells in tissues of (a) WSSV-

infected or (b) uninfected shrimp as determined by indirect immunofluorescence. Bar = 

100 µm 

 

 

Virus titers in 60 days - old juveniles - The virus titers of infection in each of the three 

experiments performed in this size of juveniles were 106.8, 106.9 and 106.5 SID50 ml-1 

(Table 2). The same proportion of WSSV-infected shrimp was determined by IIF and 

one-step PCR (Figure 2). Likewise, the titers of mortality were the same as the titers of 

infection for each experiment. 

The titers of mortality were lower than those of infection when the experiments were 

terminated at 72 or 96 hpi (105.7 and 105.4 LD50 ml-1, respectively), whereas the titer of 

mortality fully matched that of infection in the experiment terminated at 120 hpi (106.4 

LD50 ml-1) as well as in the two experiments terminated at 168 hpi (106.5 and 106.6 LD50 

ml-1). 

The statistical comparison of the three virus titers determined at 120 and 168 hpi in 135 

days-old shrimp and the three performed in 60 days-old juveniles inoculated by IM 

route showed no significant differences (P ≥ 0.05). Therefore these six virus titers were 

used to establish the overall median virus titer of infection of the WSSV stock at 106.6 

SID50 ml-1 and the overall median virus titer of mortality was 106.6 LD50 ml-1. 

 

 

ba
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Table 1.- Titers by mortality (LD50 ml-1) and infection (SID50 ml-1) of the WSSV stock 

by IM inoculation in 135 days-old Litopenaeus vannamei. 

 

Infection determined by Experiment Termination 
(hpi) 

Dilution Number of 
shrimps 

Mortality 
IIF PCR 

       
10-5 4 2/4 2/4 2/4 
10-6 4 0/4 1/4 1/4 
10-7 4 0/4 0/4 0/4 

1 72 

10-8 4 0/4 0/4 0/4 
       

   
Titer (IM 

route) 
105.7 

LD50 ml-1 
106.0 

SID50 ml-1 
106.0 

SID50 ml-1 
       

10-2 4 4/4 4/4 4/4 
10-3 4 4/4 4/4 4/4 
10-4 4 4/4 4/4 4/4 
10-5 4 1/4 4/4 4/4 

2 96 

10-6 4 0/4 1/4 1/4 
       

   
Titer (IM 

route) 
105.4 

LD50 ml-1 
106.4 

SID50 ml-1 
106.4 

SID50 ml-1 
       

10-4 12 11/12 11/12 11/12 
10-5 12 7/12 7/12 7/12 
10-6 12 1/12 1/12 1/12 
10-7 12 0/12 0/12 0/12 

3 120 

10-8 12 0/12 0/12 0/12 
       

   
Titer (IM 

route) 
106.4 

LD50 ml-1 
106.4 

SID50 ml-1 
106.4 

SID50 ml-1 
       

10-5 4 4/4 4/4 4/4 
10-6 4 1/4 1/4 1/4 
10-7 4 1/4 1/4 1/4 

4 168 

10-8 4 0/4 0/4 0/4 
       

   
Titer (IM 

route) 
106.5 

LD50 ml-1 
106.5 

SID50 ml-1 
106.5 

SID50 ml-1 
       

10-4 12 12/12 12/12 12/12 
10-5 12 7/12 7/12 7/12 
10-6 12 3/12 3/12 3/12 
10-7 12 0/12 0/12 0/12 

5 168 

10-8 12 0/12 0/12 0/12 
       

   
Titer (IM 

route) 
106.6 

LD50 ml-1 
106.6 

SID50 ml-1 
106.6 

SID50 ml-1 
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Table 2.- Titers by mortality (LD50 ml-1) and infection (SID50 ml-1) of the WSSV stock 

by IM inoculation in 60 days-old Litopenaeus vannamei. 

 
Experiment Termination Dilution Number of Mortality Infection determined by 

 (hpi)  shrimps  IIF PCR 
      
  10-4 5 5/5 5/5 5/5 
  10-5 5 5/5 5/5 5/5 
1 120 10-6 5 0/5 0/5 0/5 
  10-7 5 0/5 0/5 0/5 
  10-8 5 0/5 0/5 0/5 
       
  

 
Titer (IM 

route) 
106.8 

LD50 ml-1 
106.8 

SID50 ml-1 
106.8 

SID50 ml-1 
       
  10-4 5 5/5 5/5 5/5 
  10-5 5 5/5 5/5 5/5 
2 120 10-6 5 1/5 1/5 1/5 
  10-7 5 0/5 0/5 0/5 
  10-8 5 0/5 0/5 0/5 
       
  

 
Titer (IM 

route) 
106.9 

LD50 ml-1 
106.9 

SID50 ml-1 
106.9 

SID50 ml-1 
       
  10-4 5 5/5 5/5 5/5 
  10-5 5 3/5 3/5 3/5 
3 120 10-6 5 0/5 0/5 0/5 
  10-7 5 0/5 0/5 0/5 
  10-8 5 0/5 0/5 0/5 
       
  

 
Titer (IM 

route) 
106.5 

LD50 ml-1 
106.5 

SID50 ml-1 
106.5 

SID50 ml-1 

 

 

In vivo titration by oral inoculation Virus titers in 80 days-old juvenile shrimp - The 

50% endpoint of the virus titers by oral inoculation was 1.2 log10 and 0.7 log10 times 

higher than by IM inoculation (Table 3). Thus the titers of the WSSV stock determined 

using the oral route of inoculation were 105.6 SID50 ml-1 and 105.6 LD50 ml-1. 
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Figure 2 - In vivo titration of WSSV by one-step PCR. WSSV-positive tissues of 60 

days-old Litopenaeus vannamei. Lanes 1 to 5, shrimp number. M, DNA weight marker 

(upper = 400 bp, lower = 200 bp). N, negative control. P, positive control 
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Table 3.- Doses of WSSV (based on the median virus titer by IM route) orally 

inoculated in 80 days-old Litopenaeus vannamei and virus titers of mortality (LD50 ml-1) 

and infection (SID50 ml-1) of the WSSV stock obtained by oral route. 

 

Experiment Termination Dose Number of Mortality Infection determined by 
 (hpi) (SID50 IM) shrimps  IIF PCR 

      
  103 5 5/5 5/5 5/5 
  102 5 5/5 5/5 5/5 
  101 5 2/5 2/5 2/5 
1 120 100 5 0/5 0/5 0/5 
  10-1 5 0/5 0/5 0/5 
    101.2* 101.2* 101.2* 

  Titer (oral 
route) 

 
105.4 LD50 ml-1 105.4 SID50 ml-1 105.4 SID50 ml-1

       
  103 5 5/5 5/5 5/5 
  102 5 5/5 5/5 5/5 
2 120 101 5 3/5 3/5 3/5 
  100 5 1/5 1/5 1/5 
  10-1 5 0/5 0/5 0/5 
    100.7* 100.7* 100.7* 

  Titer (oral 
route) 

 
105.9 LD50 ml-1 105.9 SID50 ml-1 105.9 SID50 ml-1

*Times the 50% endpoint by oral route higher than by IM route 

 

 

DISCUSSION 

 

The in vivo titration of viral stocks using the 50% endpoint dilution assay is commonly 

used when virus titers cannot be calculated in vitro (Flint et al. 2000). In the present 

study the virus titers of infection and mortality of a WSSV stock inoculated by IM and 

oral routes were determined using this method. To our knowledge, this is the first study 

to describe the relationship between routes of exposure (IM vs. oral) and virus 

infectivity of a WSSV stock in Litopenaeus vannamei. The virus titers of infection and 

mortality in 60 and 135 days-old juveniles were not significantly different, indicating 

that these two stages of juvenile shrimp had the same susceptibility to WSSV when the 

virus is inoculated by IM route. 



In vivo titration of WSSV 78 

In vivo titrations are important to evaluate differences in susceptibility between life 

stages within a host species or between related species (Plumb & Zilberg 1999). In 

shrimp, there are indications that susceptibility to WSSV may differ between life stages 

(Pramod-Kiran et al. 2002, Yoganandhan et al. 2003), shrimp species (Lightner et al. 

1998, Wang et al. 1999) and different decapods (Wang et al. 1998, Sahul-Hameed et al. 

2003). However, the use of a known dose of infectious virus is critical to demonstrate 

these differences. 

The virulence of a pathogen or its power to produce disease in a host is a measurable 

feature (Shapiro-Ilan et al. 2005). In order to compare the virulence of different virus 

strains their infectivity (SID50 ml-1) should be known. Every shrimp should be 

inoculated with the same amount of infectious virus. The inoculation techniques 

described in the present study may be used to determine the infectivity of different 

WSSV strains and to test their virulence. 

The virus titers of infection determined both by IIF and one-step PCR were identical in 

each of the experiments performed either by intramuscular or oral inoculations. Every 

shrimp detected positive by PCR was equally detected by IIF. All surviving shrimp at 

120 hpi or longer were not infected with WSSV as determined by these two methods. 

Although one-step PCR is probably more sensitive than IIF (Sizun et al. 1998, Walker 

et al. 1998) under these experimental conditions IIF was able to detect WSSV-infected 

cells in all shrimp detected positive by PCR. In addition it was very convenient: cheap, 

easy to perform, yielding rapid results (within 4 hours) and with good sensitivity. Thus 

these results indicate that IIF may be considered as a suitable diagnostic tool in areas 

where PCR is not available. 

The relationship between the virus titers of infection and mortality with the Thai isolate 

of WSSV by IM or oral route was 1:1 only in experiments terminated at 120 hpi or later. 

Thus, every shrimp that became infected with this strain of WSSV by any of these 

routes of inoculation died within 120 hpi. Although previous studies have determined 

WSSV infection and mortality of Litopenaeus vannamei, none has indicated a full 

match between these two parameters. All surviving shrimp analyzed by histopathology 

were WSSV-negative, but not all the dead shrimp (6%) were WSSV-positive (Soto & 

Lotz 2003), or the analysis of WSSV infection was not performed in all the survivors 

(Prior et al. 2003). Therefore, the present study is the first to show the identity between 
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infection (SID50 ml-1) and mortality (LD50 ml-1) in shrimp inoculated by IM or oral 

routes. Moreover, the present study extends the findings of Prior et al. in the following 

points: (i) the virus titers were determined by IM injection and oral intubation in 

contrast to the evaluation of the LD50 only by IM inoculation but not by immersion, (ii) 

the WSSV strain used is different (a Thai strain vs. an American strain), (iii) the 

infectivity of the WSSV stock was determined by IM route in two sizes of juvenile 

shrimp, in contrast to only one shrimp size and (iv) the use of IIF to detect WSSV 

replication in infected cells represents a more appropriate virological technique than 

histopathology to determine WSSV infection. 

The oral route represents the natural way of WSSV entry into shrimp through ingestion 

(Wu et al. 2001, Lotz & Soto 2002). Experimental infections using the oral route have 

been performed by feeding shrimp and other crustaceans with WSSV-infected tissues. 

However, this procedure cannot guarantee that every animal receives the same amount 

of infectious virus. The results presented here demonstrate that oral intubation makes it 

possible to deliver a fixed quantity of virus to all inoculated shrimp and therefore 

represents a solution to this problem. 

Once WSSV enters the oral cavity it has to overcome a series of physical and chemical 

barriers in the digestive tract of the shrimp in order to reach the susceptible epithelial 

cells. The cuticle sheath coating the epithelium of the foregut forms an important 

physical barrier (Ceccaldi, 1997, Martin & Chiu 2003). Digestive enzymes such as 

trypsin, amylases and lipases (Gamboa-Delgado et al. 2003) form a chemical barrier. 

These barriers may account for the reduction of WSSV infection by approximately 1 

log10 compared with the IM route of inoculation. It is possible that through these 

barriers shrimp may be able to prevent WSSV to reach the epithelial cells in the 

stomach when it is orally inoculated. 

In conclusion, the virus titers of the WSSV stock determined in vivo by intramuscular 

and oral routes constitute the first step towards standardization of infectivity models. 

These models can be used for the evaluation of different strategies (immunostimulants, 

antivirals and vaccines) aimed to reduce the impact of WSSV disease and for comparing 

the virulence of WSSV strains. 
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ABSTRACT 

 

In the past, strategies to control white spot syndrome virus (WSSV) were mostly tested 

by infectivity trials in vivo using immersion or per os inoculation of undefined WSSV 

infectious doses, complicating the comparison between experiments. In this study, the 

reproducibility of three defined doses (10, 30 and 90 shrimp infectious doses 50% 

endpoint [SID50]) of WSSV was determined in three experiments using the 

intramuscular (im) or oral inoculation in specific pathogen-free (SPF) Litopenaeus 

vannamei. Reproducibility was determined by the time of onset of disease, cumulative 

mortality and median lethal time (LT50). By im route, the three doses induced disease 

between 24 and 36 hours post inoculation (hpi). Cumulative mortality was 100% at 84 

hpi with doses 30 and 90 SID50 and 108 hpi with dose 10 SID50. The LT50 of doses 10, 

30 and 90 SID50 was 52, 51 and 49 hpi respectively and not significantly different (p > 

0.05). Shrimp orally inoculated with 10, 30 or 90 SID50 developed disease between 24 

and 36 hpi. Cumulative mortality was 100% at 108 hpi with doses 30 and 90 SID50 and 

120 hpi with dose 10 SID50. The LT50 of 10, 30 and 90 SID50 was 65, 57 and 50 hpi 

respectively and significantly different from each other (p < 0.05). A dose of 30 SID50 

was selected as the standard for further WSSV challenges by i.m. or oral routes. These 

standardized inoculation procedures may be applied to other Crustacea and WSSV 

strains to achieve comparable results between experiments. 
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INTRODUCTION 

 

White spot syndrome virus (WSSV) is one of the most lethal pathogens in shrimp 

aquaculture. First reported in Taiwan in 1992 (Chou et al. 1995) it has spread to several 

shrimp farming countries. Within a decade, it has become a serious threat to the shrimp 

culture industry throughout Asia and Latin America (Hill 2002). WSSV also infects 

many other crustacean species from several regions in the world (Lo et al. 1996, Chang 

et al. 1998, Kanchanaphum et al. 1998, Kasornchandra et al. 1998, Wang et al. 1998, 

Rajendran et al. 1999, Corbel et al. 2001, Hossain et al. 2001, Sahul-Hameed et al. 

2003). 

The WSSV virion is bacilliform, non-occluded and enveloped. It contains a circular, 

double-stranded DNA genome with size between 293 and 307 kilobasepairs (kbp) (van 

Hulten et al. 2001, Yang et al. 2001, Chen et al. 2002). Several WSSV strains have been 

identified by differences in their genomic size (Wang et al. 2000), restriction enzyme 

profile (Nadala & Loh, 1998), deletion variants (Lan et al. 2002) or pathogenicity 

(Wang et al. 1999a). 

The disease caused by this virus is characterized by the presence of white spots in the 

inner surface of the exoskeleton of Penaeus monodon and other Asian shrimp species 

during the acute phase. Other clinical signs include a reduced feed uptake, locomotion 

and reddish discoloration of the body (Otta et al. 1999). Mass mortalities (up to 100%) 

have been reported within 10 days after the onset of disease (Wang et al. 1999b). 

Several approaches to reduce mortality due to WSSV have been tested using 

experimental challenges. Some of these include (i) feeding shrimp with 

immunostimulants to enhance the defense response (Chang et al. 1999, 2003, Huang & 

Song, 1999, Newman, 1999, Takahashi et al. 2000, Yusoff et al. 2001, Chotigeat et al. 

2004), (ii) ‘vaccinating’ shrimp with formalin-fixed virus or recombinant WSSV-

envelope proteins (Namikoshi et al. 2004, Witteveldt et al. 2004a, 2004b), (iii) 

administering antimicrobial peptides (mytilin) (Dupuy et al. 2004) or double-stranded 

RNA (dsRNA) (Robalino et al. 2004) and (iv) manipulating water temperature (Vidal et 

al. 2001, Granja et al. 2003, Guan et al. 2003, Jiravanichpaisal et al. 2004). 

Other strategies with potential to combat WSSV infections include the induction of 

antiviral genes present in shrimp (Luo et al. 2003), the application of synthetic antiviral 
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peptides (Yi et al. 2003) and the induction of a ‘WSSV neutralizing factor’ in shrimp 

using sublethal concentrations of WSSV (Venegas et al. 2000, Wu et al. 2002). 

So far, most of the WSSV challenge tests developed to control WSS disease have used 

different inoculation routes and undefined amounts of infectious virus. The routes of 

inoculation used are immersion, per os feeding of infected tissues and intramuscular 

(i.m.) injection. The amount of infectious virus taken up by each animal using 

immersion or feeding may be quite different, making it very difficult to compare results 

from different studies. The development of standardized WSSV inoculation procedures 

that yield reproducible results in terms of onset and severity of disease would be 

significant to solve this problem. 

One of the main requirements for a reproducible model of infection is to use a virus 

stock with known infectivity titer. The shrimp infectious dose 50% endpoint (SID50 ml-

1) of the Thai WSSV stock used in this study was determined by in vivo titration in 

specific pathogen-free (SPF) Litopenaeus vannamei by i.m. and oral routes (Escobedo-

Bonilla et al. 2005). Determination of the infectivity titer allows the establishment of a 

reproducible dose-response curve for experimental WSSV infections in shrimp. 

The objectives of this study were (1) to develop standardized WSSV inoculation 

procedures by IM and oral routes and (2) to characterize the mortality pattern (time of 

onset of disease, median lethal time [LT50] and cumulative mortality) of three doses of a 

Thai WSSV stock. Thus, a reproducible dose-response relationship was established to 

determine an appropriate WSSV dose to be used as a standard in further experimental 

challenges. 

 

MATERIAL AND METHODS 

 

Shrimp and rearing conditions Specific pathogen-free (SPF) Litopenaeus vannamei of 

the Kona strain (Wyban et al. 1992) were used. Batches of shrimp arrived at the 

Laboratory of Aquaculture & Artemia Reference Center (ARC), Ghent University, as 

postlarvae (PL 8 - 12; mean body weight [MBW] = 0.0013 g). Shrimp at this stage were 

fed Artemia nauplii once daily for one week. Afterwards, they were fed with a crumbled 

commercial pelleted feed (A2 monodon high performance shrimp feed/shrimp complete 

grower, INVE aquaculture NV) at a rate of 2.5% MBW twice daily. Older juvenile 
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shrimp were fed a pelleted feed at the same rate twice daily. Water temperature was 

27°C ± 1°C, salinity ranged between 30 and 35 g l-1, total ammonia was less than 0.5 

mg l-1 and nitrites ranged between 0.05 and 0.15 mg -1. 

WSSV stock and in vivo infectivity titers The WSSV stock used in this study was 

prepared and titrated by i.m. or oral inoculations as described previously (Escobedo-

Bonilla et al. 2005). The median virus titer of infection was 106.6 shrimp infectious dose 

50% endpoint (SID50 ml-1) by IM route and 105.6 SID50 ml-1 by oral route. 

Doses Three doses of the WSSV stock were prepared in phosphate-buffered saline pH 

7.4 (PBS) for i.m. or oral inoculation: 10, 30 and 90 SID50 in a volume of 50 µl. 

Experimental conditions Shrimp were acclimatized to a salinity of 15 g l-1 over four 

days at the ARC and then transported to the Laboratory of Virology, Faculty of 

Veterinary Medicine Ghent University, where the experiments were carried out under 

biosafety conditions. Shrimp were accustomed to the experimental conditions 24 h 

before challenge and during this time they were not fed. After inoculation, shrimp were 

fed daily with only six pellets in order to maintain the water quality. 

Groups of 10 shrimp each were placed in 50 l glass aquaria with glass covers and a 

plastic sheath to prevent transmission by aerosol. Artificial seawater was prepared at 15 

g l-1 with Instant Ocean® (Marine systems, France) in distilled water. Each aquarium 

was fitted with a mechanical filter (Eheim classic 2213, Germany), a water heater 

(Visitherm, aquarium systems, USA) and aeration. Water temperature was 27 ± 1°C, 

total ammonia was between 0 and 5 mg l-1 and nitrites were between 0 and 0.15 mg l-1 

as monitored daily. 

Intramuscular inoculation procedure Three experiments were performed using the 

i.m. route. In each experiment, three groups of 10 shrimp (MBW = 9.40 ± 4.92 g, n = 

120) were inoculated with 10, 30 or 90 SID50. In addition, a group of 10 shrimp was 

mock-inoculated with 50 µl of PBS and used as controls. Shrimp were injected between 

the third and fourth segments of the pleon. Before and after injection, this surface was 

wiped with 70% ethanol and finally shrimp were re-placed into their respective 

aquarium. These experiments were run until all the infected shrimp died. Control shrimp 

were sacrificed at 120 hours post inoculation (hpi). 

Oral inoculation procedure Three experiments were performed using the oral route. In 

every experiment, three groups of 10 shrimp (MBW = 9.72 ± 2.24 g, n = 120) were 
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intubated with one of three doses (10, 30 and 90 SID50). Ten shrimp were mock-

inoculated with 50 µl of PBS and used as control. Oral inoculation was performed as 

follows: Shrimp were placed in a tray with the ventral side up. A flexible and slender 

pipette tip (no. 790004 Biozym, The Netherlands) was introduced into the oral cavity, 

the inoculum was delivered into the lumen of the foregut and shrimp were re-placed into 

their respective aquarium. These experiments were run until all the infected shrimp 

died. Control shrimp were sacrificed at 120 hpi. 

Evaluation of WSSV infection Inoculated shrimp were monitored every 12 h 

throughout the experiment. Moribund and dead shrimp were removed and processed for 

indirect immunofluorescence (IIF) analysis as well as control shrimp. 

Clinical signs - Litopenaeus vannamei rarely display white spots during WSSV 

infection (Nadala et al. 1998, Rodriguez et al. 2003). Empty guts and reduced response 

to mechanical stimulation are the first clinical signs to appear in WSSV-diseased shrimp 

and are good indicators of infection and mortality. These clinical signs were used to 

monitor the onset of disease in shrimp inoculated by IM or oral routes. 

Indirect immunofluorescence analysis (IIF) - Shrimp were processed for detecting 

WSSV-infected cells as follows: pereons were excised and embedded in 

methylcellulose (Fluka, Germany) and frozen at -20°C. Cryosections (5 - 6 µm) were 

made and tissues fixed in absolute methanol at -20°C, washed with PBS and incubated 

for 1 h at 37°C with 2 mg ml-1 of the monoclonal antibody 8B7 against VP28 (Poulos et 

al. 2001). Tissues were washed and incubated for 1 h at 37°C with 0.02 mg ml-1 of 

fluorescein isothiocyanate (FITC) -labeled goat-anti mouse antibody (F-2761 Molecular 

Probes, The Netherlands) in PBS, washed with PBS, rinsed in deionised water and 

mounted with a solution containing glycerin and 1,4-diazobicyclo-2,2,2,-octane 

(DABCO). Tissue sections were analyzed by fluorescence microscopy (Leica DM RBE, 

Germany). 

Statistical analysis The cumulative mortality and the standard deviation of the three 

experiments performed by IM or oral routes were calculated for each dose. The mean 

cumulative mortality was analyzed by probit, which is a generalized linear model with a 

probit link function (Agresti, 1996). After checking that no significant interactions exist 

between dose and time, the probit model has the form: 
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Probit (x) = α + β(time) + γ(dose)  (1) 

Where: 

 α is the intercept 

 β is the rate of probability change per unit change of time (for a constant dose) 

γ is the rate of probability difference for each dose (for a constant time) 

 

The statistical software Minitab (Minitab v. 14, Minitab Inc. USA) was used to calculate 

the parameters of the regression and to determine the median lethal time (LT50) or the 

time at which 50% of the tested organisms die (Yi et al. 2003) for each dose. 

Differences in the LT50 of the doses were evaluated by the significance of dose in the 

probit model (1) (significance level = 0.05) using the same statistical software. 

 

RESULTS 

 

Intramuscular inoculation Clinical signs and onset of disease - Shrimp inoculated 

with the three doses of WSSV by IM route first displayed empty guts and reduced 

response to mechanical stimulus between 24 and 36 hours post inoculation (hpi). The 

proportion of shrimp from each of the three doses that displayed these clinical signs is 

presented in Tables 1 & 2. Shrimp used as controls did not display any of these clinical 

signs, remained healthy and survived throughout the experiments. 

 

Table 1.- Proportion of shrimp with empty guts after IM inoculation with three doses of 

WSSV. 

Group 
Number 

of 
shrimp* 

Proportion of shrimp showing clinical signs at each time point (hpi) 

  0 12 24 36 48 60 72 84 96 108 120 
Control 30 0/30 0/30 0/30 0/30 0/30 0/30 0/30 0/30 0/30 0/30 0/30 
10 SID50 30 0/30 0/30 6/30 12/30 9/22 18/20 4/6 2/2 2/2 1/1  
30 SID50 30 0/30 0/30 5/30 16/29 13/22 11/15 5/5 2/2    
90 SID50 30 0/30 0/30 6/30 18/30 14/26 13/17 3/4 1/1    

* Total of the three experiments 
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Table 2.- Proportion of shrimp with reduced response to mechanical stimulus after IM 

inoculation with three doses of WSSV. 

* Total of the three experiments 

 

Mortality - Each of the three doses of WSSV inoculated by IM route induced 100% 

mortality. The first mortalities were recorded at 36 hpi with each of the three doses 

tested. The cumulative mortality reached 100% at 84 hpi in shrimp inoculated with 

doses 30 and 90 SID50, while shrimp inoculated with 10 SID50 were all dead at 108 hpi 

(Fig. 1a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Cumulative mortality (mean of three experiments and standard deviation) of 

shrimp inoculated with three doses of WSSV by intramuscular (a) or oral routes (b) 

Group 
Number 

of 
shrimp* 

Proportion of shrimp showing clinical signs at each time point (hpi) 

  0 12 24 36 48 60 72 84 96 108 120 
Control 30 0/30 0/30 0/30 0/30 0/30 0/30 0/30 0/30 0/30 0/30 0/30 
10 SID50 30 0/30 0/30 0/30 0/30 5/22 13/20 4/6 2/2 2/2 1/1   
30 SID50  30 0/30 0/30 2/30 11/29 8/22 9/15 3/5 2/2       
90 SID50  30 0/30 0/30 1/30 7/30 12/26 11/17 3/4 1/1       
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Oral inoculation Clinical signs and onset of disease - Shrimp inoculated with any of 

the three doses of WSSV by oral route first displayed empy guts and reduced response 

to mechanical stimulus between 24 and 36 hpi. The proportion of shrimp from each of 

the three doses that displayed these clinical signs is presented in Tables 3 & 4. Control 

shrimp did not display any of these clinical signs, remained healthy and survived 

throughout the experiments. 

 

Table 3.- Proportion of shrimp with empty guts after oral inoculation with three doses of 

WSSV. 

* Total of the three experiments 

 

Table 4.- Proportion of shrimp with reduced response to mechanical stimulus after oral 

inoculation with three doses of WSSV. 

* Total of the three experiments 

 

 

Mortality - Each of the three doses of WSSV inoculated by oral route induced 100% 

mortality. By oral inoculation, the first mortalities due to WSSV were recorded at 36 hpi 

for each dose. Cumulative mortality was 100% at 108 hpi in shrimp inoculated with 

doses 30 and 90 SID50, while the cumulative mortality of shrimp inoculated with 10 

SID50 was 100% at 120 hpi (Fig. 1b). Probit analysis (Fig. 2b) showed significant 

differences (P < 0.05) in the LT50 of each of the three doses inoculated by oral route 

(Table 5). The LT50 of doses 10, 30 and 90 SID50 was 65, 57 and 50 hpi respectively. 

Group 
Number 

of 
shrimp* 

Proportion of shrimp showing clinical signs at each time point (hpi) 

  0 12 24 36 48 60 72 84 96 108 120 
Control 30 0/30 0/30 0/30 0/30 0/30 0/30 0/30 0/30 0/30 0/30 0/30 
10 SID50 30 0/30 0/30 7/30 11/30 13/25 15/22 10/16 8/12 6/7 4/4 1/1 
30 SID50 30 0/30 0/30 6/30 13/30 14/24 13/18 7/11 7/8 3/3 2/2  
90 SID50 30 0/30 0/30 7/30 24/30 16/24 14/16 4/6 3/4 1/1 1/1  

Group 
Number 

of 
shrimp* 

Proportion of shrimp showing clinical signs at each time point (hpi) 

  0 12 24 36 48 60 72 84 96 108 120 
Control 30 0/30 0/30 0/30 0/30 0/30 0/30 0/30 0/30 0/30 0/30 0/30 
10 SID50 30 0/30 0/30 2/30 4/30 8/25 12/22 9/16 6/12 6/7 4/4 1/1 
30 SID50 30 0/30 0/30 0/30 12/30 11/24 13/18 7/11 7/8 3/3 2/2  
90 SID50 30 0/30 0/30 1/30 13/30 8/24 11/16 3/6 2/4 1/1 1/1  
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IIF analysis confirmed infection in all the shrimp inoculated with WSSV. Control 

shrimp were WSSV-negative. 

The cumulative mortality of the three doses was analyzed with the probit model (Fig. 

2a) and the LT50 of the three doses were compared. The LT50 with doses 10, 30 and 90 

SID50 had values of 52, 50 and 49 hpi respectively, which was not significantly different 

(Table 5). IIF analysis confirmed that all WSSV-inoculated shrimp became infected. 

Control shrimp were WSSV-negative. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Probability of mortality (probit) of the three doses of WSSV inoculated into 

shrimp by intramuscular (a) or oral routes (b) 
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Table 5.- Parameters of the probit regression model of the three doses inoculated by i.m. 

or oral routes. 

* Significant differences 

 

 

DISCUSSION 

 

In the past, experimental challenge tests have been used to determine the pathogenicity 

of WSSV, the susceptibility of different species to the virus and to test products and 

strategies to control the disease (Lu et al. 1997, Lightner et al. 1998, Chang et al. 2003). 

In all these experiments, different viral strains, shrimp species, ages and routes of 

inoculation were used, which makes it difficult to compare the results from different 

studies. Moreover, the infectivity of the virus stock is mostly undefined. 

This study is the first that used defined infectious doses of WSSV to standardize 

experimental challenge protocols by i.m. and oral routes using SPF shrimp of similar 

age. 

Each of three doses of WSSV inoculated by either i.m. or oral route induced infection 

and mortality in all shrimp and their mortality patterns were reproducible according to 

the criteria used. The clinical signs used in these experiments were useful to indicate the 

time of onset of disease caused by WSSV infection in every dose. Clinical signs 

appeared at least 12 h before the first mortalities and were displayed by similar 

Inoculation 

route 

Dose 

(SID50) 

Time of 

100% 

mortality 

(hpi) 

α β γ (dose) LT50 

LT50 

similarity 

(Z, p = 0.05) 

 10a 108 -3.5616 0.06866 0 51.87  

IM 30b 84 -3.5616 0.06866 0.09214 50.53 c ≤ b ≤ a 

 90c 84 -3.5616 0.06866 0.19966 48.96  

 10a 120 -3.1279 0.04809 0 65.04  

Oral 30b 108 -3.1279 0.04809 0.393898 56.85 c* < b* < a* 

 90c 108 -3.1279 0.04809 0.721668 50.03  
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proportions of shrimp whether inoculated by i.m. or oral routes. The onset of disease 

and the first mortalities occurred at the same time whether shrimp were inoculated i.m. 

or by the oral route. However, shrimp inoculated orally died between 12 and 24 hpi later 

than shrimp inoculated i.m. with the equivalent doses. Accordingly, the LT50 is earlier 

for the doses delivered by i.m. route compared with the LT50 of the equivalent doses 

inoculated orally. 

The influence of the route of inoculation on the speed of mortality produced by WSSV 

infection has been determined previously in Penaeus monodon and Fenneropenaeus 

indicus. Shrimp infected per os displayed 100% mortality two to four days later than 

those inoculated by IM route (Sahul-Hameed et al. 1998, Rajendran et al. 1999, Rajan et 

al. 2000). In the sergestoid shrimp Acetes, animals inoculated by IM route had 100% 

mortality by the third day post inoculation (Supamattaya et al. 1998). In contrast, the 

mortality due to WSSV infection was reduced five-fold when shrimp were inoculated 

with infected tissues per os and shrimp mortality occurred over a period of nine days 

post feeding. 

By i.m. inoculation, infectious viral particles are placed directly into the shrimp’s body, 

avoiding any natural barrier in the shrimp to prevent pathogen entry. With this 

inoculation technique most of the injected infectious viral particles have a high 

probability of reaching susceptible cells and to initiate the infection process. In contrast, 

the oral inoculation places the virus in the lumen of the foregut, which represents a 

hostile environment. The cuticle layer lining the epithelial cells in the foregut (Icely & 

Nott 1992, Ceccaldi 1997, Martin & Chiu 2003) constitutes an important physical 

barrier that may hinder infectious WSSV particles to reach the epithelial cells. The pH 

and enzymes present in the digestive tract of the shrimp (Lovett & Felder, 1990, Talbot 

& Demers 1993, Lemos et al. 1999, Ribeiro & Jones, 2000, Gamboa-Delgado et al. 

2003) may damage infectious viral particles leading to their inactivation. It is likely that 

only a small proportion of infectious virus inoculated orally actually infects cells and is 

the reason why it is necessary to use ten times more virus to infect shrimp by the oral 

route compared with the i.m. inoculation (Escobedo-Bonilla et al. 2005). 

Even when the doses inoculated were increased ten times for oral intubation, there was 

still a difference in the time required to produce 100% mortality between i.m. and oral 

inoculation of WSSV suggesting the existence of barriers other than those alluded to, 
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for example, the basal lamina (Mellon 1992) underlying the epithelial cells of the 

foregut. Once epithelial cells are infected with WSSV, the newly-produced infectious 

virus has to break through the basal lamina to reach the underlying connective tissues in 

order to spread to other organs. It is possible that a critical number of epithelial cells has 

to be infected before that infectious virus can cross the basal lamina, thus explaining the 

dose-dependent pattern. Once infectious WSSV particles reach the connective tissues 

that may be in contact with hemolymph sinuses and lacunae bathing these tissues, the 

infectious WSSV particles can be carried by the hemolymph circulation and spread to 

other target organs. Mortality of WSSV-infected shrimp probably occurs when the level 

of infection in target organs causes necrosis and loss of function. 

Based on the cumulative mortality patterns of the three doses used in these experiments, 

a dose of 30 SID50 was selected as the standard for further WSSV inoculation 

procedures by i.m. and oral routes. Such a dose ensures infection in every inoculated 

shrimp, but is not so excessive as to cause acute mortality. This is a desirable feature, 

especially when these inoculation protocols will be applied to test the efficacy of WSSV 

control strategies. The oral inoculation procedure may be more relevant for testing these 

strategies because it mimics the natural mode of WSSV infection. Further, it allows 

testing products that may have a synergistic effect with the natural physico-chemical 

barriers to viral entry. 

The standardized inoculation procedures described in the present study may be applied 

for other crustacean species and different WSSV strains. Parameters such as onset and 

severity of disease and LT50 are specific for the viral strain and experimental conditions 

used. Therefore it is necessary to determine these parameters under specific 

experimental conditions when other WSSV strains, shrimp species and laboratory 

conditions are used. 

These standardized inoculation procedures may also be used for (i) comparing the 

susceptibility of different shrimp species to WSSV; (ii) determining the virulence of 

different WSSV strains and (iii) evaluating the effect of different strategies with 

potential to control WSSV. 

 

 

 



Chapter 3.2 97

Acknowledgements: A scholarship (110056) from CONACyT (Mexico) was 

granted to the first author. This study was funded by a grant from the Belgian Ministry 

of Science Policy. 

 

 

REFERENCES 

Agresti A (1996) An introduction to categorical data analysis, John Wiley & Sons, New 
York 

Ceccaldi HJ (1997) Anatomy and physiology of the digestive system. In: D'Abramo LR, 
Concklin DE, Akiyama DM (eds) Crustacean nutrition. Advances in world 
aquaculture. World aquaculture society, p 261-291 

Chang PS, Chen HC, Wang YC (1998) Detection of white spot syndrome associated 
baculovirus in experimentally infected wild shrimp, crabs and lobsters by in situ 
hybridization. Aquaculture 164:233-242 

Chang CF, Su MS, Chen HY, Lo CF, Kou GH, Liao IC (1999) Effect of dietary β-1,3 -
glucan on resistance to white spot syndrome virus (WSSV) in postlarval and juvenile 
Penaeus monodon. Diseases of aquatic organisms 36:163-168 

Chang CF, Su MS, Chen HY, Liao IC (2003) Dietary β-1,3-glucan effectively improves 
immunity and survival of Penaeus monodon challenged with white spot syndrome 
virus. Fish & shellfish immunology 15:297-310 

Chen LL, Leu JH, Huang CJ, Chou CM, Chen SM, Wang CH, Lo CF, Kou GH (2002) 
Identification of a nucleocapsid protein (VP35) gene of shrimp white spot syndrome 
virus and characterization of the motif important for targeting VP35 to the nuclei of 
transfected insect cells. Virology 293:44-53 

Chotigeat W, Tongsupa S, Supamataya K, Phongdara A (2004) Effect of Fucoidan on 
Disease Resistance of Black Tiger Shrimp. Aquaculture 233:23-30 

Chou HY, Huang CY, Wang C-H, H.C. C, Lo CF (1995) Pathogenicity of a baculovirus 
infection causing white spot syndrome in cultured penaeid shrimp in Taiwan. 
Diseases of aquatic organisms 23:165-173 

Corbel V, Zuprisal, Shi Z, Huang C, Sumartono, Arcier JM, Bonami JR (2001) 
Experimental infection of European crustaceans with white spot syndrome virus 
(WSSV). Journal of fish diseases 24:377-382 

Dupuy JW, Bonami JR, Roch P (2004) A synthetic antibacterial peptide from Mytilus 
galloprovincialis reduces mortality due to white spot syndrome virus in palaemonid 
shrimp. Journal of fish diseases 27:57-64 

Escobedo-Bonilla CM, Wille M, Alday-Sanz V, Sorgeloos P, Pensaert MB, Nauwynck 
HJ (2005) In vivo titration of white spot syndrome virus (WSSV) in SPF Litopenaeus 
vannamei by intramuscular and oral routes. Diseases of aquatic organisms 66: 163-
170. 

Gamboa-Delgado J, Molina-Poveda C, Cahu C (2003) Digestive enzyme activity and 
food ingesta in juvenile shrimp Litopenaeus vannamei (Boone, 1931) as a function of 
body weight. Aquaculture research 34:1403-1411 

Granja CB, Aranguren LF, Vidal OM, Aragon L, Salazar M (2003) Does hyperthermia 
increase apoptosis in white spot syndrome virus (WSSV)-infected Litopenaeus 
vannamei? Diseases of aquatic organisms 54:73-78 



Standardized WSSV challenge models 98 

Guan Y, Yu Z, Lia C (2003) The effects of temperature on white spot syndrome 
infections in Marsupenaeus japonicus. Journal of invertebrate pathology 83:257-260 

Hill B (2002) Keynote 2: National and international impacts of white spot disease of 
shrimp. Bull. Eur. ass. fish pathol. 22:58-65 

Hossain S, Chakraborty A, Joseph B, Otta SK, Karunasagar I, Karunasagar I (2001) 
Detection of new hosts for white spot syndrome virus of shrimp using nested 
polymerase chain reaction. Aquaculture 198:1-11 

Huang CC, Song YL (1999) Maternal transmission of immunity to white spot syndrome 
associated virus (WSSV) in shrimp (Penaeus monodon). Developmental and 
comparative immunology 23:545-552 

Icely JD, Nott JA (1992) Digestion and absorption: Digestive system and associated 
organs. In: Harrison FW, Humes AG (eds) Microscopic anatomy of invertebrates, 
Vol 10. Decapod Crustacea. Wiley-Liss, Inc., New York, p 147-201 

Jiravanichpaisal P, Soderhall K, Soderhall I (2004) Effect of water temperature on the 
immune response and infectivity pattern of white spot syndrome virus (WSSV) in 
freshwater crayfish. Fish & shellfish immunology 17:265-275 

Kanchanaphum P, Wongteerasupaya C, Sitidilokratana N, Boonsaeng V, Panyim S, 
Tassanakajon A, Withyachumnarnkul B, Flegel TW (1998) Experimental 
transmission of white spot syndrome virus (WSSV) from crabs to shrimp Penaeus 
monodon. Diseases of aquatic organisms 34:1-7 

Kasornchandra J, Boonyaratpalin S, Itami T (1998) Detection of white spot syndrome in 
cultured penaeid shrimp in Asia: Microscopic observation and polymerase chain 
reaction. Aquaculture 164:243-251 

Lan Y, Lu W, Xu X (2002) Genomic instability of prawn white spot bacilliform virus 
(WSBV) and its association to virus virulence. Virus research 90:264-274 

Lemos D, Hernández-Cortéz MP, Navarrete A, Garcia-Carreño FL, Phan VN (1999) 
Ontogenetic variation in digestive proteinase activity of larvae and postlarvae of the 
pink shrimp Farfantepenaeus paulensis (Crustacea: Decapoda: Penaeidae). Marine 
biology 135:653-662 

Lightner DV, Hasson KW, White BL, Redman RM (1998) Experimental infection of 
western hemisphere penaeid shrimp with asian white spot syndrome virus and asian 
yellow head virus. Journal of aquatic animal health 10:271-281 

Lo CF, Ho CH, Peng SE, Chen CH, Hsu HC, Chiu YL, Chang CF, Liu KF, Su MS, 
Wang CH, Kou GH (1996) White spot syndrome baculovirus (WSBV) detected in 
cultured and captured shrimp, crabs and other arthropods. Diseases of aquatic 
organisms 27:215-225 

Lovett DL, Felder DL (1990) Ontogenetic change in digestive enzyme activity of larval 
and postlarval white shrimp Penaeus setiferus (Crustacea, Decapoda, Penaeidae). 
Biol. bull. 178:144-159 

Lu Y, Tapay LM, Loh PC, Gose RB, Brock JA (1997) The pathogenicity of a baculo-
like virus isolated from diseased penaeid shrimp obtained from China for cultured 
penaeid species in Hawaii. Aquaculture international 5:277-282 

Luo T, Zhang X, Shao Z, Xu X (2003) PmAV, a novel gene involved in virus resistance 
of shrimp Penaeus monodon. FEBS Letters 51:53-57 

Martin GG, Chiu A (2003) Morphology of the midgut trunk in the penaeid shrimp, 
Sicyonia ingentis, highlighting novel nuclear pore particles and fixed hemocytes. 
Journal of morphology 258:239-248 



Chapter 3.2 99

Mellon DJ (1992) Connective tissue and supporting structures. In: Harrison FW, Humes 
AG (eds) Microscopic anatomy of invertebrates, Vol 10. Decapod Crustacea. Wiley-
Liss, Inc., New York, p 77-116 

Nadala ECB, Loh PC (1998) A comparative study of three different isolates of white 
spot virus. Diseases of aquatic organisms 33:231-234 

Nadala ECB, Tapay LM, Loh PC (1998) Characterization of a non-occluded 
baculovirus-like agent pathogenic to penaeid shrimp. Diseases of aquatic organisms 
33:221-229 

Namikoshi A, Wu JL, Yamashita T, Nishioka T, Arimoto M, Muroga K (2004) 
Vaccination trials with Penaeus japonicus to induce resistance to white spot 
syndrome virus. Aquaculture 229:25-35 

Newman SG (1999) A review of the use of non-specific immune-stimulants to reduce 
the impact of the WSSV Fifth Ecuadorian Aquaculture Conference, Guayaquil, 
Ecuador, p 19 

Otta SK, Shubha G, Joseph B, Chakraborty A, Karunasagar I, Karunasagar I (1999) 
Polymerase chain reaction (PCR) detection of white spot syndrome virus (WSSV) in 
cultured and wild crustaceans in India. Diseases of aquatic organisms 38:67-70 

Poulos BT, Pantoja CR, Bradley-Dunlop D, Aguilar J, Lightner DV (2001) 
Development and application of monoclonal antibodies for the detection of white 
spot syndrome virus of penaeid shrimp. Diseases of aquatic organisms 47:13–23 

Rajan PR, Ramasamy P, Purushothaman V, Brennan GP (2000) White spot baculovirus 
syndrome in the Indian shrimp Penaeus monodon and P. indicus. Aquaculture 
184:31-44 

Rajendran KV, Vijayan KK, Santiago TC, Krol RM (1999) Experimental host range 
and histopathology of white spot syndrome virus (WSSV) infection in shrimp, 
prawns, crayfish and lobsters from India. Journal of fish diseases 22:183-191 

Ribeiro FALT, Jones DA (2000) Growth and ontogenetic change in activities of 
digestive enzymes in Fenneropenaeus indicus postlarvae. Aquaculture nutrition 
6:53-64 

Robalino J, Browdy CL, Prior S, Metz A, Parnell P, Gross P, Warr G (2004) Induction 
of antiviral immunity of double-stranded RNA in a marine invertebrate. Journal of 
virology 78:10442-10448 

Rodriguez J, Bayot B, Amano Y, Panchana F, de Blas I, Alday V, Calderon J (2003) 
White spot syndrome virus infection in cultured Penaeus vannamei (Boone) in 
Ecuador with emphasis on histopathology and ultrastructure. J fish diseases 26:439-
450 

Sahul-Hameed AS, Anilkumar M, Raj MLS, Jayaraman K (1998) Studies on the 
pathogenicity of systemic ectodermal and mesodermal baculovirus and its detection 
in shrimp by immunological methods. Aquaculture 160:31-45 

Sahul-Hameed AS, Balasubramanian G, Syed Musthaq S, Yoganandhan K (2003) 
Experimental infection of twenty species of Indian marine crabs with white spot 
syndrome virus (WSSV). Diseases of aquatic organisms 57:157-161 

Supamattaya K, Hoffman RW, Boonyaratpalin S, Kanchanaphum P (1998) 
Experimental transmission of white spot syndrome virus (WSSV) from black tiger 
shrimp Penaeus monodon to the sand crab Portunus pelagicus, mud crab Scylla 
serrata and krill Acetes sp. Diseases of aquatic organisms 32:79-85 

Takahashi Y, Kondo M, Itami T, Honda T, Inagawa H, Nishizawa T, Soma GI, 
Yokomiso Y (2000) Enhancement of disease resistance against penaeid acute 



Standardized WSSV challenge models 100 

viraemia and induction of virus-inactivating activity in haemolymph of kuruma 
shrimp, Penaeus japonicus, by oral administration of Pantoea agglomerans 
lipopolysaccharide (LPS). Fish & shellfish immunology 10:555-558 

Talbot P, Demers D (1993) Tegumental glands of Crustacea. In: Horst MN, Freeman JA 
(eds) The crustacean integument. Morphology and biochemistry. CRC press, Boca 
Raton, Florida, p 153-191 

van Hulten MCW, Witteveldt J, Peters S, Kloosterboer N, Tarchini R, Fiers M, 
Sandbrink H, Klein-Langhorst R, Vlak JM (2001) The white spot syndrome virus 
DNA genome sequence. Virology 286:7-22 

Venegas CA, Nonaka L, Mushiake K, Nishizawa T, Muroga K (2000) Quasi-immune 
response of Penaeus japonicus to penaeid rod-shaped DNA virus (PRDV). Diseases 
of aquatic organisms 42:83-89 

Vidal OM, Granja CB, Aranguren LF (2001) A profound effect of hyperthermia on 
survival of Litopenaeus vannamei juveniles infected with white spot syndrome virus. 
Journal of the world aquaculture society 32:364-372 

Wang YC, Lo CF, Chang PS, Kou GH (1998) Experimental infection of white spot 
baculovirus in some cultured and wild decapods in Taiwan. Aquaculture 164:221-
231 

Wang Q, White BL, Redman RM, Lightner DV (1999a) Per os challenge of 
Litopenaeus vannamei postlarvae and Farfantepenaeus duorarum juveniles with six 
geographic isolates of white spot syndrome virus. Aquaculture 170:179-194 

Wang YG, Hassan MD, Shariff M, Zamri SM, Chen X (1999b) Histopatholy and 
cytopathology of white spot syndrome virus (WSSV) in cultured Penaeus monodon 
from peninsular Malaysia with emphasis on pathogenesis and the mechanism of 
white spot formation. Diseases of aquatic organisms 39:1-11 

Wang Q, Nunan LM, Lightner DV (2000) Identification of genomic variations among 
geographic isolates of white spot syndrome virus using restriction analysis and 
southern blot hybridization. Diseases of aquatic organisms 43:175-181 

Witteveldt J, Cifuentes CC, Vlak JM, van Hulten MCW (2004a) Protection of Penaeus 
monodon against white spot syndrome virus by oral vaccination. J. virol. 78:2057-
2061 

Witteveldt J, Vlak JM, van Hulten MCW (2004b) Protection of Penaeus monodon 
against white spot syndrome virus using a WSSV subunit vaccine. Fish & shellfish 
immunology 16:571-579 

Wu JL, Nishioka T, Mori K, Nishizawa T, Muroga K (2002) A time-course study on the 
resistance of Penaeus japonicus induced by artificial infection with white spot 
syndrome virus. Fish & shellfish immunology 12:1-13 

Wyban JA, Swingle JS, Sweeney JN, Pruder GD (1992) Development and commercial 
performance of high health shrimp using specific pathogen free (SPF) broodstock 
Penaeus vannamei. In: Wyban JA (ed) Proceedings of the special session on shrimp 
farming. World aquaculture society, Baton Rouge, LA, p 254-260 

Yang F, He J, Lin X, Li Q, Pan D, Zhang X, Xu X (2001) Complete genome sequence 
of the shrimp white spot bacilliform virus. Journal of virology 75:11811-11820 

Yi G, Qian J, Wang Z, Qi Y (2003) A phage-displayed peptide can inhibit infection by 
white spot syndrome virus of shrimp. Journal of general virology 84:2545-2553 

Yusoff FM, Shariff M, Lee YK, Banerjee S (2001) Preliminary study on the use of 
Bacillus sp., Vibrio sp. and egg white to enhance growth, survival rate and 



Chapter 3.2 101

resistance of Penaeus monodon Fabricius to white spot syndrome virus. Asian-
Australasian journal of animal science 14:1477-1482 



 



 

 

 

 

CHAPTER 4 

____________________________________________________________ 

 

 

 

PATHOGENETIC FEATURES OF WHITE 
SPOT SYNDROME VIRUS (WSSV) IN 
JUVENILE SPF Litopenaeus vannamei 
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“Science sometimes requires at the very least the courage to question the conventional 

wisdom”. - Carl Sagan (Broca's Brain: Reflections on the Romance of Science, 1979) 
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4.1 Pathogenesis of white spot syndrome virus (WSSV) in 

juvenile specific pathogen-free Litopenaeus vannamei 
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ABSTRACT 

 

White spot syndrome virus (WSSV) causes disease and mortality in cultured and wild 

shrimp. A standardized WSSV oral inoculation procedure was used in specific 

pathogen-free (SPF) Litopenaeus vannamei (also called Penaeus vannamei) to 

determine the primary sites of replication (portal of entry), to analyze the viral spread 

and to propose the cause of death. Shrimp were inoculated orally with a low (101.5 

shrimp infectious doses 50% endpoint [SID50]) or a high (104 SID50) dose. Per dose, six 

shrimp were collected at 0, 6, 12, 18, 24, 36, 48 and 60 hours post inoculation (hpi). 

WSSV-infected cells were located in tissues by immunohistochemistry and in 

hemolymph by indirect immunofluorescence. Cell-free hemolymph was examined for 

WSSV DNA using one-step PCR. Tissues and cell-free hemolymph were first positive 

at 18 hpi (low dose) or at 12 hpi (high dose). With the two doses, primary replication 

was found in cells of the foregut and gills. The antennal gland was an additional primary 

replication site at the high dose. WSSV-infected cells were found in hemolymph 

starting from 36 hpi. At 60 hpi, the number of WSSV-infected cells found in the 

epithelial cells of foregut (36%), gills (98 cells mm-2), antennal gland (26 cells mm-2), 

hematopoietic tissue (78 cells mm-2), lymphoid organ (49 cells mm-2) and epithelial 

cells of integument (27%). Areas of necrosis were observed in infected tissues starting 

from 48 hpi (low dose) or 36 hpi (high dose). Since the foregut, gills, antennal gland 

and integument are essential for the maintenance of shrimp homeostasis, it is likely that 

WSSV infection leads to death due to their dysfunction. 
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INTRODUCTION 

 

White spot syndrome virus (WSSV) has caused serious economic losses to the shrimp 

farming industry in many countries in Asia, Latin America and the U.S. (Lu et al. 1997, 

Chou et al. 1998, Wang et al. 1999, Hill 2002, Chapman et al. 2004). This has prompted 

the search for control measures and their evaluation through experimental inoculation 

tests. The development of standardized inoculation tests has been described in previous 

publications (Escobedo-Bonilla et al. 2005, 2006) where we showed that such 

inoculation methods yield reproducible results. 

In order to help formulating new control methods against disease it is important to have 

a better understanding of WSSV pathogenesis. At present, aspects of WSSV 

pathogenesis are known mainly from studies of naturally infected Asian shrimp species. 

Controversial results have stirred the debate about the sites of WSSV entry, primary 

replication and the mode of spread to distant target organs. Early juvenile (0.45 g) 

Penaeus monodon inoculated per os first showed WSSV-infected cells at 16 hours post 

feeding in cells of the foregut, gills, integument and connective tissue of the 

hepatopancreas as determined by in situ hybridization (ISH) (Chang et al. 1996). 

However, in another study done with Marsupenaeus japonicus, (also called Penaeus 

japonicus) epithelial cells in the midgut were suggested as the portal of WSSV entry per 

os (Di Leonardo et al. 2005). Likewise, the debate on the role of circulating hemocytes 

in the systemic spread of WSSV is rejected by some results obtained by ISH (van de 

Braak et al. 2002), while it is supported by others using immunofluorescence and 

transmission electron microscopy (Wang et al. 2002). 

The main target organs of WSSV found in marine shrimp and many other crustaceans 

inoculated per os include the foregut, hindgut, gills, antennal gland, integument, gonads, 

muscle, nervous tissues, lymphoid organ, haematopoietic tissues, heart and hemocytes. 

All these organs are of ectodermal or mesodermal origin (Wongteerasuypaya et al. 

1995, Durand et al. 1996, Lo et al. 1997, Sahul-Hameed et al. 1998, Mohan et al. 1998). 

At present, no information is available on the pathogenesis of WSSV infection in the 

American shrimp Litopenaeus vannamei (also called Penaeus vannamei). 
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In the present study, two different doses of a Thai WSSV stock were orally inoculated 

to juvenile specific pathogen-free (SPF) L. vannamei using a standardized oral 

inoculation procedure previously described (Escobedo-Bonilla et al., 2006). A low 

inoculation dose resulted in a slower rate of disease progression than a high dose. The 

objectives were (1) to determine the sites of virus replication with emphasis on the 

portal of entry, (2) to analyze how WSSV spreads from the primary replication sites to 

other distant target organs and (3) to search for the cause of death. 

 

MATERIAL AND METHODS 

 

Shrimp and experimental conditions - Specific pathogen-free (SPF) Litopenaeus 

vannamei Kona-strain (Wyban et al. 1992) were used. Shrimp (14.6 ± 3.3 g mean body 

weight [MBW], n = 102) were acclimatized to a salinity of 15 g l-1 and 27 °C over four 

days at the facilities of the Laboratory of Aquaculture and Artemia Reference Center 

(ARC), Ghent University. Afterwards, they were transported to facilities of the 

Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, where 

experiments were performed under biosafety conditions. Two experiments were done. 

In a first experiment, shrimp (n = 54) were inoculated with a low dose and in a second 

experiment, shrimp (n = 48) were inoculated with a high dose. In each experiment, 

groups of six shrimp were kept in 50 l glass aquaria equipped with water heaters 

(Visitherm, aquarium systems, USA), mechanical filters (Eheim classic 2213, Germany) 

and continuous aeration. Aquaria were covered with glass and a plastic sheet to prevent 

virus dispersion by aerosol. 

Virus - A Thai WSSV stock was used. WSSV from naturally infected P. monodon was 

passaged once into crayfish and grown to high titers in SPF L. vannamei. The virus 

stock was titrated in vivo by intramuscular (im) and oral routes. The virus titer by oral 

route was 105.6 shrimp infectious doses 50% endpoint (SID50 ml-1) as determined by 

indirect immunofluorescence (IIF) and one-step polymerase chain-reaction (PCR) 

(Escobedo-Bonilla et al. 2005). A low (101.5 SID50) or a high (104.0 SID50) dose was 

made in phosphate-buffered saline (PBS) pH 7.4 in a volume of 50 µl. 

Oral inoculation procedure - The inoculation was performed by placing the shrimp 

with the ventral side up. A magnifying glass was used to locate the mouth. A long and 
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flexible pipette tip (Biozym no. 790 004, The Netherlands) was inserted beneath the 

labrum and anterior to the mandibles. The WSSV inoculum was delivered into the 

lumen of the foregut. 

Time course - For each experiment, six shrimp were collected at 0, 6, 12, 18, 24, 36, 48 

and 60 hours post inoculation (hpi). In addition, six control shrimp were inoculated only 

with PBS and collected at 72 hpi. 

Sampling 

Tissue processing - At each time point, the pereons of three shrimp were sectioned 

longitudinally, fixed with Davidson’s for 24 to 48 h and changed to 50% ethanol for at 

least 24 h before paraffin embedding (Bell & Lightner 1988, Lightner 1996). The 

pereons of the remaining shrimp were cross-sectioned at three different levels and 

processed for paraffin embedding: 

The first cross-section was made at the anterior part of the pereon. In this section, 

organs of the digestive system (foregut), excretory system (antennal gland), integument 

and internal organs (hematopoietic tissue) were located. The second cross-section 

comprised the central part of the pereon. In this part, organs of the digestive (foregut, 

anterior midgut cecum and hepatopancreas), respiratory (gills and branchial chamber), 

excretory (antennal gland) and nervous (ganglia and ventral cord) systems, integument 

and internal organs (lymphoid organ, gonads) were present. The third cross-section 

included the posterior part of the pereon. Here, organs of the digestive (posterior part of 

the hepatopancreas and its junction with the midgut trunk) and respiratory (gills, 

branchial chamber) systems, integument and internal organs (heart and gonads) were 

found. Organs of the digestive tract located in tail were not analyzed. 

Hemolymph collection - Hemolymph from every shrimp was collected at the different 

time points as follows: shrimp were anaesthetized by placing them on ice. Then, shrimp 

were injected with 200 µl of ice-cold Alsever’s (AS) buffer pH 7.0 (Rodríguez et al. 

1995) in the anterior part of the pereon using a 24 gauge needle (Terumo Europe NV, 

Belgium) and 400 µl of hemolymph mixed with AS buffer was obtained. An aliquot 

(100 µl) was diluted 1:10 in PBS and 70 µl of the diluted hemolymph was placed into a 

cytospin (Cytospin 3, Shandon USA) fixed to a glass slide. The slides were centrifuged 

at 300 g for 4 min and immediately fixed at -20 °C in 100% methanol for 15 min. The 

slides were air-dried and stored at -20 °C until indirect immunofluorescence (IIF) 
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analysis was performed. Another aliquot (100 µl) was spun down at 300 g for 5 min at 4 

°C to obtain cell-free hemolymph. This fraction was used to perform one-step PCR for 

the early detection of WSSV DNA. 

Analysis of WSSV infection - Immunohistochemistry (IHC) - Paraffin-embedded tissue 

sections were cut at 4 µm and placed onto Silane-coated slides (A3648, Sigma-Aldrich, 

USA). Sections were deparaffinized and rehydrated. The endogenous peroxidase was 

blocked by incubating the slides for 30 min at room temperature in a solution of 1% 

sodium azide and 0.02% hydrogen peroxidase in tris buffer pH 7.4. Sections were 

incubated for 1 hr at 37 °C with 2 mg ml-1 of monoclonal antibody 8B7 raised against 

WSSV envelope protein VP28 (Poulos et al. 2001). Sections were washed in Tris buffer 

(pH 7.6) and incubated for 1 hr at 37 °C with a 1:200 dilution of biotinylated sheep anti-

mouse IgG antibodies (RPN1001 Amersham Biosciences, UK). Afterwards they were 

washed, incubated for 30 min at room temperature (RT) with 1:200 dilution of 

streptavidine-biotinylated horseradish peroxidase complex (RPN1051 Amersham 

Biosciences, UK) and washed again. Color development was made with 0.01% of 3, 3’-

diaminobenzidine (DAB) (D8001 Sigma-Aldrich, Germany). Sections were counter-

stained with Gill’s hemaluin and washed in water, dehydrated and mounted. WSSV-

infected cells were counted using light microscopy (Leica DM RBE, Germany) at a 

magnification of 400 X. Two different methods were used to quantify WSSV-infected 

cells in shrimp tissues: (1) WSSV-infected epithelial cells from the foregut and 

integument were counted in five fields randomly selected and expressed as percentage 

of the total number of cells. (2) WSSV-infected cells located in tissues / organs such as 

antennal gland, hematopoietic tissue, lymphoid organ, heart, gonads, and connective 

tissues were counted in five fields selected at random and expressed as the number of 

WSSV-infected cells per square millimeter (cells mm-2). The quantitative method used 

depended on the tissues evaluated. For example, epithelial tissues are linearly arranged, 

so the proportion of WSSV-infected cells was determined as a percentage. In contrast, 

most of the internal organs are solid and composed of different cell types, so the 

proportion of WSSV-positive cells was determined as the number of infected cells per 

square millimeter. 

Indirect immunofluorescence (IIF) - Single- or double-stainings were made on cytospins 

with circulating hemocytes. Single stainings were done to detect WSSV-infected cells. 
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Here, the cytospins were washed for five min in PBS and incubated for 1 h at 37 °C 

with 2 mg ml-1 of monoclonal antibody 8B7 against VP28 (Poulos et al. 2001), washed 

twice for five min each in PBS and incubated for 1 h at 37 °C with 0.2 mg ml-1 of 

fluorescein isothiocyanate (FITC) -labeled goat anti mouse IgG antibodies (F-2761 

Molecular probes, The Netherlands) and finally washed twice for 5 min each in PBS. 

Nuclear counter-stain of hemocytes was performed by incubating the slides for 10 min 

at room temperature with 0.01 mg ml-1 solution of bisbenzimide H 33342 (H1399 

Molecular probes, The Netherlands). After two washings with PBS, cytospins were 

mounted. Double stainings were performed to characterize infected hemocytes. Here, a 

first incubation was made for 1 h at 37 °C (1:70 dilution in PBS or 0.02 mg ml-1 

solution) with hemocyte markers from P. monodon (Winotaphan et al. 2005) or with 

wheat germ agglutinin (WGA) labeled with FITC (L4895 Sigma) (Martin et al. 2003). 

Cytospins were washed and incubated with 0.02 mg ml-1 of goat anti-mouse IgG-FITC 

for 1 h at 37 °C. After washing, a second staining was done by incubating the slides 

with a 1:100 dilution of a polyclonal antiserum raised in rabbit against recombinant 

VP28 for 1 h at 37 °C. Slides were washed and incubated for 1 h at 37 °C with 0.04 mg 

ml-1 of goat anti-rabbit IgG-Texas Red (TR) (T6391, Molecular probes, The 

Netherlands). Afterwards, slides were washed and counter-stained with bisbenzimide H 

33342 before they were washed and mounted. The analysis was done using fluorescence 

microscopy (Leica DM RBE, Germany). Per shrimp, 500 hemocytes or hemocytes from 

five fields (400 X) randomly selected were counted and the percentage of WSSV-

infected cells was determined. Slides without infected cells in this restricted number of 

cells counted were screened entirely. 

One-step PCR - Cell-free hemolymph supernatant (1 µl) was directly used to perform a 

one-step PCR analysis as described elsewhere (Dhar et al. 2001). Each sample was 

added to a PCR tube containing 48 µl of a PCR master mix [1X PCR buffer 

(Eurogentec, Belgium), 1.5 mM MgCl2, 0.3 mM of each of the respective forward and 

reverse primers for WSSV or β-actin, 1.6 mM dNTPs (Eurogentec, Belgium), 1 U hot 

goldstar Taq polymerase (Eurogentec, Belgium) in a total reaction volume of 50 µl]. 

The primers F002 and R002 were used to amplify WSSV DNA, as well as the primers F 

and R3 which amplified β-actin from shrimp used as control. The expected amplicon for 

WSSV was 306 bp, while that for β-actin was 339 bp. A preheating step at 95 °C for 10 
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min was followed by 35 cycles of the following steps: denaturation (94 °C for 45 s), 

annealing (55 °C for 45 s) and extension (72 °C for 75 s). A final extension step (72 °C 

for 5 min) was made. PCR products were stored at 4°C. PCR products (12 µl), negative 

(ultrapure water) and positive (DNA from a 10-2 dilution of WSSV stock) controls, as 

well as DNA markers (smart ladder, Eurogentec, Belgium) were resolved on a 1.2% 

agarose gel in tris-acetate-EDTA (TAE) buffer. The gel was stained with ethidium 

bromide (0.02 mg mL-1) and DNA bands were visualized by UV transillumination. 

Histopathology - Deparaffinized tissue sections were stained with hematoxilin-eosin-

phloxine (Lightner 1996) and analyzed by light microscopy at a magnification of 400X. 

Cellular changes and tissue damage were determined. 

 

RESULTS 

 

WSSV pathogenesis with the low dose (101.5 SID50) - Virus replication - Tissues - The 

first WSSV-infected cells detected by IHC in tissues occurred at 18 hpi in one out of six 

shrimp. The primary sites of WSSV replication were epithelial cells in foregut (0.08%) 

(digestive system) and cells in gills (0.26 cells mm-2) (respiratory system) (Figures 1a & 

b, 2 and 4). At 24 hpi, five out of six shrimp were WSSV-positive by IHC. In the 

digestive system, WSSV infection was observed in the epithelium (2.7%) and 

connective tissues (3.0 cells mm-2) of foregut and connective tissues of organs in midgut 

(anterior midgut cecum 2.8 cells mm-2 and hepatopancreas <0.1 cells mm-2). Epithelial 

cells in midgut were refractory to WSSV (Figure 1a). Other organs infected with WSSV 

were gills (6.1 cells mm-2) and integument of the gill chamber (0.4%), antennal gland 

(2.0 cells mm-2) (excretory system) and internal organs associated to hemolymph 

circulation such as lymphoid organ (0.4 cells mm-2) and hematopoietic tissue (0.3 cells 

mm-2) (Figures 2, 3 and 4). In heart, muscle and nervous system, only a few cells of the 

connective tissue were WSSV-positive. From 36 hpi until the end of the experiment 

(60) hpi, 100% of the shrimp collected were WSSV-positive by IHC. At 60 hpi, the 

number of infected cells was 81.9 cells mm-2 in gills, 62.8 cells mm-2 in hematopoietic 

tissue, 34.1% in epithelial cells and connective tissue (28.8 cells mm-2) of foregut, 

lymphoid organ (28.7 cells mm-2), epithelial cells (27.7%) and connective tissue (14.1 

cells mm-2) of integument and antennal gland (15 cells mm-2) (Figures 1a, & b, 2, 3 and 
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4). Organs such as heart, gonads, muscle, neuronal ganglia and nerve cord had only a 

few WSSV-positive cells located in connective tissues. In gonads, no reproductive cells 

(eggs or sperm) were detected WSSV-positive by IHC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 - Proportion of WSSV-infected cells in a) epithelium and b) connective tissues 

of organs of the digestive system of Litopenaeus vannamei inoculated with a low or a 

high dose. Six shrimp were used per time and the error bars represent the standard error 
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Figure 2 - Proportion of WSSV-infected cells in gills and organs associated to the 

circulatory system (hematopoietic tissues and lymphoid organ) of shrimp inoculated 

with a low or a high dose. Six shrimp were used per time and the error bars represent 

the standard error 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 - Proportion of WSSV-infected cells in cuticular epithelium and subcuticular 

connective tissues of shrimp inoculated with a low or a high dose. Six shrimp were used 

per time and the error bars represent the standard error 
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Figure 4 - Progression of WSSV infection in tissues of the foregut, gills, antennal gland, 

hematopoietic tissues and lymphoid organ. Arrowheads indicate infected cells at 12 hpi. 

Bar = 50 µm 
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Hemolymph - At 18 hpi, WSSV DNA was first detected in cell-free hemolymph in four 

out of five shrimp (Figure 5) and at 24 hpi in five out of six shrimp. From 36 hpi until 

the end of the experiment (60 hpi), hemolymph from all shrimp collected was WSSV 

DNA positive (not shown). In contrast, the first WSSV-positive cells in hemolymph 

were detected at 36 hpi in three out of six shrimp; at 48 hpi in one out of six shrimp and 

at 60 hpi in two out of six shrimp, respectively (Figure 6). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 - Percentage of WSSV-infected cells in hemolymph of shrimp inoculated with 

a low or a high dose 

 

 

 

 

 

 

 

 

 

 

Figure 6 - WSSV DNA detection by one-step PCR in cell-free hemolymph of shrimp 

inoculated with a low or a high dose. (*) DNA samples not available, (M) DNA weight 

marker, (-) negative control, (+) Positive control 

 



WSSV pathogenesis in L. vannamei 118 

Histopathology - WSSV-infected cells with hypertrophied nuclei and amphophilic 

inclusions were first observed at 36 hpi. Affected tissues were located in the digestive 

(foregut, anterior midgut cecum and hepatopancreas), respiratory (gills) and excretory 

(antennal gland) systems, integument and internal organs (hematopoietic tissue and 

lymphoid organ). Although hydropic degeneration was occasionally observed in cells of 

foregut, antennal gland, hematopoietic tissue and lymphoid organ, the structure of these 

organs remained intact. At 48 hpi, a higher proportion of hypertrophied cells showed 

hydropic degeneration and some areas of focal necrosis were observed in foregut, gills, 

antennal gland, hematopoietic tissue and lymphoid organ. Occasionally, zones of 

erosion with hemocytic infiltration were observed in foregut and anterior midgut cecum 

at 60 hpi. The structure of organs such as heart, gonads, muscle, neuronal ganglia and 

nerve cord was intact throughout the duration of the experiment. 

WSSV pathogenesis with the high dose (104.0 SID50) - Virus replication - Tissues - 

The first WSSV-infected cells were detected at 12 hpi by IHC in four out of five 

shrimp. The primary sites of WSSV replication were located in epithelial cells of the 

foregut (0.3%) (digestive system), gills (0.4 cells mm-2) (respiratory system) and 

antennal gland (0.4 cells mm-2) (excretory system) (Figures 1a & b, 2 and 4). At 18 hpi, 

five out of five shrimp were WSSV-positive. In the digestive system, WSSV-positive 

cells were observed in epithelium (6.6%) and connective tissue (2.5 cells mm-2) of 

foregut. In the anterior midgut cecum and hepatopancreas, WSSV-infected cells were 

only found in the connective tissues (0.2 cells mm-2) (Figures 1a & b, 4). At this time 

point, cells in gills (18 cells mm-2), integument of the branchial chamber (1.6%), 

lymphoid organ (0.5 cells mm-2) and hematopoietic tissues (1.3 cells mm-2) were also 

WSSV-positive (Figures 2, 3 and 4). Organs such as heart (0.2 cells mm-2), gonads (0.2 

cells mm-2) and neuronal ganglia (0.9 cells mm-2) showed WSSV-infected cells only in 

connective tissues. Cardiac, neuronal and reproductive (eggs or sperm) cells were 

WSSV-negative. From 24 hpi until the end of the experiment (60 hpi) the mean number 

of WSSV-infected cells increased in tissues of the foregut, gills, antennal gland, 

integument and internal organs such as hematopoietic tissues and lymphoid organ 

(Figures 1a & b, 2, 3 and 4). At 60 hpi, the number of WSSV-infected cells in epithelial 

cells of the foregut was 36.2% and 23.1 cells mm-2 in the connective tissue, 27.5% in 

epithelial cells and connective tissue (10.1 cells mm-2) of integument and 26 cells mm-2 
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in antennal gland. The most affected organs were associated with hemolymph such as 

gills (98.5 cells mm-2), hematopoietic tissue (78 cells mm-2) and lymphoid organ (49.4 

cells mm-2). 

Hemolymph - At 12 hpi, WSSV DNA was found by one-step PCR in all of the shrimp 

in cell-free hemolymph (Figure 5). From this time point and until the end of the 

experiment, all collected shrimp were WSSV DNA-positive (not shown). In contrast, 

the first WSSV-infected cells in hemolymph were detected in three out of six shrimp at 

36 hpi by IIF and at 48 hpi in four out of six shrimp. At the end of the experiment (60 

hpi), three out of six shrimp showed WSSV-positive cells in hemolymph (Figure 6). 

In hemolymph, the marker HC55 showed 53.5% of the circulating hemocytes to be 

semigranular and granular. The marker HC47d detected 34% of hemocytes as 

semigranular and hyaline whereas 28.1% of the hemocytes were recognized as hyaline 

and semigranular with the monoclonal antibody HC201d. The lectin wheat-germ 

agglutinin (WGA) showed that 20.9% of the hemocytes were hyaline and semigranular 

while the marker HC200 found 11.7% of the circulating hemocytes to be hyaline and 

semigranular. A proportion of 8.5% of the hemocytes were semigranular and granular 

according to the marker HC249d and 5.3% of the circulating hemocytes were granular 

as they reacted with the monoclonal antibody HC114. None of these circulating 

hemocytes were found WSSV-positive by IIF using double staining. 

Histopathology - WSSV-infected cells with hypertrophied nuclei and amphophilic 

inclusions were first observed at 24 hpi. Affected organs were foregut, gills, antennal 

gland, integument and internal organs such as heart, hematopoietic tissue and lymphoid 

organ. In the digestive system, the anterior midgut cecum and hepatopancreas only 

showed these intranuclear inclusions in connective tissues. Cells from muscle, gonads 

and neuronal ganglia did not show such cellular lesions. At 36 and 48 hpi, the number 

of damaged cells increased in foregut, anterior midgut cecum, hepatopancreas, gills, 

antennal gland, integument and internal organs (hematopoietic tissue and lymphoid 

organ) and hydropic degeneration occurred in some cells. Small areas of erosion and 

focal necrosis appeared in foregut epithelium (digestive system) and hemocytic 

infiltration occurred in the subjacent connective tissues. Areas of the integument, 

antennal gland and hematopoietic tissue occasionally showed some loss of structure, 

whereas the gills and internal organs such as heart, lymphoid organ, gonads, neuronal 
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ganglia and nerve cord were still intact. At 60 hpi, cytoplasmic detachment and focal 

necrosis was observed in foregut epithelium. Some loss of structure was observed in 

gills, antennal gland, integument and internal organs (hematopoietic tissue and 

lymphoid organ). The structure of heart, gonads, muscle and tissues of the nervous 

system appeared undamaged. 

 

DISCUSSION 

 

This study shows that upon oral inoculation of WSSV, the portals of virus entry in L. 

vannamei are epithelial cells of the foregut, cells in the gills and only with a high dose, 

cells in the antennal gland as well. Foregut epithelium and cells in gills were also 

described as primary sites of WSSV replication in early juvenile P. monodon fed 

infected tissues per os (Chang et al. 1996). In contrast, another study done in M. 

japonicus inoculated per os, described the epithelial cells of the midgut trunk as the 

primary WSSV replication site (Di Leonardo et al. 2005). The size/age of shrimp and 

the method of inoculation used may explain these differences. 

After primary replication, WSSV spread to other target organs where the number of 

WSSV-infected cells increased causing cellular and tissue damage. A dose-dependent 

effect was observed in time at which primary WSSV replication was detected and 

proportion of shrimp found positive by PCR and IHC at early time points after 

inoculation. However, at the end of the experiments, the number of WSSV-infected 

cells in target organs was similar in shrimp inoculated with both doses. The comparison 

of numbers of WSSV-positive cells between the various tissues and organs should be 

made with caution because of the two different methods used for its quantification. 

Although foregut and gills are armed with a layer of cuticle, this could not prevent 

infection. The reason for this can be sought in the lack of an epicuticle layer, the 

absence of calcification and the presence of numerous pore canals (Compére et al. 2004, 

Taylor & Taylor 1992, Icely & Nott 1992, Pratoomchat et al. 2002). Further, it cannot 

be excluded that during the oral intubation, fissures were made in the cuticle of the 

foregut resulting in a free access of the virus to epithelial cells. The fact that cells in 

gills and/or antennal gland were also primary replication sites suggests that WSSV 

might have reached these organs by regurgitated or spilled inoculum. After primary 



Chapter 4.1 121

replication (12 or 18 hpi, depending on the dose), newly produced WSSV would have 

been released from epithelial cells and in one way or another, crossed the basal 

membrane to reach the underlying connective tissues and associated haemal sinuses. By 

hemolymph circulation the virus would have reached other organs so that WSSV-

infected cells could be observed in various organs throughout the body by 18 or 24 hpi 

(depending on the dose). 

It appeared that early in infection, circulating hemocytes were refractory to WSSV 

infection and that WSSV spread in a cell-free form via hemolymph circulation. The 

absence of infected circulating hemocytes early in infection was also noticed in other 

WSSV pathogenesis studies in P. monodon inoculated per os (van de Braak et al. 2002) 

or crayfish inoculated intramuscularly (Shi et al. 2000, 2005). We found a small 

proportion of shrimp with a few WSSV-infected cells in their hemolymph late during 

infection, but none of these cells were recognized by the hemocyte markers we used. 

Wang et al. (2002) also found WSSV-positive cells in the hemolymph of diseased 

Fenneropenaeus merguiensis by IIF and proposed that they were exclusively granular 

hemocytes. Since none of the hemocyte markers tested could bind to the infected cells 

we saw in L. vannamei, they may have belonged to an unrecognized hemocyte type or 

alternatively, may not have been hemocytes at all. Because of the late time post 

inoculation at which these WSSV-positive cells were first recorded, it is possible that 

they were cells detached from infected tissues or disrupted during hemolymph 

extraction. Overall, our results suggest that hemocytes do not play an important role in 

the systemic spread of WSSV, at least in L. vannamei. 

Under culturing conditions, many Asian and American shrimp species display white 

spots in the cuticle (T.W. Flegel, pers. comm.) but the exact mechanism of white spots 

formation is largely unknown. A WSSV-infection may induce dysfunction of the 

integument resulting in the accumulation of calcium salts within the cuticle (Wang et al. 

1999). In the present study it was shown that the integument is one of the most affected 

organs in L. vannamei although no white spots were observed. It is possible that under 

our experimental conditions the infection spreads and kills shrimp within 5 d post 

inoculation (dpi) (Escobedo-Bonilla et al. 2006), which is much faster than in culture 

conditions. Experiments done with the penaeid species Trachypenaeus curvirostris and 

Metapenaeus ensis fed with WSSV-infected tissues, showed appearance of white spots 



WSSV pathogenesis in L. vannamei 122 

as the disease progressed slowly (100% mortality at 18 dpi) (Chang et al. 1998; Wang et 

al. 1998). In the field, the progression of disease before the acute stage may also be slow 

and this may explain the appearance of white spots in the cuticle. 

Previous studies done in shrimp brooders (Lo et al. 1997) or in animals of undetermined 

age (Chang et al. 1998) showed by ISH analysis that connective tissues and muscle 

sheath around ovary or testes/spermatophore were susceptible to WSSV infection. In 

ovary of brooders, WSSV was detected in follicle cells and oogonia. A few developing 

oocytes were WSSV-positive. In testes, no reproductive cells were found infected with 

WSSV (Lo et al. 1997). In the present study, immature gonads of female or male 

juveniles showed WSSV-infected cells only in connective tissues. In a few males, 

epithelial cells of the vas deferens were also infected, but the reproductive cells from the 

two sexes were always WSSV-negative. These results suggest that the stage of gonad 

maturation may influence WSSV susceptibility of reproductive cells in the ovary. 

WSSV infection in gonads has been associated with poor spawning performance and 

low quality offspring (Lo et al. 1997) and it may also play a role in the vertical 

transmission of WSSV. 

Gills, foregut, integument and antennal gland were among the main WSSV target 

organs in L. vannamei. The epithelial cells of these organs perform important functions 

such as gas exchange, transport and excretion of CO2 and ammonia, the salt regulation 

and the control of the acid-base balance. These functions are critical to maintain shrimp 

homeostasis and all are involved in molting and growth rate (Ahearn et al. 1999, 

Wheatley 1999). Epithelial cells in these organs were increasingly damaged as WSSV 

infection progressed, which most probably led to dysfunction of these organs and death. 

Conversely, small numbers of WSSV-infected cells were found in the heart, neuronal 

ganglia, nerve cord and muscle and the structure of these organs remained intact 

throughout the experiments. 

In conclusion, a standardized oral inoculation procedure consistently showed foregut 

and gills as primary sites of WSSV replication. Systemic spread of WSSV occurred 

mainly in cell-free form. Although hemocytic infiltration was observed, this reaction did 

not control virus replication in affected cells/tissues. The gills, foregut, integument and 

antennal gland were main WSSV target organs. Because they perform critical functions 
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for the maintenance of shrimp homeostasis, WSSV infection may lead to dysfunction of 

these organs and to the death of infected shrimp. 
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“Science is magic that works”. -- Kurt Vonnegut (Cat's Cradle, 1963) 
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ABSTRACT 

 

The antiviral product cidofovir and a diet supplemented with Spirulina platensis were 

tested for their efficacy to prevent or delay/reduce mortality due to white spot syndrome 

virus (WSSV) infection in specific pathogen free (SPF) Litopenaeus vannamei. 

Cidofovir was injected intramuscularly at 200 mg/kg shrimp mean body weight (MBW) 

at the moment of WSSV challenge. Spirulina was supplemented in the shrimp diet at 

25% w/w and shrimp were fed for 4 days at 5% of the MBW per day before WSSV 

challenge. Shrimp were orally inoculated with a WSSV dose of 30 shrimp infectious 

doses 50% endpoint (SID50). Clinical signs and mortality were monitored for 120 hours 

post inoculation (hpi). WSSV infection was determined by indirect immunoflourescence 

(IIF) in dead and survivor shrimp at the end of the trial. In two experiments, mortality 

was delayed approximately for 24 hours by cidofovir treatment. Mortality of 100% was 

reached at 96-108 hpi in mock treated shrimp, whereas in shrimp treated with cidofovir, 

mortality of 80-90% was recorded at the end of experiment (120 hpi). Significant 

differences (p<0.05) in the median lethal time (LT50) of cidofovir-treated shrimp and 

mock-treated shrimp were found by probit analysis. A Spirulina supplemented diet 

delayed the onset of clinical signs for 12 hours but had no effect on the cumulative 

mortality at the end of the experiment. This study opens perspectives for the evaluation 

of antiviral drugs to treat shrimp infected with WSSV. 
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INTRODUCTION 

 

White spot syndrome (WSS) is one of the most damaging diseases in penaeid shrimp 

characterized by 100% mortality within 3-10 days (Lightner 1996). Since its first report 

in Taiwan in 1992, it has spread over both the eastern and western hemisphere, causing 

losses of billions of dollars every year to the shrimp farming industry. The viral agent, 

(WSSV) is a bacilliform, enveloped, double-stranded DNA virus measuring 270 x 120 

nm in size and with a tail-like extension at one end. Based on sequence information of 

the genome, structural proteins and phylogenetic analysis of viral DNA polymerase, 

WSSV was assigned to the new virus family Nimaviridae, genus Whispovirus (Van 

Hulten et al. 2001). 

Different approaches to control WSSV have been successful under experimental 

conditions. Some of these include (i) increasing or decreasing the optimal water 

temperature of shrimp (Vidal et al. 2001, Guan et al. 2003, Jiravanichpaisal et al. 2004), 

(ii) administering feed supplemented with immunostimulants such as peptidoglycans, 

lipopolysaccharides and β-1,3 glucans (Itami et al. 1998, Takahashi et al. 2000, Chang 

et al. 2003), (iii) ‘vaccinating’ shrimp by giving feed coated with formalin-inactivated 

WSSV or recombinant WSSV envelope proteins VP19 and VP28 (Namikoshi et al. 

2004, Witteveldt et al. 2004) and (iv) feeding shrimp with a diet containing fucoidan, a 

sulfated polysaccharide with antiviral activity in vitro (Chotigeat et al. 2004). 

Cidofovir [(s)-1-(3-hydroxy-2-phosphonylmethoxy propyl) cytosine] (HPMPC) is an 

acyclic nucleoside phosphonate. It is an antiviral drug that enters the cell by fluid phase 

endocytosis. After cellular uptake, two phosphorylation steps done by cellular kinases 

are necessary to reach its active metabolite stage (HPMPCpp). Phosphorylation occurs 

in both virus infected and uninfected cells. It does not require prior activation by virus 

encoded kinases. The antiviral activity of cidofovir is by blocking DNA synthesis 

through incorporation of HPMPCpp molecules in the viral DNA. Cidofovir has proven 

effective against a number of human DNA viruses such as polyomavirus, 

papillomavirus, adenovirus, herpesvirus and poxvirus (De Clercq 2003). 

Spirulina platensis is a marine blue-green alga. It contains calcium spirulan, a sulfated 

polysaccharide soluble in water. This polysaccharide consists of rhamnose, ribose, 

mannose, fructose, galactose, xylose, glucose, glucuronic acid, galacturonic acid, 
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sulfate, and calcium. It inhibits replication of enveloped viruses such as herpes simplex 

virus type 1 (HSV-1), human cytomegalovirus, measles virus, mumps virus, influenza A 

virus and human immunodeficiency virus type 1 (HIV-1) in vitro (Hayashi et al. 1996). 

The concentration of calcium spirulan that reduces viral replication by 50% was 

between 11.4 to 2600 µg ml-1 added to the medium immediately after virus inoculation. 

S. platensis was also found to improve the immune system by suppressing cancer 

development and viral infection in man (Hirahashi et al. 2002). 

In the present study, the effects of an intramuscular (im) injection of cidofovir or a diet 

supplemented with S. platensis were compared on the outcome of WSSV infection in 

shrimp. 

 

MATERIAL AND METHODS 

 

Virus - A Thai WSSV isolate from naturally-infected Penaeus monodon was passaged 

once into crayfish Pacifastacus leniusculus (Jiravanichpaisal et al. 2001). Gills from 

infected crayfish were collected and suspended (10-2) in L-15 medium. The gill 

suspension was diluted (10-1) in phosphate-buffered saline (PBS) pH 7.4 and 50 µl were 

injected intramuscularly (im) into specific pathogen-free (SPF) Litopenaeus vannamei 

to amplify the virus. Moribund and dead shrimp were collected 48 hours post 

inoculation (hpi). Carcasses without hepatopancreas, gut and exoskeleton were minced 

and diluted (10-1) in PBS. The suspension was centrifuged at 3000 x g and 13000 x g at 

4ºC for 20 min, respectively. The supernatant was collected and filtered (0.45 µm), 

aliquoted and stored at -70ºC. The total volume was 250 ml. Samples from tissues used 

to produce the viral stock were sent to Dr. James Brock (Moana Technologies LLC, 

Hawaii) for PCR screening of all known viral pathogens of shrimp. The results 

confirmed the only presence of WSSV DNA. The infectivity titer of the stock was 

determined in vivo through an oral titration using the formula of Reed & Muench 

(1938). The infectivity titer by oral route was 105.6 shrimp infectious doses 50% 

endpoint (SID50 ml-1) (Escobedo-Bonilla et al. 2005). 

Shrimp - Specific pathogen-free (SPF) L. vannamei Kona-strain were reared and 

acclimatized at the facilities of the Laboratory of Aquaculture and Artemia Reference 

Center (ARC), Ghent University. Shrimp used for testing cidofovir toxicity and its 
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antiviral properties, and those used for testing the effect of a diet supplemented with 

Spirulina had a mean body weight (MBW) of 2.7 ± 0.6g (n=36); 5.9 ± 1.6 g (n=78) and 

9.5 ± 1.9 g (n=20), respectively. 

Experimental conditions - Shrimp reared at the ARC were acclimatized to a salinity of 

15 g l-1 over a period of four days, and then transported to the facilities of the 

Laboratory of Virology, Faculty of Veterinary Medicine, Gent University, where the 

experiments were carried out under biosafety conditions. Depending on the experiment, 

six or ten animals were housed in 50 l aquaria equipped with aeration, heating 

(Visitherm, Aquarium systems, France) and mechanical filtration (Eheim, Germany). 

Salinity was maintained at 15 g l-1 using artificial seawater (Instant Ocean, Aquarium 

systems, France) prepared with distilled water. Shrimp were fed with six pellets daily 

equally divided in the morning and afternoon. Water quality (NH4
+ and NO2

-) was 

monitored daily using test kits (Aquamerck, Germany). The maximum value was 3 mg 

l-1 for NH4
+ and 0.05 mg l-1 for NO2

-. 

Cidofovir - Toxicity - Toxicity of cidofovir was tested first. Six cidofovir 

concentrations (0, 12.5, 25, 50, 100 and 200 mg kg-1 of shrimp body weight) were 

prepared with PBS in a volume of 50 µl. Each concentration of cidofovir was injected 

im to six shrimp between the 3rd and 4th pleonite. All animals were followed clinically 

for 120 hours. 

Efficacy - The highest concentration that showed no apparent signs of toxicity was used 

as treatment in the efficacy experiments. The effect of cidofovir on the outcome of 

WSSV infection was evaluated in two experiments. In the first experiment, twenty 

shrimp were treated with cidofovir and eighteen shrimp were mock treated with PBS. In 

the second experiment, twenty shrimp were used in each treatment. 

Spirulina - Shrimp were fed with a diet supplemented with Spirulina (n = 10) or a 

normal diet (n=10) at 5% MBW per day for four days before the WSSV challenge. 

BESTMIX computer software was used to formulate the diets, where nutrient settings 

were fixed and ingredient values were allowed to shift between determined ranges. Both 

diets had equal settings for protein, fat, starch, fiber, calcium, phosphorous, cholesterol, 

phospholipid, essential fatty acids and carotenoids. The formulation program selected 

fish meal and soymeal as the major ingredients to be replaced with S. platensis meal, 

due to their similar gross composition. The compositions of the diets are given in Table 
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1. 

 

Table 1.- Composition of a normal diet and a diet supplemented with S. platensis. 

Composition (% w/w) 

Ingredient Normal diet Diet supplemented with Spirulina platensis 

S. platensis meal  25.0 

Fish meal 40.0 22.0 

Wheat fluor 15.0 12.9 

Krill 13.0 12.3 

Fish oil 9.5 10.5 

Soy meal 5.2 0.0 

Squid meal 5.0 5.0 

Mineral mix 5.0 5.0 

Liquid binder 4.9 4.9 

Vitamin mix 2.4 2.4 

Total 100.0 100.0 

 

WSSV oral inoculation procedure - Shrimp were inoculated orally with a WSSV dose 

of 30 SID50 in 50 µl. After inoculation, shrimp were monitored for clinical signs twice 

daily for 5 days. Clinical signs included empty gut and reduced response to stimulus. 

Mortality was recorded twice daily. 

Evaluation of WSSV infection by indirect immunofluorescence (IIF) - The pereon 

of dead, moribund and surviving shrimp were dissected longitudinally, embedded in 2% 

methylcellulose and quickly frozen at -20°C. Tissues (5 µm) were cryo-sectioned 

longitudinally and immediately fixed in 100% methanol at -20ºC for 20 min. Sections 

were washed three times for 5 min. each in PBS and incubated with 2 mg ml-1 of the 

monoclonal antibody 8B7 (DiagXotics Inc. USA) directed against the WSSV envelope 

protein VP28 (Poulos et al. 2001) for 1 h at 37ºC. Then, sections were washed three 

times for 5 min. each in PBS and incubated with fluorescein isothiocyanate (FITC) -

labeled goat anti-mouse antibody (F-2761, Molecular Probes, The Netherlands) for 1 h 
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at 37ºC. Sections were finally washed in PBS, rinsed in deionised water, dried and 

mounted with  a solution of glycerin and 1, 4-diaza-bicyclo[2,2,2]-octan (DABCO) 

(ACROS organics, USA). Slides were analyzed by fluorescence microscopy. 

Statistical analysis - The cumulative mortality of the two cidofovir experiments was 

analysed by probit, which is a generalized linear model with a probit link function 

(Agresti 1996). When significant interactions exist between treatment and time, the 

probit model has the form: 

 

Probit (x) = α + β time + γ treatment + δ time* treatment 

Where:  

 α is the intercept 

 β is the rate of probability change per unit change of time (for a constant dose) 

 γ is the rate of probability difference for each treatment (for a constant time) 

 δ is the change in rate of probability per unit change of time depending on the 

treatment 

 

When no significant interactions are found, the probit model becomes: 

 

Probit (x) = α + β time + γ treatment 

 

The interactions between treatment and time, as well as each of the parameters were 

determined using the statistical software s-plus version 6.1 (Lucent technologies Inc., 

USA). Differences between treatment and control were determined by t-tests using the 

same statistical software. 

 

RESULTS 

 

Cidofovir - Toxicity - none of the cidofovir concentrations tested caused disease 

(evaluated by clinical signs) in shrimp. Hence, the maximum dose of 200 mg kg-1 body 

weight was used to further assess its antiviral effect during a WSSV infection. 

Efficacy - Mock-treated and cidofovir-treated shrimp started to show clinical signs 

(empty gut and reduced response to stimulus) at 24-36 hpi. Cidofovir treatment delayed 
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mortality with approximately 24 hours when compared to mock-treated shrimp. In the 

two experiments, 56% mortality was observed in the controls at 60 hpi, compared to 

only 15-30% mortality in cidofovir treated animals (Fig 1a & 1b). The 60% mortality 

was reached in cidofovir treated shrimp at 84 hpi. 100% mortality of mock treated 

shrimp was observed at 96-108 hpi, while cidofovir treated shrimp had 80-90% 

mortality at the end of the experiment (120 hpi). All dead shrimp in the two experiments 

were infected with WSSV as determined by IIF. Surviving shrimp in both cidofovir 

experiments were also infected and found positive by IIF except for one in the second 

cidofovir experiment. Probit analysis showed significant differences (p < 0.05) in the 

median lethal times (LT50) (Table 2) between shrimp treated with cidofovir and the 

mock-treated (Fig 2a & 2b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Cumulative mortality of L. vannamei challenged with 30 SID50 of WSSV and 

treated with cidofovir (200 mg kg-1 shrimp body weight in 50 µl) or mock-treated (50 µl 

of PBS) in (a) experiment 1 and (b) experiment 2 
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Table 2.- Median lethal times (LT50) and its comparison between cidofovir-treated and 

mock-treated shrimp. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Probability of mortality of cidofovir-treated and mock-treated shrimp in 

experiment 1 (a) and experiment 2 (b) 
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Spirulina - Shrimp fed the normal diet showed clinical signs starting at 24-36 hpi. 

Shrimp fed the S. platensis supplemented diet started to show disease at 36-48 hpi. Both 

groups reached 100% mortality at 84 hpi (Fig 3) and all dead shrimp were WSSV-

positive by IIF. 

 

 

 

 

 

 

 

 

 

Figure 3. Cumulative mortality of shrimp challenged with 30 SID50 of WSSV and fed a 

diet supplemented with Spirulina 
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reached at 84-108 hpi indicates that the challenge was quite severe. This may be due to 

the high virulence of the WSSV strain and/or the high susceptibility of the SPF shrimp. 

Previous studies have indicated possible differences in virulence of WSSV strains and 

different susceptibility between shrimp species (Lightner et al. 1998, Wang et al. 1999). 

In this study, the infectious doses of virus inoculated to shrimp could not be lowered 

because this would have resulted in an increased chance to get uninfected animals. 

Cidofovir is very effective in controlling infections in different mammalian DNA 

viruses (De Clercq 2003). At least three different explanations can be proposed to 

explain why cidofovir did not show a sufficient protection against a fatal WSSV 

infection in shrimp. First, the cellular uptake of cidofovir by shrimp cells may be lower 

than that of mammalian cells, making the compound less effective even at a very high 

dose (200 mg/kg body weight). This problem could be solved by using an esterified 

form of cidofovir, which undergoes a better cellular uptake. Second, it is possible that 

intracellular cidofovir is not sufficiently metabolized into its active form (HPMPCpp). 

Since the antiviral effect of cidofovir depends on the intracellular concentration of this 

metabolite (De Clercq 2003), a low metabolite concentration will not be able to stop 

viral DNA synthesis. Third, the lower effectiveness of cidofovir against WSSV 

infection compared to other DNA viruses may also be attributed to differences in 

affinity of HPMPCpp to the viral DNA polymerase. 

Cidofovir induced a significant delay in mortality in WSSV infected shrimp. However, 

most of the surviving shrimp were infected and would probably have died at a later 

time, thus minimizing the potential use of cidofovir as therapeutic agent in aquaculture. 

In the present study, dietary supplementation of S. platensis had no clear effect on the 

mortality of infected shrimp, which was different from the results obtained by Chotigeat 

et al. (2004) using another sulfated polysaccharide, fucoidan. However, due to 

differences in challenge procedures and WSSV strains used in each study, it is difficult 

to make firm conclusions on the comparison of the efficacy of both products. In the 

future, other products will be tested with this challenge procedure in order to end up 

with some promising products that could be used in the field. 
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ABSTRACT 

 

White spot syndrome virus (WSSV) is the most lethal pathogen of cultured shrimp. 

Previous studies done with undefined WSSV titers showed that high water temperature 

(32-33°C) reduced / delayed mortality of WSSV-infected shrimp. This study evaluated 

the effect of high water temperature on the clinical and virological outcome of a WSSV 

infection under standardized conditions. Groups of specific pathogen-free Litopenaeus 

vannamei were challenged either by intramuscular or oral routes with a low (30 SID50) 

or a high (10000 SID50) virus titer. Shrimp were kept (i) continuously at 27°C, (ii) 30°C 

or (iii) 33°C; (iv) maintained at 33°C before challenge and 27ºC afterwards, or (v) kept 

at 27°C before challenge and 33°C afterwards. Shrimp were maintained at the 

respective temperatures for 120 h before challenge and 120-144 h post challenge (hpc). 

Gross signs and mortality were monitored every 12 h until the end of the experiment. 

Dead and surviving shrimp were screened for WSSV infection (VP28-positive cells) by 

indirect immunofluorescence (IIF). Shrimp kept continuously at 27°C or 30°C, or 

switched to 27°C post challenge developed gross signs within 24 hpc, first mortalities at 

36-60 hpc and 100% cumulative mortality between 60 and 144 hpc depending on the 

virus titer. All dead shrimp were WSSV-positive. In contrast, shrimp kept at 33°C 

continuously or after WSSV challenge showed no signs of disease and low mortalities 

(0-30%) regardless of the virus titer. Dead and surviving shrimp were WSSV-negative. 

Further, early virus replication was studied in two groups of shrimp: one maintained at 

27°C before and after challenge and one switched from 33°C to 27°C after challenge 

with 10000 SID50. Immunohistochemistry (IHC) analysis showed that WSSV-positive 

cells were first displayed at 12 hpc in shrimp kept at 27°C and by 24 hpc the infection 

became systemic. In contrast, shrimp kept at 33°C did not display WSSV-positive cells 

at 12 or 24 hpc. This work confirms previous reports that high water temperature 

prevents the onset of disease and significantly reduces mortality of WSSV-inoculated 

shrimp regardless of the route of inoculation or virus titer used. This strategy may have 

practical applications to control WSSV in tropical shrimp farming countries. 
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INTRODUCTION 

 

White spot syndrome virus (WSSV) has caused disease and mortality resulting in huge 

production losses in shrimp aquaculture for more than a decade. This pathogen is a 

bacilliform, enveloped, double stranded (ds) DNA virus of the family Nimaviridae 

(Mayo, 2002). In WSSV-infected shrimp 100% mortality occurs within 3-10 days 

(Lightner, 1996). Signs of disease include white spots in the carapace, reddish 

discoloration, anorexia, lethargy and swelling of branchiostegites in infected Penaeus 

monodon (Lightner, 1996, Sahul-Hameed et al., 1998). Experimental infections in 

Litopenaeus vannamei showed as signs of disease a reduction in feeding and in response 

to stimulus (Escobedo-Bonilla et al., 2006). 

Disease is the end result of complex interactions between host, pathogen and 

environment (Lightner and Redman, 1998). In this context, water temperature is 

considered to be one of the most important environmental factors for shrimp since it 

influences metabolism, oxygen consumption, feeding rate, growth, molting, survival 

and tolerance to toxic metabolites (Wyban et al., 1995, Ponce-Palafox et al., 1997, 

Jackson and Wang, 1998, Hewitt and Duncan, 2001, Coman et al., 2002, Spanopoulos-

Hernández et al., 2005). Optimum temperature for growth and survival of shrimp varies 

according to the life stage and the species. For small L. vannamei (<5g), optimum 

temperature is higher than 30°C and for large shrimp (16 g) optimum temperature is 

around 27°C (Wyban et al., 1995). Highest survival of juvenile L. vannamei is obtained 

between 20°C and 30ºC (Ponce-Palafox et al., 1997). The upper lethal temperature limit 

for juvenile penaeid shrimp is 34°C - 36°C (Dall et al., 1990). 

The effect of temperature on the outcome of WSSV infections is already documented. 

In tropical countries such as Ecuador and Thailand, the prevalence of WSSV in grow-

out ponds and hatcheries is reduced in the warm season (Rodríguez et al., 2003, 

Withyachumnarnkul et al., 2003). Further, experimentally WSSV-infected shrimp kept 

at high (>32ºC) (L. vannamei or Marsupenaeus japonicus) or at low (12°C - 15ºC) (M. 

japonicus or crayfish Astacus astacus and/or Pacifastacus leniusculus) water 

temperatures showed reduced / delayed mortality (Vidal et al., 2001, Guan et al., 2003, 

Jiravanichpaisal et al., 2004). Temperature also influences the outcome of viral 

infections in other ectothermic animals such as fish and insects. Examples are infections 
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caused by a koi herpesvirus (KHV) (Gilad et al., 2003, Iida and Sano, 2005), a 

largemouth bass virus (LMBV) (Grant et al., 2003) and a nucleopolyhedrovirus (NPV) 

of the silkworm Bombyx mori (Kobayashi et al., 1981, Shikata et al., 1998). 

The mechanism by which high water temperature induces a reduction in mortality of 

WSSV-infected L. vannamei is not known. It has been suggested that hyperthermia may 

trigger a host defense response (e.g. apoptosis). Alternatively, it may affect WSSV 

replication (Vidal et al., 2001, Granja et al., 2003). Granja et al., (2006) showed a 

reduction of the WSSV DNA load in WSSV-infected shrimp at 32°C. In vitro studies 

demonstrated a progressive reduction of WSSV replication and amount of WSSV DNA 

in haematopoietic stem cells of P. leniusculus at 16°C and 4°C (Jiravanichpaisal et al., 

2006). 

The objective of this study was to evaluate the effect of high water temperature (33°C ± 

0.5) before and/or after challenge on the clinical and virological outcome of WSSV 

infection in specific pathogen-free L. vannamei using standardized WSSV inoculation 

procedures (intramuscularly and orally; high and low virus titers). 

 

MATERIAL AND METHODS 

 

Virus and infectivity titers - a Thai isolate of WSSV was kindly provided by P. 

Jiravanichpaisal and K. Söderhäll (Upsala University, Sweeden). This isolate was 

passaged into L. vannamei to produce high virus titers. The determination of the 

infectivity titers in vivo was done as follows: tenfold serial dilutions of the WSSV stock 

were made in phosphate buffered saline (PBS) pH 7.4. Per dilution, five shrimp were 

injected intramuscularly (50 µl). The proportion of infected shrimp at each dilution was 

determined by indirect immunofluorescence (IIF) and one-step PCR. The infectivity 

titer (shrimp infectious dose 50% endpoint [SID50 ml-1]) was calculated with the method 

of Reed and Muench. By intramuscular route the median infectivity titer was 106.6 SID50 

ml-1 and by oral route it was 105.6 SID50 ml-1 (Escobedo-Bonilla et al., 2005a). 

Shrimp - specific pathogen-free (SPF) shrimp L. vannamei Kona strain from (i) 

Molakai Sea Farms or (ii) Ceatech, both farms from Hawaii, were imported as 

postlarvae (PL) and reared at the facilities of the Laboratory of Aquaculture and 

Artemia Reference Center (ARC), Ghent University. Water temperature was 27°C - 
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28°C and salinity 35 - 37 g l-1. A total of 240 shrimp with a mean body weight (MBW) 

of 14.3 ± 3.4 g were used for intramuscular inoculation, 73 shrimp with a MBW of 6.6 

± 1.5 g for oral inoculation and 24 shrimp with a MBW of 14.3 ± 3.4 g were used for 

the time course study. 

Experimental conditions - shrimp were first acclimatized to water temperatures of 

27°C, 30°C or 33°C (see Table 1) at the facilities of the Laboratory of Aquaculture and 

Artemia Reference Center (ARC) and maintained at that temperature for 96 h. Water 

temperature was controlled with an aquarium heater (VTX 300 aquarium systems, 

France). Simultaneously, shrimp were acclimatized to a salinity of 15 g l-1. 

After acclimatization at the ARC, shrimp were transported to the facilities of the 

Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University to perform 

the experimental WSSV challenges. Immediately after arrival, shrimp were weighed 

and housed in 50 l aquaria with artificial seawater (salinity of 15 g l-1) and equipped 

with aeration, mechanical filtration and water heaters. Shrimp were kept at the same 

temperature as at the ARC for another 24 h. Immediately after WSSV challenge, the 

different groups were kept at the same temperature or switched to another water 

temperature as described in Table 1. 

In these experiments no control groups were used since we know from unpublished 

experiments that uninfected juvenile L. vannamei maintained at the different 

temperatures had low levels of mortality (data not shown). 

Experimental design 

Clinical and virological outcome - for the intramuscular route, groups of 9 to 11 shrimp 

were continuously kept at (i) 27°C or (ii) 33°C, or switched (iii) from 27°C before 

WSSV injection to 33°C afterwards, or (iv) from 33°C before injection to 27°C 

afterwards. For each temperature regime one group was injected with a low virus titer 

(30 SID50) (SID50 = shrimp infectious dose with 50% endpoint) and a second with a 

high virus titer (10000 SID50). Shrimp were monitored twice daily for signs of disease 

and mortality. Dead and surviving shrimp were processed for IIF analysis. These 

experiments were run for 120 to 144 hpc and were repeated three times. 

For the oral route, groups of 13 to 28 shrimp were continuously maintained at (i) 27°C; 

(ii) 30°C or (iii) 33°C. A group of 16 shrimp was kept at 27°C before challenge and 

switched to 33°C after challenge. All these shrimp were orally challenged with a low 
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virus titer (30 SID50). Shrimp were monitored twice daily for signs of disease and 

mortality. Dead and surviving shrimp were processed for detection of WSSV-infected 

cells by indirect immunofluorescence (IIF) analysis. These experiments lasted 120 

hours post challenge (hpc) and were done only once. 

Time course of viral replication - four groups of six shrimp were kept at 27°C before 

inoculation for 120 h. These shrimp were orally inoculated with 10000 SID50 in a 

volume of 50 µl. After WSSV challenge, the water temperature of two groups was 

raised to 33°C while the other two groups were maintained at 27°C. Per temperature 

regime, one group was collected at 12 and the other at 24 hpc. Tissues from the pereon 

were fixed in Davidson’s for 48 h and changed to 50% ethanol for paraffin embedding. 

Tissue sections (4 µm) were stained by the immunohistochemistry (IHC) technique 

described by Escobedo-Bonilla et al., (2005b). Briefly, tissue sections were 

deparaffinized, rehydrated, washed in tris buffer pH 7.4 and the endogenous peroxidase 

was blocked. Sections were incubated with the monoclonal antibody 8B7 (DiagXotics 

Inc. USA) directed against the WSSV envelope protein VP28 (Poulos et al., 2001). 

Afterwards, sections were incubated with biotinylated sheep anti-mouse IgG and 

streptavidine-biotinylated horseradish peroxidase complex. Development was done with 

3,3 diaminobenzidine (DAB) and counter-stained with Gill’s hemaluin. Sections were 

washed, dehydrated, mounted and analyzed by light microscopy. WSSV-positive cells 

showed a brown precipitate. 

Evaluation of WSSV infection by indirect immunofluorescence (IIF) - the pereon of 

dead and surviving shrimp was dissected longitudinally, embedded in 2% 

methylcellulose and quickly frozen at -20°C. Cryosections (5 µm) were made and 

immediately fixed in 100% methanol at -20ºC for 20 min. Sections were washed three 

times for 5 min. each in PBS and incubated with 2 mg ml-1 of the monoclonal antibody 

8B7 directed against VP28 for 1 h at 37ºC. Then, sections were washed three times for 5 

min. each in PBS and incubated with fluorescein isothiocyanate (FITC) -labeled goat 

anti-mouse IgG (F-2761, Molecular Probes, The Netherlands) for 1 h at 37ºC. Sections 

were finally washed in PBS, rinsed in deionised water, dried and mounted with a 

solution of glycerin and 1, 4-diaza-bicyclo[2,2,2]-octan (DABCO) (ACROS organics, 

USA). Slides were analyzed by fluorescence microscopy. 
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Statistical analysis - the cumulative mortality of all groups was submitted to probit 

analyses (Agresti 1996). When significant interactions exist between temperature and 

time, the probit model has the form: 

 

Probit (x) = α + β time + γ temperature + δ time* temperature 

 

Where:  

 α is the intercept 

 β is the rate of probability change per unit change of time (for a constant  

 temperature) 

 γ is the rate of probability difference for each temperature (for a constant time) 

 δ is the change in rate of probability per unit change of time depending on the 

 temperature 

 

The parameters of this model were determined using the statistical software S-plus 

version 6.1 (Lucent technologies Inc., USA). Differences between treatment and control 

were determined by t-tests using the same statistical software. 

 

RESULTS 

 

Intramuscular inoculation - Low virus titer - shrimp maintained continuously at 27°C 

or switched from 33°C to 27°C after WSSV challenge started to show signs of disease 

at 24 hpc. Mortality was first recorded between 36 - 60 hpc (27°C/27°C) and 36 - 48 

hpc (33°C/27°C) and cumulative mortality reached 100% at 84 - 144 hpc (27°C/27°C) 

and 72-96 hpc (33°C/27°C). All dead shrimp were WSSV-positive by IIF assay. 

Significant differences (p<0.05) in the median lethal times (LT50) between these groups 

were found (Table 1 and Fig. 1a, b). In contrast, shrimp continuously kept at 33°C or 

maintained at 33°C only after challenge did not develop signs of disease and showed 

cumulative mortality between 0% and 30%. All dead shrimp were WSSV negative by 

IIF assay. Dead shrimp were found to have molted recently. Body parts such as 

eyestalks, pleopods, uropods and pereon were eaten by the surviving shrimp. 

High virus titer - shrimp kept continuously at 27°C or switched from 33°C to 27°C after 
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challenge first showed signs of disease between 12 and 24 hpc and almost all shrimp 

stopped eating at 24 hpc. Mortality started at 36 hpc and 100% cumulative mortality 

was reached at 60 hpc in both groups. All dead shrimp were WSSV-positive by IIF 

assay. Significant differences (p<0.05) in the LT50 were found between these groups 

(Table 1 and Fig. 2a, b). In contrast, shrimp continuously exposed to 33°C or switched 

to 33°C after challenge did not show signs of disease and had cumulative mortality 

between 0% and 20%. All dead and surviving shrimp were WSSV-negative by IIF assay 

and the dead shrimp found in these groups had molted recently. 

 

 

Table 1. Median lethal times (LT50) of WSSV-inoculated shrimp under different 

temperature regimes. Oral and intramuscular (IM) inoculations were used as well as a 

low (30 SID50) and a high (10000 SID50) virus titer. 

 

‡temperature before inoculation/temperature after inoculation 

*Differences in LT50 are significant (P = 0.05) 

 

 

Temperature 

regime‡ 

Inoculation 

route 

Virus 

titer 
LT50 α β γ δ 

LT50 

comparison* 

27°C / 27°C Oral Low 50.53a 2.9483 -0.0583 ---- ----  

30°C / 30°C Oral Low 48.93b 2.9483 -0.0583 -0.3570 0.00538  

27°C / 33°C Oral Low ---- 2.9483 -0.0583 1.1414 0.00583 b = a < d 

33°C / 33°C Oral Low 394.9d 2.9483 -0.0583 -0.5994 0.05239  

27°C / 27°C IM Low 73.29e 2.8579 -0.0389 ---- ----  

33°C / 27°C IM Low 57.05f 2.8579 -0.0389 1.4556 -0.0366  

27°C / 33°C IM Low 257.8g 2.8579 -0.0389 -0.4526 0.02966 f < e < g = h 

33°C / 33°C IM Low 374.6h 2.8579 -0.0389 -0.1683 0.0318  

27°C / 27°C IM High 45.2i 5.1882 -0.1148 ---- ----  

33°C / 27°C IM High 42.0j 5.1882 -0.1148 0.1690 -0.0128  

27°C / 33°C IM High 260.1k 5.1882 -0.1148 -2.766 0.1054 j = i < l = k 

33°C / 33°C IM High 188.7l 5.1882 -0.1148 -1.5808 0.0956  
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Figure 1. (a) Cumulative mortality (mean ± standard deviation [SD]) of SPF L. 

vannamei intramuscularly inoculated with 30 SID50. Shrimp were continuously kept at 

27°C or 33°C, or switched from 33°C before inoculation to 27°C afterwards, or changed 

from 27°C before inoculation to 33°C afterwards. (b) Probability of mortality (probit) 

for the different temperature treatments 

 

 

Oral inoculation - Shrimp kept continuously at 27°C and 30°C first showed signs of 

disease at 24 hpc. First mortality occurred at 36 hpc and cumulative mortality in these 

groups reached 100% at 96 and 108 hpc, respectively (Fig. 3a, b). All dead shrimp were 

positive by IIF (Fig. 4a, b). Probit analysis showed significant differences (p<0.05) in 

the median lethal times (LT50) of these two temperatures (Table 1). Shrimp 

continuously maintained at 33°C did not show signs of disease; mortality in this group 

was 0% - 10% and all surviving shrimp were WSSV-negative. 
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Figure 2. (a) Cumulative mortality (mean ± SD) of SPF L. vannamei intramuscularly 

inoculated with 10000 SID50 of WSSV. Shrimp were continuously kept at 27°C or 

33°C, or kept at 33°C before inoculation and switched to 27°C after inoculation, or kept 

at 27°C before inoculation and switched to 33°C after inoculation. (b) Probability of 

mortality (probit) for the different temperature treatments 
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Figure 3. (a) Cumulative mortality of SPF L. vannamei continuously kept at 27°C, 

30°C, 33°C or maintained at 27°C before challenge and switched to 33°C after WSSV 

oral inoculation. Shrimp were challenged with 30 SID50. (b) Probability of mortality 

(probit) for the different temperature treatments 

 

 

 

 

 

 

 

 

 

Figure 4. (a) WSSV-positive and (b) WSSV-negative cells in gills of SPF L. vannamei 

as determined by indirect immunofluorescence (IIF). Magnification 200X, bar = 100 

µm. 
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Time course - shrimp maintained at 27°C first displayed WSSV-positive cells at 12 hpc 

in epithelial cells of foregut, cells in gills and antennal gland. At 24 hpc, WSSV-positive 

cells were also found in integument, hematopoietic tissue and lymphoid organ. In 

contrast, shrimp maintained at 33°C after challenge did not display WSSV-positive cells 

at 12 or 24 hpc (Fig. 5a, b). 

 

 

 

 

 

 

 

 

Figure 5. (a) WSSV-positive and (b) WSSV-negative cells in gills of SPF L. vannamei 

as determined by immunohistochemistry (IHC). Magnification 400X, bar = 50 µm 

 

 

DISCUSSION 

 

The present findings agree with previous work where mortality was reduced in WSSV-

infected L. vannamei maintained at 32°C (Vidal et al., 2001, Granja et al., 2003, 2006). 

Other studies done in vivo with WSSV-infected shrimp M. japonicus or crayfish P. 

leniusculus showed that maintaining these species at water temperature below 16°C was 

also effective in reducing mortality (Guan et al., 2003, Jiravanichpaisal et al., 2004). 

Temperatures above 16°C and below 32°C allow WSSV replication in susceptible hosts 

such as shrimp, crabs and crayfish (Corbel et al., 2001, Guan et al., 2003, 

Jiravanichpaisal et al., 2004, 2006 and this study). This agrees with the normal 

temperature range in tropical areas where penaeid shrimp naturally occur and are 

cultured (Glude, 1978, Dall et al., 1990). In some tropical zones, water temperature may 

reach 32°C or more for several months (Wahab et al., 2003, Burford et al., 2004). This 

opens the possibility to apply high water temperature (≥ 32°C) to control mortality due 

to WSSV infection in several shrimp farming countries. Since outbreaks of WSSV have 

a b 
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been reported to occur in general one or two months after pond stocking (Otta et al., 

1999), it may be proposed to start a culture cycle about one month before the season of 

high water temperature begins to minimize the risk of a WSSV outbreak. Another 

advantage of culturing shrimp at high temperature may be an increase in the growth rate 

and as a consequence a shorter time to complete the culture cycle. A disadvantage of 

high temperature is the negative influence on other environmental variables such as 

levels of dissolved oxygen, evaporation rate, salinity and concentration of toxic 

metabolites such as ammonia or nitrites, which are all very critical for the normal 

shrimp metabolism (Brock and Main, 1994, LeMoullac et al., 1998, van Wyk and 

Scarpa, 1999, Lemaire et al., 2002). 

This study clearly demonstrated that high water temperature completely inhibited the 

expression of the envelope protein VP28 in vivo. This result suggests a block of WSSV 

replication at an early stage and this finding may help to unravel the protective 

mechanism of high water temperature against WSSV. Previous studies done with 

temperature-sensitive (ts) mutant baculoviruses showed that mutations in the protein 

kinase-1 (Fan et al., 2006) or in a putative RNA polymerase (Shikata et al., 1998) 

resulted in the lack of expression of late viral proteins such as envelope proteins at high 

water temperature. These studies indicate that high temperature may affect enzyme 

activity during different phases of early viral replication of ds DNA viruses. With 

WSSV, it is not known if enzymes are impaired by high water temperature. This should 

be studied by biochemical assays. 

In summary, the drastic reduction of infected cells and mortality in WSSV-challenged 

shrimp when maintained at high water temperature was confirmed by using 

standardized WSSV inoculation models. This effect was always consistent, regardless 

of the route of inoculation or viral titers used. Keeping shrimp at 33°C after WSSV 

challenge was sufficient to block viral replication at an early stage, resulting in the 

inhibition of expression of the structural protein VP28. High water temperature may be 

applied in nursery and grow-out facilities in tropical shrimp farming countries to control 

WSSV. 
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In the present thesis, infectivity titers of a WSSV stock were determined in vivo in 

specific pathogen-free (SPF) Litopenaeus vannamei by intramuscular and oral routes. 

These titers were the basis to define the infectious doses that induced infection and 

mortality to the complete population of inoculated shrimp. Doses were subsequently 

used in standardized inoculation models to evaluate the efficacy of products with a 

potential to control WSSV infection. The oral inoculation procedure resembled a natural 

way of WSSV infection and was therefore used to study aspects of WSSV pathogenesis, 

particularly the portals of entry in shrimp and the spread to other target organs. 

Continuous cell lines derived from vertebrates or insects are routinely used to determine 

virus titers in vitro (Plumb & Zilberg 1999; Grasela et al. 2000). The lack of a 

continuous shrimp cell line makes it difficult to establish such a titer for shrimp viral 

pathogens. The only way to adequately determine virus titers was to perform in vivo 

titrations with SPF shrimp. The present thesis is the first study that determined the 

infectivity titer (shrimp infectious dose 50% endpoint [SID50 ml-1]) of a WSSV stock 

and the relationship between infectivity and mortality upon intramuscular or oral 

inoculations of WSSV. By any of these routes, the relationship between infection and 

mortality was 1:1 at 120 hours post inoculation (hpi), indicating that every shrimp that 

became infected actually died. 

We showed that the titers of infection and mortality were statistically similar in shrimp 

at the stages of early juvenile (≤ 60 days-old) to subadult (≥ 135 days-old). Previous 

studies have indicated differences in susceptibility between developmental stages. In 

general, juvenile, subadult and adult stages are more susceptible to WSSV than the 

larval or postlarval ones (Lightner et al. 1998; Yoganandhan et al. 2003; Pérez et al. 

2005). However, some species showed a different pattern in susceptibility. Postlarvae 

(PL19) of the shrimp Farfantepenaeus aztecus were very susceptible to WSSV when 

fed with infected tissues (cumulative mortality ≥ 75% at 9 days post inoculation [dpi]), 

whereas the juvenile stage showed a lower mortality (27% after 10 dpi). 

The fact that shrimp were inoculated by feeding with WSSV-infected tissues does not 

ensure that all the animals took up an equal dose of infectious virus, especially when the 

amount of infectious tissues consumed by the shrimp varies even within a group of 

shrimp of the same age. In order to objectively establish differences in susceptibility to 

WSSV, it is necessary to challenge shrimp at different developmental stages or different 
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shrimp species with a standardized inoculation protocol. Because it is impossible to 

intubate postlarvae for the administration of a certain virus titer due to their minute size, 

the oral inoculation protocol cannot be used to make a comparison in earlier 

developmental stages. The intramuscular model is more suitable but the disadvantage 

with this technique is that protection by the different barriers at the primary replication 

site cannot be tested. 

The oral inoculation model described in this thesis was developed to mimic a natural 

pathway of WSSV infection in vivo under natural and culture conditions. The oral 

inoculation differed from the intramuscular model in two important aspects: (1) it 

required about 1 log10 more infectious virus than the intramuscular route to reach the 

50% endpoint of infection (SID50 ml-1) and (2) it delayed the 100% mortality with one 

day compared to the intramuscular route. These characteristics indicated that the oral 

route was less aggressive than the intramuscular route, probably due to the fact that the 

virus was delivered in the lumen of the digestive tract and that it had to overcome some 

physical and chemical hindrances. In the foregut of shrimp, the epithelial cells are lined 

with cuticle (Icely & Nott 1992). This component of the digestive tract probably acts as 

a barrier and effectively hinders virus entry. The presence of digestive enzymes in the 

lumen of the foregut (Icely & Nott 1992) may inactivate viral particles. 

With the oral inoculation a slower mortality rate (LT50) was observed compared to the 

intramuscular route. This result is similar to that of previous studies in which Asian 

shrimp species fed with WSSV-infected tissues died two or three days later than shrimp 

challenged by injection (Sahul-Hameed et al. 1998; Rajendran et al. 1999; Rajan et al. 

2000). Other decapod species such as Acetes sp. and Palaemon sp. fed with WSSV-

infected tissues showed a significant reduction (75% to 100%) in mortality when fed 

WSSV-infected tissues compared to a challenge by injection (Suppamattaya et al. 1998; 

Di Leonardo et al. 2005). 

The oral inoculation model described in this thesis resembles a natural way of WSSV 

infection. As a consequence, we used the oral route to study different aspects of WSSV 

pathogenesis and to evaluate the effect of antiviral products to control WSSV infection. 

After oral inoculation, WSSV was able to reach the epithelial cells in the foregut but 

also simultaneously infected cells in the gills. White spot syndrome virus may have 

reached the gills by one of the following ways: (1) through inoculum spilled into the gill 
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chamber or (2) by crossing the epithelial layer of the foregut shortly after inoculation. 

The first hypothesis was supported by the fact that during inoculation, some of the 

inoculum was spilled over the shrimp which may have reached the branchial chamber. 

The second possibility is based on the assumption that the oral inoculation technique 

may have caused fissures to the cuticle and/or epithelium of the foregut facilitating 

WSSV entry into the shrimp. To rule out the second hypothesis, an alternative 

standardized inoculation model that resembles a natural infection but that will not 

damage the cuticle may be used. Such an alternative model is immersion. This 

standardized inoculation procedure could be very useful to determine the susceptibility 

of shrimp at different stages of development to WSSV infection. It also can be used to 

confirm the primary sites of replication found by oral inoculation. 

For the pathogenesis study, a standardized oral inoculation model was chosen because it 

allowed us to determine the sites of primary WSSV replication when the virus was 

delivered only through this route. With the immersion route it is possible that WSSV 

may enter through any of the body surfaces including the integument or gills, making it 

difficult to determine the main portal of entry. 

Foregut and gills were previously also found as primary replication sites for WSSV in 

early juvenile Penaeus monodon fed with infected tissues (Chang et al. 1996) and in 

other naturally infected decapods (Lo et al. 1996; Chang et al. 1998; Chou et al. 1998). 

However, the latter findings together with our observations are in contrast with results 

of another study where upon ingestion of WSSV-infected tissues, the epithelial cells in 

foregut of juvenile Marsupenaeus japonicus were not infected. Instead, a transient 

replication of WSSV was observed in epithelial cells of the intestine (Di Leonardo et al. 

2005). 

In the present thesis, WSSV DNA was found in hemolymph at the same time when 

WSSV-positive cells were found in the primary replication sites (12 or 18 hpi 

depending on the dose used) whereas WSSV-positive hemocytes in hemolymph were 

found only at a later time during infection (36 hpi onwards). These results indicate that 

WSSV reached other target organs through hemolymph circulation in cell-free form and 

agree with previous studies done in shrimp and crayfish experimentally infected with 

WSSV (Shi et al. 2000, 2005, van de Braak et al. 2002). The results of a study done 

with naturally-infected Fenneropenaeus merguiensis suggested that circulating 
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hemocytes may be involved in the systemic infection of shrimp by WSSV (Wang et al. 

2002). However, this work demonstrated the presence of WSSV-infected hemocytes in 

naturally-infected shrimp which already displayed signs of disease. Because we showed 

in this thesis that clinical signs appear from 24-36 hpi onwards, it is very likely that the 

infection was already at an advanced stage. It is not clear why in the present thesis it 

took 36 hpi before infected cells were detected in the hemolymph and more importantly, 

what the origin of these cells was. It is possible that they are cells originating from 

different internal organs in which the replication started from 12 or 18 hpi (depending 

on the dose used) after which infected cells got loose and as a result, entered the 

hemolymph circulation. Another possibility is the infection of hematopoietic tissues; the 

organ where all hemocytes are produced. Infection in this organ started at 18 to 24 hpi 

(depending on the dose used) and may have released WSSV-positive hemocytes in the 

general hemolymph circulation starting from 36 hpi onwards. 

According to our results, we currently view the WSSV pathogenesis in L. vannamei as 

follows: shortly after primary replication at the sites of virus entry (epithelial cells in 

foregut and gills), WSSV crosses the basal lamina and reaches the underlying 

connective tissues and/or its associated haemal sinuses. Here, WSSV is transported in a 

cell-free form by hemolymph circulation to other target organs. The most susceptible 

target organs are either in close contact with hemolymph circulation or in direct contact 

with the exterior such as gills, foregut, integument and antennal gland. 

Although no shrimp died at the time when the pathogenesis study was stopped, it was 

proposed that death of WSSV-infected shrimp probably occurs by the multiple 

dysfunction of organs such as gills, foregut, integument and antennal gland. These 

organs were highly affected by WSSV infection in L. vannamei. Such target organs are 

critical for the maintenance of the homeostasis of the animal since they perform gas 

exchange, transport and excretion of CO2 and ammonia, the salt regulation and the 

control of the acid-base balance (Ahearn et al. 1999; Wheatley 1999). 

Since WSSV is a very important pathogen and has profound economical consequences 

for aquaculture in tropical regions, we also assessed possible treatment options. In this 

thesis, we showed that the antiviral drug cidofovir significantly delayed mortality for a 

duration of 24 h compared to mock-treated shrimp, but it did not fully control infection. 

Cidofovir is successfully used to control infections caused by other double-stranded 
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DNA viruses such as herpesviruses, poxviruses, adenoviruses, polyomaviruses and 

papillomaviruses in both humans and other mammals (De Clerq 2002). It is believed 

that an antiviral product does not completely inhibit a viral infection in mammals, but 

only helps to control the infection until the specific immunity consisting of a humoral 

and a cellular component is activated. 

In shrimp, the following possibilities can be formulated to explain the failure of 

cidofovir to control WSSV infection: (1) despite the high dose of cidofovir administered 

to the shrimp just after inoculation, only a small amount was taken up and/or stored by 

the shrimp cells. This could be improved by administering the drug well in advance to 

WSSV challenge or alternatively, by using the esterified form. (2) Shrimp cells may not 

efficiently convert cidofovir into its antiviral form. (3) The lack of a specific immunity 

(Söderhäll & Cerenius 1998) does not allow the shrimp to finally control viral 

replication. A repeated administration of the drug would probably only prolong the 

survival as long as the product is present. It is possible that once WSSV starts 

replicating in shrimp cells, no shrimp defense response is able to delay or stop the 

infection. These results minimize the potential use of cidofovir as a therapeutic agent 

against WSSV. 

The use of drugs to treat infections in aquaculture systems in general is under debate. It 

may pose environmental risks such as pollution and toxic effects to other aquatic 

species and it also may accelerate the appearance of drug-resistant pathogens. It is 

necessary to search for new antiviral products which can be used to completely block 

viral infections in shrimp and which are not harming the ecosystem. Furthermore, these 

products should be suitable for oral delivery for a potential use in the field. 

Previous studies have used bacterial or algal cell wall components (β-1,3 glucans, 

lipopolysaccharides [LPS], peptidoglycans [PG] or Fucoidan) to stimulate the defense 

response in shrimp and even to show an antiviral effect against WSSV (Itami et al. 

1998; Takahashi et al. 2000; Chang et al. 2003; Chotigeat et al. 2004). In the present 

thesis we performed trials to determine whether the alga Spirulina platensis would be a 

suitable antiviral agent. The antiviral activity displayed in vitro by the blue green alga S. 

platensis (Lee et al. 2003) had no effect against a WSSV infection in vivo. It is possible 

that the oral inoculation procedure described in this thesis delivered a much higher virus 

titer to the challenged animals compared to the experimental challenge tests used from 
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previous studies. In these, the infectivity titers of the virus stock used to challenge 

shrimp were undefined. Furthermore, such challenge procedures often used different 

routes of inoculation such as feeding shrimp with infected tissues or immersing shrimp 

in water containing a certain volume of virus stock. These non-standardized conditions 

did not allow the estimation of how much infectious virus was taken up per individual 

animal. Influences of food uptake by the shrimp in one way or another may have 

important effects on infection and mortality. 

Another variable which influenced the pathogenicity of WSSV was water temperature. 

This thesis confirmed that high water temperature (33°C) was effective to reduce 

mortality (70 to 100%) of shrimp inoculated with low or high infectious doses by 

intramuscular or oral routes. Furthermore, we showed that the protective effect not only 

occurred in shrimp maintained continuously at 33°C but also in those switched from 27° 

to 33°C immediately after WSSV inoculation. These results agree with previous studies 

where high water temperature effectively reduced the severity of clinical signs and 

mortality in WSSV-infected shrimp (Vidal et al. 2001, Granja et al. 2003). 

Although the action of high water temperature was suggested to be either by an increase 

of a host defense response (apoptosis) or alternatively, as a result of a direct effect on 

viral replication, the exact mechanism is still unknown. In this thesis, some shrimp were 

also submitted to 33°C before WSSV inoculation. This treatment was done in order to 

evaluate whether the protective effect of high water temperature was related to a 

possible heat-shock protein (HSP) response. 

The HSP are molecules found in many different organisms and are classified into well 

studied families (hsp40, hsp60, hsp70, hsp90 hsp110 and grp94) (Lee et al 1996; Dong 

et al. 2006). These proteins are involved in a number of functions including protein 

folding, translocation across membranes and assembly of oligomeric complexes. They 

are always expressed at low levels in normal cells thus indicating housekeeping 

activities. The over-expression of these molecules is triggered by several ‘stressful’ 

stimuli such as heat-shock, UV radiation, glucose deprivation and viral infection (Dong 

et al. 2006; Pérez-Vargas et al. 2006). The families hsp60, hsp70 and hsp90 are 

especially involved in innate immunity and immune response (Dong et al. 2006). 

In mammalian cells, induction of hsp70 occurs by incubation at 41°C and is consistently 

maintained for up to 48 h. The induction of this protein in Vero cells inhibits the 
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production of a Japanese Sendai virus. Upon heat-shock, all the structural viral proteins 

are expressed, transported and assembled at the host cell membrane. Then, the over-

expressed hsp70 interacts with the viral hemaglutinin-neuraminidase (HN) and prevents 

its integration to the plasma membrane. This results in a great reduction in infectivity 

and virus production (Hirayama et al. 2006 in press). In another study using mammalian 

cells, a soluble form of a cognate of hsp70 (hsc70) interacts with a rotavirus infecting 

human enteric cells and reduced its infectivity in vitro probably by inducing 

conformational changes (Pérez-Vargas et al. 2006). 

Also in lower vertebrates, stress proteins have important effects on viral infection. In 

fish, infectious hematopoietic necrosis virus (IHNV) is a rhabdovirus that causes an 

acute disease in wild and hatchery-raised animals. Upon viral infection in a fish cell 

line, a novel 90 kDa stress protein was induced at a late stage of IHNV infection. This 

protein was found attached to surface proteins of IHNV particles in fish surviving a 

natural IHNV infection. It was proposed that such a protein is involved in the fish 

immune response to neutralize IHNV (Lee et al. 1996; Cho et al. 1997). 

Recently, heat shock proteins (hsp86 and hsp70) were induced respectively in crayfish 

and shrimp by a short heat shock treatment (from 24°C to 32°C and maintained at high 

temperature for 2 h or from 29°C to 35°C and maintained in hyperthermia for 24 h) 

(Cimino et al. 2003; de la Vega et al. 2006). Shrimp chronically infected with a gill-

associated virus (GAV) showed no differences in mortality compared to controls or 

shrimp submitted to osmotic or hypoxic stress. However, the heat shock induced a 

significantly higher level of hsp70 and produced significantly less amounts of GAV 

RNA copies (de la Vega et al. 2006). 

In this thesis, all shrimp kept at 33°C during five days before WSSV challenge and 

switched to 27°C after inoculation, became infected and died at earlier times than 

control shrimp upon WSSV inoculation. This result suggests that a HSP response was 

not triggered by this high water temperature treatment or that it had no effect on the 

viral replication. The death of shrimp at a faster rate was probably due to the 

combination of stress by the inoculation of WSSV and the stress caused by the changes 

in water temperature. The interaction between environmental stress and microbial 

infection to induce mortality in aquatic organisms is well documented (Le Moullac et al. 

1998; Lightner & Redman 1998; Le Moullac & Haffner 2000). 
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The present thesis clearly showed that high water temperature inhibited the expression 

of VP28 in cells of shrimp inoculated with WSSV. This result indicates that high water 

temperature negatively affects viral replication. It is most likely that a temperature-

dependent enzymatic process which is critical for WSSV replication is impaired at 

33°C. Inhibition of viral replication by high temperature has already been demonstrated 

for other viruses such as baculoviruses (Kobayashi et al. 1981), herpesviruses 

(Schildgen et al. 2005) and poxviruses (Luttge & Moyer 2005). The mechanism is 

mostly based on temperature-sensitive viral enzymes which are essential in the virus 

replication cycle. The application of high water temperature may be useful to gain 

insight in aspects of WSSV replication and its pathogenesis. Molecular studies aimed at 

the differential expression of WSSV genes in infected shrimp maintained at 33°C may 

give information on the mechanism of action of high water temperature on viral 

replication. Biochemical assays that evaluate the optimal temperatures for a number of 

enzymes involved in WSSV replication may identify the affected molecule(s). 

Shrimp maintained at high water temperature just after WSSV inoculation were also 

protected from infection and mortality. This result indicates that shrimp already infected 

with WSSV can also survive when switched to a high water temperature. Further 

experiments are being performed to determine the efficacy of high water temperature as 

a therapeutic method in shrimp at different stages of WSSV infection. This is an 

effective, cheap and easy method to control WSSV infection compared to the lower 

efficacy and the difficulty of administering antiviral drugs to aquatic animals. 

Raising water temperature to ≥ 32°C may have practical applications in many tropical 

shrimp farming countries where water temperature can reach 32°C or more for several 

months. Culturing shrimp during the season of high water temperature may reduce 

significantly the risk of a WSSV outbreak during the grow-out phase. However, such a 

practice would require a much closer monitoring of water quality parameters and 

probably also an increase in water exchange as high water temperature negatively 

influences other variables of water quality such as dissolved oxygen, pH and toxicity of 

ammonia and other metabolites. 

This thesis has contributed to improve the reproducibility of experimental WSSV 

inoculation techniques. The way of working can now be used by other researchers not 

only for WSSV but also for other viruses and not only in shrimp but also other 
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crustaceans, defense against viruses or look for differences in virulence of virus isolates 

or to find genetic determinants for susceptibility of hosts. The protocols are very useful 

to study aspects of viral pathogenesis and to develop, test and compare methods for 

control. 
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Summary 

 

White spot syndrome virus (WSSV) has become the most important pathogenic agent in 

shrimp aquaculture. Under natural and culturing conditions, WSSV infection is thought 

to occur mainly via ingestion of WSSV-infected tissues. Signs of disease include 

reduced feeding and locomotion. Diseased shrimp gather around the pond shores. 

Mortalities up to 100% have been recorded within 10 days after the onset of disease. 

The severe impact of WSSV has prompted the search for effective control strategies. 

Before the start of the thesis, different control measures have been experimentally tested 

using non-standardized challenge procedures. This made it difficult to reproduce and to 

compare results between experiments. 

In Chapter 1, an overview is given on the current knowledge of the shrimp Litopenaeus 

vannamei and WSSV. 

Chapter 2 described the aims of this thesis. The main goals were: (1) to develop 

standardized WSSV inoculation procedures by intramuscular and oral routes; (2) to 

study the WSSV pathogenesis with emphasis on the portals of WSSV entry and the 

spread to other target organs and (3) to apply the standardized WSSV challenge models 

for the evaluation and comparison of control strategies against WSSV. 

In Chapter 3, standardized WSSV inoculation models by intramuscular and oral routes 

were developed and used to evaluate strategies to control WSSV. 

In part 3.1, in vivo titrations of a Thai WSSV stock were done by intramuscular route 

into shrimp of 60 to 135 days-old. The infectivity (shrimp infectious dose 50% endpoint 

[SID50 ml-1]) and lethal (LD50 ml-1) titers were recorded at 72, 96, 120 and 168 hours 

post inoculation (hpi). The SID50 ml-1 of the WSSV stock as determined by indirect 

immunofluorescence (IIF) and one-step PCR was between 0.2 to 1.0 log10 higher than 

the LD50 ml-1 at 72 or 96 hpi, respectively. The infectivity and lethal titers reached the 

same values from 120 hpi onwards. At 120 hpi the median infectivity and lethal titers of 

the WSSV stock by intramuscular route were 106.6 SID50 ml-1 and 106.6 LD50 ml-1 

respectively. 

Based on these infectivity titers, doses of WSSV (10-1, 100, 101, 102 and 103 SID50 in 50 

µl) were orally inoculated into five 80 days-old shrimp. The infectivity titers of the 

same WSSV stock when orally inoculated required 1 log10 more infectious virus to 
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reach the 50% endpoint. Therefore, the median infectivity titer by oral route was 105.6 

SID50 ml-1. This result indicates the presence of barriers in the digestive tract of shrimp 

that hinder virus entry. The infectivity titers of the Thai WSSV strain obtained by 

intramuscular and oral routes were reproducible. The determination of the infectivity 

titers of the WSSV stock constitutes the first step towards standardization of 

experimental WSSV challenge tests. 

In part 3.2, a minimal infectious dose of WSSV (10, 30 or 90 SID50) that induced 

infection and mortality in all inoculated shrimp was determined. The evaluation was 

made by time of appearance of clinical signs, cumulative mortality and the median 

lethal time (LT50). By intramuscular route, all shrimp inoculated with 30 and 90 SID50 

died within 84 hpi while all shrimp inoculated with 10 SID50 died within 108 hpi. The 

LT50 of doses 10, 30 and 90 SID50 was 52, 50 and 49 hpi, respectively and were not 

significantly different (P > 0.05). All shrimp orally inoculated with doses 30 and 90 

SID50 died within 108 hpi, while shrimp inoculated with 10 SID50 died within 120 hpi. 

The LT50 of doses 10, 30 and 90 SID50 was 65, 56 and 50 hpi respectively and all were 

statistically different, indicating a dose-dependent effect. These results indicate the 

presence of barriers in the digestive tract that may hinder virus entry and delayed 

mortality up to 24 h compared to intramuscular route. Such a route of inoculation may 

also mimic a more natural way of infection / transmission. This makes the oral route a 

preferable model for testing control strategies against WSSV. The dose of 10 SID50 

showed more variability in cumulative mortality than the doses of 30 and 90 SID50, 

suggesting that such a dose may be close to the 50% endpoint. Therefore, a dose of 30 

SID50 was chosen as the standard dose for testing the efficacy of control strategies 

against WSSV. 

In Chapter 4, the primary replication sites and the spread of WSSV to other target 

organs were determined. Shrimp orally inoculated with a low (30 SID50) or a high 

(10000 SID50) virus titer were collected at 0, 6, 12, 18, 24, 36, 48 and 60 hpi. In cell-

free hemolymph, WSSV DNA was detected by one-step PCR and WSSV-infected 

hemocytes by IIF. In tissues, WSSV infection was analyzed by immunohistochemistry 

and histopathology. Epithelial cells in foregut and cells in gills were the primary 

replication sites at 18 hpi (low dose) or at 12 hpi (high dose). The antennal gland was a 

primary replication site only with a high dose. At 60 hpi, the most affected organs were 
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gills, hematopoietic tissues, foregut, lymphoid organ, integument and antennal gland. In 

these organs, histopathological lesions caused by WSSV were first detected at 36 hpi 

(low dose) or 24 hpi (high dose) and the proportion of cells with lesions increased with 

time. Heart, gonads, muscle, neuronal ganglia and nerve cord were little affected by 

WSSV infection and the epithelial cells of midgut were refractory. In hemolymph, 

WSSV DNA was first detected at 18 hpi (low dose) or 12 hpi (high dose). With the two 

doses, a few WSSV-positive cells were detected in circulating hemolymph starting from 

36 hpi. These results suggest that WSSV spreads in L. vannamei to other target organs 

in cell-free form. 

The oral inoculation induced primary WSSV replication in epithelial cells of foregut, 

cells in gills and only with a high dose, cells of the antennal gland. At the same time, 

WSSV DNA was detected in cell-free hemolymph. Critical organs for the maintenance 

of shrimp homeostasis such as gills, foregut, antennal gland and integument might lose 

structure and function due to WSSV infection inducing death. 

In Chapter 5, the standardized inoculation models were used to evaluate the efficacy of 

antiviral products and the manipulation of water temperature against WSSV infection. 

In part 5.1, cidofovir and a diet supplemented with Spirulina platensis were tested. The 

efficacy was evaluated by the proportion of WSSV-infected shrimp (IIF), cumulative 

mortality and LT50. 

The highest concentration of cidofovir (200 mg kg-1) that showed no toxicity was used 

in two experiments using 20 shrimp orally inoculated with 30 SID50 of WSSV and 

immediately injected with cidofovir. A control group was mock-treated with PBS. 

Shrimp treated with cidofovir first showed signs of disease at 24-36 hpi but showed a 

delay in mortality (24 h) compared to the mock-treated shrimp. At the end of the 

experiments (120 hpi), cumulative mortality in the cidofovir-treated groups was 80-90% 

in contrast to 100% mortality in the mock-treated groups. The LT50 was statistically 

different (P< 0.05) between the cidofovir-treated and the mock-treated groups. All 

shrimp were WSSV-positive except for one survivor. 

A group of 10 shrimp was fed with a diet supplemented with S. platensis during four 

days before the WSSV challenge. Another group of 10 shrimp was fed with a normal 

diet and used as control. Shrimp fed with Spirulina only showed a delay in onset of 
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signs of disease. Cumulative mortality was 100% at 84 hpi in the Spirulina-treated and 

the control group. All dead shrimp were WSSV-positive. 

This study showed that cidofovir was more effective than a diet supplemented with 

Spirulina to delay/reduce shrimp mortality due to WSSV infection. However, none of 

these products may be successfully applied in the field. 

In part 5.2 the standardized intramuscular and oral inoculation models were used to 

evaluate the effect of high water temperature (33°C) on WSSV infection. A low (30 

SID50) or a high (10000 SID50) infectious dose was inoculated to groups of shrimp 

continuously maintained at 27°C, 30°C or 33°C, or switched from 33°C to 27°C or from 

27°C to 33°C immediately after inoculation. Shrimp continuously maintained at 27°C or 

30°C and those switched from 33°C to 27°C after WSSV inoculation first showed signs 

of disease at 24 hpi and first mortalities at 36 hpi. In these groups, cumulative mortality 

reached 100% and all dead shrimp were WSSV-positive by IIF. The LT50 showed that 

shrimp switched from 33°C to 27°C and those continuously maintained at 30°C died 

faster than shrimp kept continuously at 27°C. 

In contrast, shrimp continuously maintained at 33°C or those kept at 33°C immediately 

after inoculation did not develop signs of disease, had a reduced cumulative mortality 

(0-30%) and all were WSSV-negative by IIF. The dead shrimp probably died due to 

cannibalism during molting. These results showed that the protective effect of high 

water temperature was independent of the route of inoculation and virus titer used. 

In a time course, groups of shrimp maintained at 27°C were orally inoculated with a 

high dose of WSSV and afterwards kept at 27°C or switched to 33°C. One group 

maintained at 27°C and another kept at 33°C were simultaneously collected at 12 and 

24 hpi. Immunohistochemistry (IHC) analysis revealed that shrimp maintained at 27°C 

displayed WSSV-positive cells at 12 hpi in foregut, gills and antennal gland. By 24 hpi, 

WSSV-positive cells were also found in integument, hematopoietic tissue and lymphoid 

organ. In contrast, all shrimp switched to 33°C after inoculation were WSSV-negative 

at 12 or 24 hpi. 

This study showed that high water temperature effectively prevented onset of disease 

and significantly reduced mortality in WSSV-inoculated shrimp. The fact that high 

water temperature inhibited the expression of a structural protein such as VP28 suggests 
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that a critical enzymatic process may be impaired at an early stage of viral replication. 

These results suggest that high water temperature may not induce a heat-shock protein 

response by the host. 

In this thesis, WSSV inoculation procedures by intramuscular and oral routes were 

developed and used to study the pathogenesis and to evaluate different strategies aimed 

to control WSSV. The quantitative comparison of the efficacy of experimental measures 

to control WSSV was done with the median lethal time (LT50). Virological detection 

methods such as IIF/IHC were used to determine the infectivity titers of a WSSV stock 

and the relationship between infection and mortality. 

The oral inoculation model was developed to mimic a common route of WSSV entry 

under culturing and natural conditions. With this method it was possible to successfully 

reproduce the primary replication sites described for P. monodon fed WSSV-infected 

tissues. 

The antiviral cifodovir significantly delayed mortality in WSSV-infected shrimp and 

was more effective than a diet supplemented with Spirulina. High water temperature 

was very effective to prevent the onset disease and to reduce mortality of WSSV-

infected shrimp regardless of the dose and/or route of inoculation used. This strategy is 

very attractive for field application in many tropical countries. 
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Samenvatting 

 

White spot syndrome virus (WSSV) is uitgegroeid tot de belangrijkste ziekteverwekker 

bij gekweekte garnalen. Aangenomen wordt dat WSSV infecties onder natuurlijke en 

kweekomstandigheden vooral optreden door het opnemen van geïnfecteerde weefsels. 

De symptomen zijn onder andere verminderde eetlust en activiteit. Stervende garnalen 

worden opgemerkt aan de randen van de kweekvijvers. Binnen 10 dagen na de start van 

een uitbraak kan de mortaliteit reeds tot 100% oplopen. De ernstige impact van WSSV 

infecties heeft tot gevolg gehad dat een zoektocht naar effectieve controlestrategieën op 

gang is gekomen. Vóór deze thesis werd aangevat, werden bestrijdingsmethoden 

experimenteel getest met behulp van ongestandaardiseerde blootstellingstesten. 

Hierdoor waren de resultaten van experimenten moeilijk te reproduceren en te 

vergelijken. 

In Hoofdstuk 1 wordt een overzicht gegeven van wat er momenteel bekend is over de 

garnaal Litopenaeus vannamei en het WSSV. 

In Hoofdstuk 2 worden de doelstellingen van deze thesis beschreven: (1) de 

ontwikkeling van gestandaardiseerde WSSV inoculatieprocedures via intramusculaire 

en orale routes; (2) de bestudering van de pathogenese van WSSV, met nadruk op de 

toegangspoorten van het virus, de spreiding naar andere doelwitorganen en de 

uiteindelijke doodsoorzaak; (3) de toepassing van de gestandaardiseerde WSSV 

testmodellen om bestrijdingsstrategieën tegen WSSV te evalueren en te vergelijken. 

In Hoofdstuk 3 werden gestandaardiseerde WSSV inoculatiemodellen via 

intramusculaire en orale routes ontwikkeld en gebruikt om strategieën ter controle van 

WSSV infecties te evalueren. In deel 3.1 werden in vivo titraties uitgevoerd met een 

Thais WSSV isolaat via de intramusculaire route bij garnalen van 60 tot 135 dagen oud.  

De infectiviteits- (“shrimp infectious dose 50% endpoint” [SID50 ml-1]) en lethale (LD50 

ml-1) titers werden berekend op 72, 96, 120 en 168 uur na inoculatie (uni). Met behulp 

van indirecte immunofluorescentie (IIF) en 1-staps PCR werd de SID50 ml-1 van de 

WSSV stock bepaald. Deze bleek 0.2 en 1.0 log10 hoger te liggen dan de LD50 ml-1 op 

respectievelijk 72 en 96 uni. Op 120 uni bereikten de infectiviteits- en lethale titers 

gelijke waarden waarbij de mediane infectiviteitstiter van de WSSV stock via de 

intramusculaire route 106.6 SID50 ml-1 was en de lethale titer 106.6 LD50 ml-1. Gebaseerd 
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op deze infectiviteitstiters werden dosissen van WSSV (10-1, 100, 101, 102 en 103 SID50 

in 50 µl) oraal geïnoculeerd bij telkens vijf garnalen van 80 dagen oud. Om het 50% 

eindpunt te bereiken na orale inoculatie van dezelfde WSSV stock was 1 log10 meer 

infectieus virus nodig, waardoor de gemiddelde infectiviteitstiter via de orale route 105.6 

SID50 ml-1 was. Dit resultaat duidt op het bestaan van barrières in het 

spijsverteringsstelsel van garnalen die het binnentreden van het virus kunnen hinderen. 

De bekomen infectiviteitstiters van het Thaise WSSV isolaat waren reproduceerbaar, 

zowel via de intramusculaire als de orale route. De bepaling van de infectiviteitstiters 

van de WSSV stock was de eerste stap in de standaardisatie van experimentele WSSV 

blootstellingstesten. 

In deel 3.2 werd een minimale infectieuze dosis van WSSV (10, 30 en 90 SID50) 

bepaald die infectie en sterfte veroorzaakte bij alle geïnoculeerde garnalen. De evaluatie 

gebeurde aan de hand van het tijdstip waarop de symptomen verschenen, de 

cumulatieve mortaliteit en de bepaling van de “median lethal time” (LT50). Via de 

intramusculaire route stierven alle garnalen geïnoculeerd met 30 en 90 SID50 binnen 84 

uni, terwijl alle garnalen geïnoculeerd met 10 SID50 stierven binnen 108 uni. De LT50 

van de dosissen 10, 30 en 90 SID50 waren respektievelijk 52, 50 en 49 uni en niet 

significant verschillend van elkaar (P = 0.05). Alle garnalen, die oraal geïnoculeerd 

waren met dosissen van 30 en 90 SID50, stierven binnen 108 uni, terwijl garnalen, oraal 

geïnoculeerd met 10 SID50, binnen 120 uni stierven. De LT50 van de dosissen 10, 30 en 

90 SID50 was respektievelijk 65, 56 en 50 uni en statistisch verschillend van elkaar, wat 

duidt op een dosis-afhankelijk effect. Deze resultaten wijzen op de aanwezigheid van 

barrières in het spijsverteringsstelsel die het intreden van het virus kunnen belemmeren 

zodat sterfte tot 24 uur later optreedt, vergeleken met de intramusculaire route. De orale 

inoculatie bootst een meer natuurlijke infectie- en overdrachtsweg na. Hierdoor is de 

orale route te verkiezen als model om bestrijdingsstrategieën tegen WSSV te testen. De 

cumulatieve mortaliteit vertoonde meer variatie bij een dosis van 10 SID50 dan bij de 

dosissen van 30 en 90 SID50, wat suggereert dat deze dosis dicht bij het 50% eindpunt 

ligt. Daarom werd een dosis van 30 SID50 gekozen als de standaarddosis voor 

blootstellingstesten om de doeltreffendheid van bestrijdingsstrategieën tegen WSSV na 

te gaan. 
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In Hoofdstuk 4, werden de primaire vermeerderingsplaatsen en de spreiding van WSSV 

naar andere doelwitorganen bepaald. Garnalen werden oraal geïnoculeerd met een lage 

(30 SID50) of een hoge (10000 SID50) virustiter en gecollecteerd op 0, 6, 12, 18, 24, 36, 

48 en 60 uni. Met behulp van een één-staps PCR werd WSSV DNA gedetecteerd in 

celvrije hemolymfe en werden WSSV-geïnfecteerde cellen in de hemolymfe 

aangetoond met IIF. In weefsels werd de WSSV infectie geanalyseerd aan de hand van 

immunohistochemie en histopathologie. Epitheelcellen in de voormaag en cellen in de 

kieuwen waren plaatsen van primaire vermeerdering op 18 uni (lage dosis) en op 12 uni 

(hoge dosis). De antenneklier was enkel een primaire vermeerderingsplaats bij een hoge 

dosis. Op 60 uni waren de meest getroffen organen: de kieuwen, het hematopoïetisch 

weefsel, de voormaag, het lymfoïde orgaan, het integument en de antenneklier. In deze 

organen werden de eerste histopathologische letsels waargenomen op 36 uni (lage 

dosis) of op 24 uni (hoge dosis) en de laesies namen toe in de tijd. Het hart, de gonaden, 

de spieren, de neuronale ganglia en de zenuwbanen waren amper aangetast door de 

WSSV infectie en de epitheelcellen van de middendarm waren refractair. In de 

hemolymfe werd voor het eerst WSSV DNA gedetecteerd op 18 uni (lage dosis) en op 

12 uni (hoge dosis). Voor beide dossisen werd een klein aantal WSSV-positieve cellen 

in de circulerende hemolymfe gedetecteerd vanaf 36 uni. Deze resultaten suggereerden 

dat WSSV zich in L. vannamei naar andere doelwitorganen verspreidde in celvrije 

vorm. 

De orale inoculatie induceerde primaire WSSV vermeerdering in de epitheliale cellen 

van de voormaag en in de cellen van de kieuwen, en enkel bij een hoge dosis ook in de 

antenneklier. Op datzelfde moment werd WSSV DNA gedetecteerd in de celvrije 

hemolymfe. Vervolgens verloren organen van vitaal belang voor de homeostasis in de 

garnaal, zoals de kieuwen, de voormaag, de antenneklier en het integument, tengevolge 

van de WSSV infectie aan structuur en functie waardoor het dier uiteindelijk zou 

sterven. 

In Hoofdstuk 5, werden de gestandaardiseerde inoculatiemodellen toegepast om de 

doeltreffendheid van antivirale producten en een aangepaste watertemperatuur tegen 

WSSV te testen. 

In deel 5.1 werden cidofovir en een dieet gesupplementeerd met Spirulina platensis 

onderzocht. De doeltreffendheid van de behandeling werd geëvalueerd aan de hand van 
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het aantal WSSV-geïnfecteerde garnalen (IIF), de cumulatieve mortaliteit en de LT50. 

De hoogste concentratie cidofovir (200 mg kg-1 MBW) die geen duidelijke tekens van 

toxiciteit vertoonde, werd gebruikt in twee experimenten waarbij 20 garnalen 

intramusculair ingespoten werden met cidofovir onmiddellijk nadat ze oraal 

geïnoculeerd waren met 30 SID50 WSSV. Een controlegroep werd geïnoculeerd met 

PBS. De garnalen behandeld met cidofovir vertoonden net zoals de onbehandelde 

controledieren de eerste ziektetekens op 24-36 uni. De eerste dode dieren in de met 

cidofovir behandelde groep werden echter 24 uur later aangetroffen dan in de 

controlegroep. Op het einde van de experimenten (120 uni) was de cumulatieve 

mortaliteit 80-90% in de cidofovir-behandelde groep, tegen 100 % in de controle 

groepen. De LT50 waarde van de cidofovir-behandelde groep was statistisch 

verschillend (P< 0.05) van die van de controlegroep. Alle dode en overlevende garnalen 

waren WSSV-positief behalve één overlevende. 

Een groep van 10 garnalen werd gedurende vier dagen gevoederd met een dieet 

gesupplementeerd met S. platensis, voordat ze aan WSSV werden blootgesteld. Een 

controlegroep van 10 garnalen werd gevoederd met een normaal dieet. Garnalen die het 

dieet met Spirulina kregen, vertoonden een vertraging in het verschijnen van de 

symptomen. Cumulatieve mortaliteiten bereikten 100% op 84 uni zowel in de Spirulina-

behandelde groep als de controle groep. Alle dode garnalen waren positief voor WSSV. 

Deze studie toonde aan dat cidofovir effectiever was dan een dieet gesupplementeerd 

met Spirulina om de mortaliteit bij garnalen ten gevolge van WSSV te 

vertragen/verminderen. Geen van beide producten zal echter met succes kunnen worden 

toegepast in het veld. 

In deel 5.2 werden de gestandaardiseerde intramusculaire en orale inoculatie procedures 

toegepast om het effect van een hoge watertemperatuur (33°C) op WSSV infecties te 

evalueren. Een lage (30 SID50) of een hoge (10000 SID50) infectieuze dosis werd 

geïnoculeerd in groepen garnalen die continu bij 27°C, 30°C of 33°C werden gehouden, 

of waarbij de temperatuur onmiddellijk na de inoculatie werd gewijzigd van 33°C naar 

27°C of van 27°C naar 33°C. Garnalen die continu bij 27°C of 33°C werden gehouden, 

of waarbij de temperatuur werd gewijzigd van 33°C naar 27°C na de WSSV inoculatie, 

vertoonden de eerste ziektetekens op 24 uni en de eerste mortaliteit op 36 uni. In deze 

groepen bereikte de cumulatieve mortaliteit 100% en alle dode garnalen waren positief 
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voor WSSV op IIF. De LT50  toonde aan dat garnalen die van 33°C naar 27°C werden 

gebracht of continu bij 30°C werden gehouden sneller stierven dan garnalen die continu 

bij 27°C werden gehouden. Hier staat tegenover dat garnalen die continu bij 33°C 

werden gehouden of naar 33°C werden gebracht onmiddellijk na inoculatie, geen 

symptomen ontwikkelden, een verminderde cumulatieve mortaliteit vertoonden (0-30%) 

en allen WSSV-negatief waren op IIF. De dode exemplaren stierven vermoedelijk 

tengevolge van kannibalisme tijdens het vervellen. Deze resultaten toonden aan dat het 

beschermend effect van een hoge watertemperatuur onafhankelijk was van de gebruikte 

inoculatieroute en virustiter. 

In een opvolging in de tijd werden garnalen bij 27°C gehouden en oraal geïnoculeerd 

met een hoge dosis. Daarna werden zij voort bij 27°C gehouden of opgewarmd tot 

33°C. Eén groep gehouden bij 27°C en een tweede bij 33°C werden tesamen verzameld 

op 12 uni en 24 uni. Met behulp van immunohistochemie (IHC) werden in de garnalen 

die bij 27°C werden gehouden de eerste positieve cellen aangetoond in de voormaag, de 

kieuwen en de antenneklier op 12 uni. Op 24 uni werden WSSV-positieve cellen ook 

gezien in andere doelwitorganen zoals het integument, het hematopoïetisch weefsel en 

het lymfoïde orgaan. Garnalen gehouden bij 33°C na de WSSV inoculatie vertoonden 

daarentegen geen enkele WSSV-positieve cel 12 of 24 uni. 

Deze studie toonde aan dat een hoge watertemperatuur het optreden van de ziekte kon 

voorkomen en de sterfte bij WSSV-geïnoculeerde dieren significant kon verminderen. 

Het feit dat een hoge watertemperatuur de expressie van een structureel proteïne zoals 

VP28 inhibeert, suggereert dat een cruciaal proces belemmerd wordt in een vroeg 

stadium van de virusreplicatie. Deze resultaten suggereren dat een hoge 

watertemperatuur geen “heat-shock protein” respons opwekt in de gastheer. 

 

In deze thesis werden gestandaardiseerde inoculatieprocedures voor WSSV via 

intramusculaire en orale routes ontwikkeld. De kwantitatieve vergelijking van enkele 

experimentele maatregelen tegen WSSV werd uitgevoerd aan de hand van de median 

lethal time (LT50). Virologische detectietechnieken zoals IIF en IHC werden gebruikt 

om de infectiviteitstiters van een WSSV stock te berekenen. Verder werd het verband 

tussen de infectie en de mortaliteit bepaald. Met de ontwikkeling van een oraal 

inoculatiemodel kon de toegangsroute van WSSV die het meest voorkomt onder 
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natuurlijke en kweekcondities nagebootst worden. Gebruik makend van deze 

inoculatietechniek werden dezelfde primaire vermeerderingsplaatsen geïdentificeerd 

zoals reeds beschreven bij P. monodon die gevoederd waren met WSSV-geïnfecteerde 

weefsels: de kieuwen en de voormaag. Het antivirale effect van cidofovir vertraagde 

significant de sterfte bij met WSSV-geïnfecteerde garnalen en bleek effectiever te zijn 

dan een dieet gesupplementeerd met Spirulina. Een hoge watertemperatuur was erg 

doeltreffend om het onstaan van symptomen te voorkomen en deed in grote mate de 

sterfte afnemen bij garnalen geïnoculeerd met WSSV, ongeacht de dosis en/of de 

inoculatieroute. Deze strategie is erg aantrekkelijk voor toepassing in het veld in vele 

tropische landen. 
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Resumen 

 

El virus de la mancha blanca (WSSV) es el agente viral más dañino para el cultivo de 

camarón. En condiciones naturales y de cultivo, la infección de WSSV ocurre 

principalmente por medio de la ingestión de tejidos infectados con el virus. Los signos 

de la enfermedad no son específicos e incluyen la reducción en las actividades 

alimenticia y locomotora. Los animales enfermos se aglomeran a las orillas de los 

estanques y mortalidad de hasta 100% ha sido reportada 10 dias después de la aparición 

de los signos clínicos. 

El impacto negativo de WSSV ha propiciado la búsqueda de nuevos y efectivos 

métodos para controlar la enfermedad. Varias de estas medidas han sido evaluadas 

experimentalmente usando diferentes rutas de inoculación, especies de camarón y 

estadios de desarrollo. En estudios previos se hacían inoculaciones experimentales con 

dosis indefinidas de WSSV. Todos estos factores han hecho dificil la reproducibilidad y 

comparación de resultados entre experimentos. 

En el Capítulo 1 se hizo una revisión actualizada del conocimiento sobre el camarón 

Litopenaeus vannamei y de WSSV. 

En el Capítulo 2 se describieron los objetivos de esta tesis. Los objetivos principales 

fueron: (1) desarrollar procedimientos de inoculación estandarizados para WSSV por 

vía intramuscular y oral; (2) estudiar la patogénesis de WSSV con énfasis en los 

portales de entrada de WSSV, su dispersión a otros órganos blanco y (3) aplicar los 

modelos de inoculación descritos en (1) para la evaluación y comparación de la eficacia 

de métodos de control contra WSSV. 

En el Capítulo 3, se desarrollaron los modelos de inoculación por vía intramuscular y 

oral. En la parte 3.1, titulaciones in vivo de un inóculo de WSSV fueron hechas por ruta 

intramuscular en camarones de 60 a 135 días de edad. El título de infectividad (dosis 

infecciosa en camarón al 50% [SID50 ml-1]) y la dosis letal al 50% (LD50 ml-1) fueron 

evaluadas a las 72, 96, 120 y 168 horas post inoculación (hpi). El título de infectividad 

determinado por inmunofluorescencia indirecta (IIF) y reacción en cadena de la 

polymerase (one-step PCR) fue entre 0.2 y 1.0 log10 mayor que el LD50 ml-1 a las 72 ó 

96 hpi respectivamente. Los títulos de infectividad y letal alcanzaron el mismo valor a 

partir de las 120 hpi. A este tiempo, los valores medios de los títulos de infectividad y 



Resumen 190 

letal del inóculo de WSSV fueron 106.6 SID50 ml-1 y 106.6 LD50 ml-1 respectivamente. 

Basados en el título de infectividad, distintas dosis de WSSV (10-1, 100, 101, 102 y 103 

SID50 en 50 µl) fueron inoculados oralmente en camarones de 80 días de edad. El 

mismo inóculo de WSSV requirió 1 log10 más cantidad del virus infectioso en 

comparación con la ruta intramuscular para alcanzar la dosis infecciosa al 50%. Por lo 

tanto, el título medio de infectividad por ruta oral fue 105.6 SID50 ml-1. Este resultado 

indica la presencia de barreras en el tracto digestivo del camarón que interfieren la 

entrada del virus. Los títulos de infectividad de WSSV fueron reproducibles tanto por la 

vía intramuscular como la oral. La determinación de dichos títulos de infectividad del 

inóculo de WSSV constituye el primer paso hacia la estandarización de modelos 

experimentales de infección. 

En la parte 3.2, se determinó la mínima dosis infeccciosa de WSSV (10, 30 and 90 

SID50 en 50 µl) que produjo infección y mortalidad en todos los camarones inoculados. 

La evaluación se hizo considerando el tiempo de aparición de signos clínicos, la 

mortalidad cumulativa y el tiempo letal medio (LT50). Por ruta intramuscular, todos los 

camarones inoculados con las dosis 30 y 90 SID50 murieron hacia las 84 hpi, mientras 

que todos los camarones inoculados con la dosis de 10 SID50 murieron a las 108 hpi. El 

valor del LT50 para las dosis de 10, 30 y 90 SID50 fueron respectivamente de 52, 50 y 49 

hpi y dichos valores no fueron significativamente differentes (P > 0.05). 

Todos los camarones inoculados por vía oral con las dosis de 30 y 90 SID50 murieron 

hacia las 108 hpi, mientras que los camarones inoculados con la dosis de 10 SID50 

murieron dentro de las 120 hpi. Los valores de LT50 de las dosis de 10, 30 and 90 SID50 

fueron respectivamente 65, 56 and 50 hpi y cada uno de estos valores fueron 

estadísticamente distintos, lo cual indica un efecto dosis-dependiente. Estos resultados 

indican la presencia de barreras en el tracto digestivo que impiden la entrada del virus 

hacia el hospedero y retrasó la mortalidad en hasta 24 h en comparación con la ruta 

intramuscular. La inoculación por vía oral representó una forma más natural de 

infección / transmisión del virus. Esto hace de la inoculación oral un modelo más 

favorable para evaluar estrategias de control contra WSSV. 

La dosis de 10 SID50 dió resultados más variables en mortalidad cumulativa que las 

dosis de 30 ó 90 SID50, lo cual sugiere que tal dosis puede estar muy cerca del valor de 

infectividad al 50%. Por lo tanto, la dosis de 30 SID50 fue elegida como la dosis 
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estándar para los dos modelos de inoculación y para evaluar la eficacia de medidas de 

control contra WSSV. 

En el Capítulo 4 se determinaron los sitios de replicación primaria de WSSV y el modo 

de dispersión viral a otros órganos blanco. Camarones inoculados oralmente con una 

dosis baja (30 SID50) ó alta (10000 SID50) fueron colectados a las 0, 6, 12, 18, 24, 36, 

48 y 60 hpi. El DNA de WSSV fue detectado en la fracción de hemolinfa libre de 

células por PCR y en hemocitos circulantes, WSSV fue detectado por IIF. En tejidos de 

camarón, la infección de WSSV fue detectada por inmunohistoquímica (IHC) e 

histopatología. 

Células epiteliales en la región anterior del tracto digestivo y células en branquias 

fueron los sitios de replicación primaria a las 18 hpi (dosis baja) ó a las 12 hpi (dosis 

alta). La glándula antenal fue un sitio de replicación primaria solamente con la dosis 

alta. A las 60 hpi, los órganos más afectados fueron branquias, tejidos hematopoiéticos, 

parte anterior del tracto digestivo, órgano linfoide, integumento y glándula antenal. En 

éstos, lesiones histopatológicas causadas por WSSV fueron detectadas por primera vez a 

las 36 hpi (dosis baja) ó 24 hpi (dosis alta) y la proporción de células con lesiones 

aumentó con el tiempo. Organos tales como el corazón, gónadas, músculo, ganglios y 

cordón nerviosos fueron muy poco afectados por WSSV y las células epiteliales de la 

región media del tracto digestivo fueron refractarias a la infección por WSSV. 

En hemolinfa, el DNA de WSSV fue detectado por primera vez a las 18 hpi (dosis baja) 

ó a las 12 hpi (dosis alta). Con ambas dosis, solamente algunas células positivas para 

WSSV fueron detectadas en hemolinfa a partir de las 36 hpi. Estos resultados sugieren 

que WSSV se dispersó a otros órganos blanco en L. vannamei de una manera no 

asociada a células. 

La técnica de inoculación oral indujo replicación primaria de WSSV en células 

epiteliales de la región anterior del tracto digestivo, branquias y solamente con una dosis 

alta, en células de la glándula antenal. Al mismo tiempo, el DNA viral fue detectado en 

hemolinfa en la fracción libre de células. Los órganos que resultan críticos para 

mantener el equilibrio fisiológico en el camarón son branquias, la región anterior del 

tracto digestivo, glándula antenal e integumento. Estos órganos podrían perder 

estructura y función debido a la infección por WSSV lo cual podría causar la muerte. 
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En el Capítulo 5 se evaluó la eficacia de productos antivirales y la manipulación de la 

temperatura del agua en el control de la infección de WSSV. En la parte 5.1, el efecto 

antiviral de cidofovir y de una dieta supplementada con Spirulina platensis fue 

determinada con el modelo de inoculación oral. La eficacia fue evaluada por la 

proporción de animales infectados con WSSV por medio de la técnica de IIF, la 

mortalidad cumulativa y el LT50. 

La concentración más alta de cidofovir (200 mg kg-1) que no produjo signos de 

toxicidad fue usada en dos experimentos con 20 camarones inoculados oralmente con 

30 SID50 de WSSV e inmediatamente después fueron inyectados intramuscularmente 

con cidofovir. Al mismo tiempo, un grupo control fue tratado con buffer salino de 

fosfatos (PBS) como placebo. Los camarones tratados con cidofovir mostraron los 

primeros signos de la enfermedad a las 24-36 hpi pero empezaron a morir solo 24 h más 

tarde que aquellos que recibieron el placebo. Al final de los experimentos (120 hpi), la 

mortalidad cumulativa fue de 80-90% en el grupo tratado con cidofovir, en contraste 

con los camarones del grupo placebo que alcanzaron el 100% de mortalidad. Los 

valores de LT50 fueron significativamente distintos (P< 0.05) entre los dos tratamientos. 

Tanto todos los camarones muertos como los sobrevivientes resultaron infectados con 

WSSV excepto por un sobreviviente tratado con cidofovir en el segundo experimento. 

Un grupo de 10 camarones fue alimentado con una dieta suplementada con S. platensis 

durante cuatro días antes de la infección experimental con WSSV. Otro grupo de 10 

camarones fue alimentado con una dieta comercial normal y sirvieron como control. 

Los camarones alimentados con la dieta de Spirulina solamente mostraron un retraso de 

12 h en la aparición de signos clínicos. La mortalidad cumulativa alcanzó 100% a las 84 

hpi tanto en el grupo tratado con Spirulina como en el control y todos los camarones 

muertos resultaron infectados con WSSV. 

Estos estudios mostraron que cidofovir fue más efectivo que la dieta con Spirulina para 

retrasar o reducir la mortalidad del camarón debido a la infección de WSSV. No 

obstante, ninguno de estos productos parecen tener valor práctico en el campo. 

En la parte 5.2, se usaron los modelos de inoculación intramuscular y oral para evaluar 

el efecto de la alta temperatura del agua (33°C ± 0.5°C) sobre una infección de WSSV. 

Una dosis infecciosa baja (30 SID50) y una alta (10000 SID50) fueron inoculadas a 

grupos de camarones mantenidos continuamente a 27°C, 30°C ó 33°C, ó en grupos de 
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camarón cambiados de 33°C a 27°C ó de 27°C a 33°C inmediatamente después de la 

inoculación con WSSV. Los camarones mantenidos continuamente a 27°C ó 30°C y 

aquellos cambiados de 33°C a 27°C inmediatamente después de la inoculación 

mostraron los primeros signos clínicos a las 24 hpi y las primeras mortalidades a las 36 

hpi. En estos grupos, la mortalidad cumulativa alcanzó 100% y todos los camarones 

muertos estuvieron infectados con WSSV de acuerdo al análisis de IIF. El valor de LT50 

mostró que los camarones que fueron cambiados de 33°C a 27°C y aquellos mantenidos 

continuamente a 30°C murieron más rápido que los camarones mantenidos 

continuamente a 27°C y sirvieron como controles. 

En contraste, los camarones mantenidos continuamente a 33°C ó aquellos cambiados de 

27°C a 33°C inmediatamente después de la inoculación con WSSV no desarrollaron 

signos de enfermedad, tuvieron una reducida mortalidad cumulativa (0-30%) y todos 

fueron negativos para WSSV usando IIF. Los camarones que murieron fueron 

probablemente devorados durante su muda. Estos resultados mostraron que el efecto 

protector de agua a alta temperatura fue independiente de la ruta de inoculación y la 

dosis viral infecciosa usadas. 

En un curso de tiempo, grupos de camarón mantenidos a 27°C fueron inoculados 

oralmente con una dosis alta de WSSV y después fueron mantenidos a 27°C ó 

cambiados a 33°C. Un grupo de camarones mantenido a 27°C y otro cambiado a 33°C 

fueron colectados simultáneamente a las 12 y a las 24 hpi. El análisis por IHC reveló 

que los camarones a 27°C presentaron células positivas para WSSV a las 12 hpi en la 

parte anterior del tracto digestivo, branquias y glándula antenal. A las 24 hpi, células 

infectadas con WSSV se encontraron además en integumento, tejidos hematopoiéticos y 

órgano linfoide. En contraste, todos los camarones cambiados a 33°C después de la 

inoculación fueron negativos para WSSV en los dos tiempos de colecta. 

Este estudio mostró que el agua a alta temperatura efectivamente previno el inicio de la 

enfermedad y redujo significativamente la mortalidad de camarones inoculados con 

WSSV. El hecho de que el agua a alta temperatura inhibiera la expresión de la proteína 

viral VP28 sugiere que un proceso enzimático crítico para la replicación viral es 

afectado. Estos resultados también sugieren que el tratamiento con agua a alta 

temperatura no induce una respuesta de proteínas de estrés (heat-shock) en el camarón. 
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En esta tesis, los procedimientos estandarizados de inoculación para WSSV por rutas 

intramuscular y oral fueron desarrollados y utilizados para estudiar la patogénesis y para 

evaluar diferentes productos y métodos dirigidos a controlar la infección de WSSV. La 

comparación cuantitativa de la eficacia de estos métodos experimentales fue hecha por 

medio del valor letal medio (LT50). El uso de técnicas virológicas como IIF e IHC 

fueron útiles para la determinación de los títulos de infectividad de un inóculo de WSSV 

y también establecer la relación entre infección y mortalidad. 

El modelo de inoculación oral fue desarrollado para simular una ruta común y natural de 

entrada de WSSV en el camarón bajo condiciones naturales y de cultivo. Con este 

método fue posible reproducir con éxito los sitios de replicación primaria descritos para 

Penaeus monodon alimentado con tejidos infectados con WSSV. 

El producto antiviral cidofovir retrasó significativamente la mortalidad en camarones 

infectados con WSSV y fue mucho más efectivo que una dieta suplementada con 

Spirulina. El agua a alta temperatura fue muy efectiva para prevenir el inicio de 

enfermedad y para reducir la mortalidad de camarones infectados con WSSV de manera 

independiente a la ruta de inoculación o las dosis infecciosas utilizadas. El manejo de 

agua a alta temperatura puede ser un método muy atractivo y efectivo para el control de 

WSSV en granjas e instalaciones de acuacultura de camarón en varios países tropicales. 
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