5 research outputs found

    Construction of Fusion Protein for Enhanced Small RNA Loading to Extracellular Vesicles

    Get PDF
    Extracellular vesicles (EVs) naturally carry cargo from producer cells, such as RNA and protein, and can transfer these messengers to other cells and tissue. This ability provides an interesting opportunity for using EVs as delivery vehicles for therapeutic agents, such as for gene therapy. However, endogenous loading of cargo, such as microRNAs (miRNAs), is not very efficient as the copy number of miRNAs per EV is quite low. Therefore, new methods and tools to enhance the loading of small RNAs is required. In the current study, we developed fusion protein of EV membrane protein CD9 and RNA-binding protein AGO2 (hCD9.hAGO2). We show that the EVs engineered with hCD9.hAGO2 contain significantly higher levels of miRNA or shRNA (miR-466c or shRNA-451, respectively) compared to EVs that are isolated from cells that only overexpress the desired miRNA or shRNA. These hCD9.hAGO2 engineered EVs also transfer their RNA cargo to recipient cells more efficiently. We were not able to detect changes in gene expression levels in recipient cells after the EV treatments, but we show that the cell viability of HUVECs was increased after hCD9.hAGO2 EV treatments. This technical study characterizes the hCD9.hAGO2 fusion protein for the future development of enhanced RNA loading to EVs

    Specific trophoblast transcripts transferred by extracellular vesicles affect gene expression in endometrial epithelial cells and may have a role in embryo-maternal crosstalk

    Get PDF
    Background Successful establishment of pregnancy hinges on appropriate communication between the embryo and the uterus prior to implantation, but the nature of this communication remains poorly understood. Here, we tested the hypothesis that the endometrium is receptive to embryo-derived signals in the form of RNA. Methods We have utilized a non-contact co culture system to simulate the conditions of pre implantation environment of the uterus. We bioorthogonally tagged embryonic RNA and tracked the transferred transcripts to endometrium. Transferred transcripts were separated from endometrial transcripts and sequenced. Changes in endometrial transcripts were quantified using quantitative PCR. Results We show that three specific transcripts are transferred to endometrial cells. We subsequently demonstrate a role of extracellular vesicles (EVs) in this process, as EVs obtained from cultured trophoblast spheroids incubated with endometrial cells induced down-regulation of all the three identified transcripts in endometrial cells. Finally, we show that EVs/nanoparticles captured from conditioned culture media of viable embryos as opposed to degenerating embryos induce ZNF81 down-regulation in endometrial cells, hinting at the functional importance of this intercellular communication. Conclusion Ultimately, our findings demonstrate the existence of an RNA-based communication which may be of critical importance for the establishment of pregnancy.Peer reviewe

    Construction of Fusion Protein for Enhanced Small RNA Loading to Extracellular Vesicles

    No full text
    Extracellular vesicles (EVs) naturally carry cargo from producer cells, such as RNA and protein, and can transfer these messengers to other cells and tissue. This ability provides an interesting opportunity for using EVs as delivery vehicles for therapeutic agents, such as for gene therapy. However, endogenous loading of cargo, such as microRNAs (miRNAs), is not very efficient as the copy number of miRNAs per EV is quite low. Therefore, new methods and tools to enhance the loading of small RNAs is required. In the current study, we developed fusion protein of EV membrane protein CD9 and RNA-binding protein AGO2 (hCD9.hAGO2). We show that the EVs engineered with hCD9.hAGO2 contain significantly higher levels of miRNA or shRNA (miR-466c or shRNA-451, respectively) compared to EVs that are isolated from cells that only overexpress the desired miRNA or shRNA. These hCD9.hAGO2 engineered EVs also transfer their RNA cargo to recipient cells more efficiently. We were not able to detect changes in gene expression levels in recipient cells after the EV treatments, but we show that the cell viability of HUVECs was increased after hCD9.hAGO2 EV treatments. This technical study characterizes the hCD9.hAGO2 fusion protein for the future development of enhanced RNA loading to EVs

    Additional file 1 of Immunogenicity and safety of RAZI recombinant spike protein vaccine (RCP) as a booster dose after priming with BBIBP-CorV: a parallel two groups, randomized, double blind trial

    No full text
    Additional file 1: Table S1. Geometric mean and 95% CI of specific antibody responses (AUC) to S1, RBD and Neutralizing antibody titer in the BBIBP-CorV and RCP groups over the predefined study time schedule. Tables S2-S4. Geometric mean, Geometric mean ratio, Geometric mean fold increase and Seroconversion and their 95% CI for Neutralizing antibodies, anti-RBD, and anti-S1 specific IgG antibodies in the BBIBP-CorV and Razi Cov Pars groups in the participants who received primary vaccination 3, 4, 5 and 6 month before booster dose over the predefined study time schedule. Table S5. Unsolicited adverse events with Not Related, Unlikely, Suspected/Possible, Probable and not assessable relationship to the BBIBP-CorV and Razi Cov Pars vaccines within one-month post-vaccination using ICD-10 code. Table S6. Unsolicited adverse events with probable/suspected relationship to the BBIBP-CorV and Razi Cov Pars vaccines using ICD-10 code. Figure S1. Gating strategy for CD3/CD4/CD8 and IFN-γ flow cytometry data analysis. Figure S2. Comparison of the baseline antibody levels and post-booster antibody responses among the four tested groups with different prime-boosting intervals (3, 4, 5 and 6 months before booster dose) on days 0 and 14
    corecore