459 research outputs found

    Violation of non-interacting V\cal V-representability of the exact solutions of the Schr\"odinger equation for a two-electron quantum dot in a homogeneous magnetic field

    Full text link
    We have shown by using the exact solutions for the two-electron system in a parabolic confinement and a homogeneous magnetic field [ M.Taut, J Phys.A{\bf 27}, 1045 (1994) ] that both exact densities (charge- and the paramagnetic current density) can be non-interacting V\cal V-representable (NIVR) only in a few special cases, or equivalently, that an exact Kohn-Sham (KS) system does not always exist. All those states at non-zero BB can be NIVR, which are continuously connected to the singlet or triplet ground states at B=0. In more detail, for singlets (total orbital angular momentum MLM_L is even) both densities can be NIVR if the vorticity of the exact solution vanishes. For ML=0M_L=0 this is trivially guaranteed because the paramagnetic current density vanishes. The vorticity based on the exact solutions for the higher ∣ML∣|M_L| does not vanish, in particular for small r. In the limit r→0r \to 0 this can even be shown analytically. For triplets (MLM_L is odd) and if we assume circular symmetry for the KS system (the same symmetry as the real system) then only the exact states with ∣ML∣=1|M_L|= 1 can be NIVR with KS states having angular momenta m1=0m_1=0 and ∣m2∣=1|m_2|=1. Without specification of the symmetry of the KS system the condition for NIVR is that the small-r-exponents of the KS states are 0 and 1.Comment: 18 pages, 4 figure

    Giant thermoelectric effects in a proximity-coupled superconductor-ferromagnet device

    Full text link
    The usually negligibly small thermoelectric effects in superconducting heterostructures can be boosted dramatically due to the simultaneous effect of spin splitting and spin filtering. Building on an idea of our earlier work [Phys. Rev. Lett. 110\textbf{110}, 047002 (2013)], we propose realistic mesoscopic setups to observe thermoelectric effects in superconductor heterostructures with ferromagnetic interfaces or terminals. We focus on the Seebeck effect being a direct measure of the local thermoelectric response and find that a thermopower of the order of ∼200\sim200 μV/K\mu V/K can be achieved in a transistor-like structure, in which a third terminal allows to drain the thermal current. A measurement of the thermopower can furthermore be used to determine quantitatively the spin-dependent interface parameters that induce the spin splitting. For applications in nanoscale cooling we discuss the figure of merit for which we find enormous values exceeding 1 for temperature ≲1\lesssim 1K

    Abrikosov flux-lines in two-band superconductors with mixed dimensionality

    Full text link
    We study vortex structure in a two-band superconductor, in which one band is ballistic and quasi-two-dimensional (2D), and the other is diffusive and three-dimensional (3D). A circular cell approximation of the vortex lattice within the quasiclassical theory of superconductivity is applied to a recently developed model appropriate for such a two-band system [Tanaka et al 2006 Phys. Rev. B 73, 220501(R); Tanaka et al 2007 Phys. Rev. B 75, 214512]. We assume that superconductivity in the 3D diffusive band is "weak", i.e., mostly induced, as is the case in MgB2_2. Hybridization with the "weak" 3D diffusive band has significant and intriguing influence on the electronic structure of the "strong" 2D ballistic band. In particular, the Coulomb repulsion and the diffusivity in the "weak" band enhance suppression of the order parameter and enlargement of the vortex core by magnetic field in the "strong" band, resulting in reduced critical temperature and field. Moreover, increased diffusivity in the "weak" band can result in an upward curvature of the upper critical field near the transition temperature. A particularly interesting feature found in our model is the appearance of additional bound states at the gap edge in the "strong" ballistic band, which are absent in the single-band case. Furthermore, coupling with the "weak" diffusive band leads to reduced band gaps and van Hove singularities of energy bands of the vortex lattice in the "strong" ballistic band. We find these intriguing features for parameter values appropriate for MgB2_2.Comment: 11 pages, 14 figure

    On the electronic structure of CaCuO2 and SrCuO2

    Full text link
    Recent electronic structure calculations for the prototypical lowdimensional cuprate compounds CaCuO2 ans SrCuO2 performed by Wu et. al. (J. Phys.: Condens. Matter v. 11 p.4637 (1999))are critically reconsidered, applying high precision full-potential bandstructure methods. It is shown that the bandstructure calculations presented by the authors contain several important inconsistencies, which make their main conclusions highly questionable.Comment: 4 pages, 3 figures, submitted to J. Phys. Condens. Matte

    Superfluid Precursor Effects in a Model of Hybridized Bosons and Fermions

    Get PDF
    We examine how a superfluid state is approached in a system of localizedbosons (tightly bound electron pairs) in contact with a reservoir of itinerantfermions (electrons). Assuming spontaneous decay and recombination betweenthese two species, the initially localized states of the bosons change overinto free-particle–like propagating statesas the temperature is lowered and the superfluid transition at Tc is approached. Concomitantly a pseudogap opens up in the fermionic density of states which deepens with decreasing temperature

    Theory of vortices in hybridized ballistic/diffusive-band superconductors

    Get PDF
    • …
    corecore