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Superfluid Precursor Effects in a Model of Hybridized Bosons and Fermions
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We examine how a superfluid state is approached in a system of localized bosons (tightly bound
electron pairs) in contact with a reservoir of itinerant fermions (electrons). Assuming spontaneous
decay and recombination between these two species, the initially localized states of the bosons change
over into free-particle —like propagating states as the temperature is lowered and the superAuid transition
at T, is approached. Concomitantly a pseudogap opens up in the fermionic density of states which
deepens with decreasing temperature.

PACS numbers: 67.20.+k, 05.30.—d, 74.20.—z

In order to describe the crossover [1] between weak-
coupling BCS and strong-coupling bipolaronic supercon-
ductivity [2] in an electron-phonon coupled system, the
boson-fermion model has been introduced [3]. It consists
of a mixture of itinerant electrons (fermions) and tightly
bound electron pairs (hard core bosons) of polaronic ori-
gin which can spontaneously decay into itinerant electrons
and vice versa. This is a natural intuitive extension of
the bipolaronic model, where the only charge carriers are
tightly bound electron pairs (bipolarons) which undergo a
superAuid transition below a certain critical temperature
T, . Studies of the polaron problem [4] indicate that in the
intermediary electron-phonon coupling regime electrons
exist in a mixture of states composed of quasilocalized
bipolarons and itinerant electrons. The bipolarons then
move by spontaneous decay into itinerant electrons and
subsequent recombination.

The boson-fermion model has been suggested as a
possible scenario for high-T, superconductivity [5] and
its thermodynamic and electromagnetic properties have
been extensively studied for the superconducting state
[5,6]. Assuming the bosons to be in free-particle —like
itinerant states [5], the boson-fermion model shows a
superconducting ground state below T, which is approxi-
mately given by the Bose-Einstein transition conden-

sation k&T, = 3 3Fi ns /mz. F. or typical values of the
2i3

boson density (nB —10z2/cm3) and the boson mass
(ma —10 electron masses) T, can easily be of the order
of a few hundred K, which makes this model an attractive
candidate for high-T, superconductivity.

In real materials we expect the tightly bound electron
pairs (bipolarons) to be localized rather than itinerant.
Nevertheless, the studies carried out on the boson-fermion
model with localized bosons clearly show a superconduct-
ing ground state within mean field and random-phase ap-
proximation (RPA) [6]. It is the purpose of this Letter
to investigate the normal-state properties of this boson-

fermion model and in particular to show how upon ap-
proaching T, the boson spectrum changes from a localized
into an itinerant one, which is a prerequisite for superAu-
idity in such a system.

We define the boson-fermion model by the following
Hamiltonian:

H = (zt —p)gc; c; —t g c; cj + (b~ —2p)
lO (i 4j)cr

X gb; b; + v g(b; c,lc;t + H.c.) . (1)
i l

The localized tightly bound electron pairs are represented
here by boson annihilation (creation) operators b; with(t)

[b, , b; ] = 6,, where i, j denote the sites on a lattice.
We neglected any hard core effects of the tightly bound
electron pairs, which is justified as long as we are in the
dilute limit of the bosons. The conduction electrons are
represented by fermion annihilation (creation) operators

c; with (c;,c, ~) = 8;,8 . The boson and fermion(t) t

operators are assumed to be commuting operators. The
spontaneous decay and recombination process between
bosons and fermions is described by a local interaction

v(b; c,tc;t + b;c;tc;1), where the lattice sites i representt .

some finite small clusters in real systems on which this
exchange process is expected to take place. v denotes
the strength of this interaction, and t the hopping integral
for the tight binding electrons. z denotes the number of
nearest neighbor sites on the lattice, and p, the chemical
potential which is common to both the fermions and
bosons and thus guarantees global charge conservation.
The bosons having charge 2e are assumed to have an
energy level 5& such that 2zt —5& corresponds to the
energy necessary to dissociate a tightly bound electron
pair (bipolaron) into two electrons on the same site.

We base our calculations of the normal state properties
of this boson-fermion mixture [Eq. (1)] on the self-energy
diagrams for fermions and bosons [Figs. 1(a) and 1(b)]
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FIG. 1. Self-energy diagrams for (a) bosons and (b) fermions.

which we determine in a fully self-consistent conserving
way [7]. The expressions for the fermion self-energy
XF(k, co„) and boson self-energy Xs(q, cu ) are hence
given by

v2
XF(k, ~.) = — P GF( k+ q, +—co —cu, )N

X Gs(q, co ),
v2

Xs(q, ~ ) = QGF( —k+ q, —cu„+ cu )
N

k Cdn

X GF(k co~) .

GF(k, ~.) = [I~. —ek —&F(k, ~.)] ',

G~(q, cu ) = [i co —Zo —&a(q, ~ )] ' (3)
denote the fully self-consistent fermion and boson Green's
functions, respectively. k and q denote the momenta, co„
and ~ are the Matsubara frequencies for fermions and
bosons, respectively, and N is the number of sites.

The unperturbed fermion dispersion including the
chemical potential is given by e„- = $„- —p, , g„- =
t(z —Xse'" ), with 6 denoting the vectors linking the
nearest neighbor lattice site. The unperturbed boson
energies are given by Fo = Ap —2p„ the factor 2 in
front of the chemical potential taking into account that
each boson is constituted of two fermions.

The boson-fermion model has been solved by perturba-
tive methods [6] when the bosonic level lies well below
the bottom of the fermionic band, i.e., A~ ( 0, and when
it lies well above the chemical potential, i.e., A~ ) 2p, . In
the first case, the ground state of the system is described
by a superfIuid state of bosons. In the second case, the
ground state is that of a BCS superconductor with bosons
being only virtually excited.

The problem which interests us here is the intermediary
regime where the bo sonic level lies well inside the
fermionic band just above the chemical potential such
that for v = 0 the densities of both bosons as well as
of fermions are finite. For that reason we choose as
characteristic parameters of this model A~ = 0.4 in units
of the fermion bandwidth D = 2zt and the total number of
particles per site (fermions, bosons) n = nF + 2n& = 1.

is chosen to lie well inside the band, avoiding band
edges or the zone center where van Hove singularities
may give rise to specific effects which are not of interest
in the present study. The interesting physical effects of
this model are expected to occur at a temperature scale of

the order of v, which we choose equal to 0.01 in order
to cover a physically realistic temperature regime. Our
choice of A~ = 0.4 implies n ) n, = 0.2952 for v —= 0
which means that only for n ) n, can Bose condensation
occur if v ~ 0. For n ( n, a BCS-like superconducting
state in the fermionic subsystem occurs via fermion pairs
being virtually excited into the unoccupied bosonic states
[6]. In the region n —n, the superconducting transition
temperature shows a rapid rise as is first shown by an
interpolation between the two limits n ( n, and n )
n, [6].

The self-consistent coupled equations (2) and (3) are
solved by an iterative procedure in which GF(k, cu, )
and Gs(q, cu ) are evaluated for a set of Matsubara

]
frequencies cu„= 2vrk&T(v„+ z) for —100 ( v„( +99
and ~ = 2nk~Tv for —100 ( v ( +100. As usual
we only compute the difference between the full and
bare Green' s functions, so that only a small number
of Matsubara frequencies are necessary. We restrict
ourselves in the present study to summing the k and q
vectors over a one-dimensional Brillouin zone with a set
of 101 equally spaced vectors for the bosons as well as
the fermions. This restriction does not lead to results
for the normal state which are qualitatively different from
those when the sums are carried out over two- and three-
dimensional Brillouin zones, as our preliminary results
show. The only qualitative difference between the present
study and a three-dimensional one is that in the present
work we expect and indeed obtain a transition temperature
equal to zero. Since we are basically interested only
in how the various spectral properties of the bosons
and fermions evolve as T, is approached from above,
the present analysis will provide us with a qualitative
understanding of this evolution.

Convergency of the iterative solutions of the self-
consistent equations (2) and (3) is obtained relatively
fast for temperatures down to T = 0.005 in units of
the fermionic bandwidth. The solutions for the fermion
and boson Green's functions in terms of the Matsubara
frequencies were then analytically continued to the real
frequency axis and into the lower half plane using a
standard Pade approximants procedure [8] in order to
obtain the poles of the retarded Green's functions and
hence the excitation spectra for the fermions and bosons.
For bosons, the excitation spectrum is obtained by solving
the equation

cu —(5 —2p, ) —$s(q, cu) = 0, (4)

where cu = cps —
~ ys and X&(q, cu) denotes the retarded

boson self-energy.
The real part of the boson excitations having frequency

are shown in Fig. 2 as a function of the boson mo-
menta qa in the entire Brillouin zone [—~, ~] (where a
denotes the lattice constant) for different temperatures.
We notice that as the temperature is decreased from
T = 0.01 down to 0.005 the effective mass ms(T) of the
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FIG. 2. Real part of the boson energies as a function of
q (in units of the inverse lattice constant) and for various
temperatures (in units of the fermion bandwidth). The chemical
potential for bosons p, B is set equal to zero.

FIG. 3. Imaginary part of the boson energies as a function of
temperature for various wave vectors q. The units are the same
as sn Fsg. 2.

bosons given by tv~ = h q2/2m'(T) in Fig. 2, for q ~ 0
is strongly renormalized down with decreasing tempera-
ture. We obtain mIi(T)/mz = 6.5 for T = 0.02, 2.9 for
T = 0.01, 2.6 for T = 0.8, and saturation at 2.5 as T ap-
proaches T, (= 0 in our case).

The strongest renormalization of the boson spectrum
occurs for small wave vectors triggered by a precursor
effect of superfluidity. This behavior is indeed compatible
with the behavior of (b-b~) which tends to n-(T) —the
Bose distribution function —and shows a strong buildup
of the boson occupation for q going to zero. The overall
shift of the boson spectrum shown in Fig. 2 is due to the
renormalization of the chemical potential for the bosons
defined by pz = —As + 2p, —Xs(0, 0) which goes to
zero as T ~ T, —= 0 as it should [9]. The kink in the
boson spectrum occurring at q —2kF (kF denoting the
Fermi vector for the unperturbed boson-fermion mixture,
v =—0) is an artifact of the one-dimensional k summations
in our Eq. (3) and concerns only modes near this value.
This feature is, moreover, physically irrelevant since
it is only the small-q-vector boson modes which are
predominantly occupied.

Evaluating the imaginary part of the poles of the
boson Green's function, —y- /2, for small q vectors
clearly shows how upon decreasing the temperature the
initially overdamped boson excitations become freely
propagating modes. This is illustrated in Fig. 3 where

y (T)/[cu (T) —tu-~=o(T)] -is plotted as a function of T
for a set of q vectors and shows a T3 behavior except for
the modes with q —2kF.

The onset of coherent free-particle —like motion of the
bosons in the long-wavelength limit as the temperature
decreases is combined with a depletion of fermionic
states near the bosonic energy level, i.e. , near AB/2.
This results in fermion spectral functions which have
particular three-peaked structures and which are most
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FIG. 4. Spectral function of the fermions AF (k, cu) =
—2ImGF(k, cu) for various k vectors near kF ——1 (in units of
the inverse lattice constant) and for T/D = 0.006.

pronounced for k near kF as can be seen from Fig. 4.
This three peak structure comes about from a hybridiza-
tion of the fermions with the bosons which is con-
fined to a frequency regime cu~ = Eo —Xp(0, 0) ~ tu ~
tu2 = Ep Pp(0, 0) + p, in which ImG(k, cu) 4 0. For
the set of parameters in Fig. 4 we have cu~ = 0.0013
and co2 = 0.1882 and p, = 0.1868. The poles of the
fermionic Green's function are given by co —ej, + p, —
ReG(k, cu) = 0. For each k vector two of the solutions lie
just outside this frequency interval [~~, cu2] and thus are
well-defined quasiparticle excitations. The third solution
lying inside [tot t cuz] is an overdamped mode arising from
strong boson-fermion exchange scattering. With increas-
ing k the spectral weight shifts from the peak below cu~ to
that above co~. Because of the existence of well-defined
modes for cu ~ ~~ ~ p, as well as cu ~ co2 ~ p, for k
near the unperturbed Fermi vector kF, a Fermi surface in
such a system cannot exist. The strongest contribution to
the incoherent part (the peak inside [cu~, tu2]) of the spec-
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FIG. 5. The fermionic density of states for various tempera-
tures T/D (= 0.005, 0.006, 0.007, 0.008, and 0.02) showing a
deepening of the pseudogap with decreasing T.

tral function occurs in a narrow region close to ~ = ~]
due to the predominance of bosons with q = 0. As a re-
sult this pushes away the spectral weight of the fermionic
excitations, and thus leads to the formation of a pseudogap
in the fermion density of states at cu = co&. This pseu-
dogap deepens with decreasing temperature (Fig. 5) and
eventually is expected —on the basis of previous mean
field calculations [5,6] in 3D—to open up into a true gap
below T, when a global superconducting state occurs in
the fermionic subsystem and co& goes to zero.

The appearance of this psuedogap is not linked to
the approximation in which the k summation is carried
out over a one-dimensional Brillouin zone. It is a
robust feature of the model, as our preliminary results
of calculation show in which the k summations were
carried out over two-dimensional Brillouin zones. These
calculations lead to results for the spectral functions and
density of states which are practically identical to those
presented here. The pseudogap obtained here is a generic
feature of fermionic systems with attractive interaction in
the intermediary coupling regime as was recently shown
for the 2D negative-U Hubbard model [10]. Already in
that case it was clearly established that the pseudogap is

due to the formation of some strong bosonic resonances
involving tightly bound electron pairs similar to those of
the bosons in the model studied here.

In the present study we have examined the qualitative
features of the boson-fermion model in the normal state as
T, is approached. We showed that due to a precursor ef-
fect of the superAuid state of the bosons the latter evolve
from purely localized into well-defined propagating states
as the temperature is lowered. Concomitantly a pseudo-
gap opens up in the electron density of states which deep-
ens with decreasing temperature, expected to evolve into a
true gap below T, . The fermions near kF are strongly cor-
related into pairs well above T„which is a general feature
of fermionic systems with strong attractive interaction.
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