237 research outputs found

    In Search of Price and Service Competition in Residential Real Estate Brokerage: Breaking the Cartel

    Get PDF
    This article explores opportunities for price and service competition in residential real estate brokerage. It is designed to give an overview of both the problem and some promising solutions. The article details the home purchase transaction, reviews the market structure of the industry, identifies the trade restraints inhibiting competition, and prescribes comprehensive antitrust remedies to induce greater competition

    A Novel Gene Family Controls Species-Specific Morphological Traits in Hydra

    Get PDF
    Understanding the molecular events that underlie the evolution of morphological diversity is a major challenge in biology. Here, to identify genes whose expression correlates with species-specific morphologies, we compared transcriptomes of two closely related Hydra species. We find that species-specific differences in tentacle formation correlate with expression of a taxonomically restricted gene encoding a small secreted protein. We show that gain of function induces changes in morphology that mirror the phenotypic differences observed between species. These results suggest that “novel” genes may be involved in the generation of species-specific morphological traits

    Comparing different deep learning architectures for classification of chest radiographs

    Get PDF
    Chest radiographs are among the most frequently acquired images in radiology and are often the subject of computer vision research. However, most of the models used to classify chest radiographs are derived from openly available deep neural networks, trained on large image datasets. These datasets differ from chest radiographs in that they are mostly color images and have substantially more labels. Therefore, very deep convolutional neural networks (CNN) designed for ImageNet and often representing more complex relationships, might not be required for the comparably simpler task of classifying medical image data. Sixteen different architectures of CNN were compared regarding the classification performance on two openly available datasets, the CheXpert and COVID-19 Image Data Collection. Areas under the receiver operating characteristics curves (AUROC) between 0.83 and 0.89 could be achieved on the CheXpert dataset. On the COVID-19 Image Data Collection, all models showed an excellent ability to detect COVID-19 and non-COVID pneumonia with AUROC values between 0.983 and 0.998. It could be observed, that more shallow networks may achieve results comparable to their deeper and more complex counterparts with shorter training times, enabling classification performances on medical image data close to the state-of-the-art methods even when using limited hardware

    Evaluation of potential tissue heating during percutaneous drill-assisted bone sampling in an in vivo porcine study

    Get PDF
    Background: Minimally invasive, battery-powered drilling systems have become the preferred tool for obtaining representative samples from bone lesions. However, the heat generated during battery-powered bone drilling for bone biopsies has not yet been sufficiently investigated. Thermal necrosis can occur if the bone temperature exceeds a critical threshold for a certain period of time. Purpose: To investigate heat production as a function of femur temperature during and after battery-powered percutaneous bone drilling in a porcine in vivo model. Methods: We performed 16 femur drillings in 13 domestic pigs with an average age of 22 weeks and an average body temperature of 39.7 degrees C, using a battery-powered drilling system and an intraosseous temperature monitoring device. The standardized duration of the drilling procedure was 20 s. The bone core specimens obtained were embedded in 4% formalin, stained with haematoxylin and eosin (H&E) and sent for pathological analysis of tissue quality and signs of thermal damage. Results: No significant changes in the pigs' local temperature were observed after bone drilling with a battery-powered drill device. Across all measurements, the median change in temperature between the initial measurement and the temperature measured after drilling (at 20 s) was 0.1 degrees C. Histological examination of the bone core specimens revealed no signs of mechanical or thermal damage. Conclusion: Overall, this preliminary study shows that battery-powered, drill-assisted harvesting of bone core specimens does not appear to cause mechanical or thermal damage

    The Hydra polyp: Nothing but an active stem cell community

    Get PDF
    Hydra is a powerful stem cell model because its potential immortality and extensive regeneration capacity is due to the presence of three distinct stem cell lineages. All three lineages conform to a well-defined spatial distribution across the whole body column of the polyp. Stem cell function in Hydra is controlled by extracellular cues and intrinsic genetic programs. This review focuses on the elusive stem cell niche of the epithelial layers. Based on a comparison of the differences between, and commonalities among, stem cells and stem cell niches in Hydra and other invertebrates and vertebrates, we propose that the whole body column of the polyp may be considered a stem cell ''niche'' in which stem cell populations are established and signals ensuring the proper balance between stem cells and progenitor cells are integrated. We show that, at over 500 million years old, Hydra offers an early glimpse of the regulatory potential of stem cell niches

    A comprehensive spectroscopic study of the polymorphs of diflunisal and their phase transformations

    Get PDF
    Understanding phase transitions in pharmaceutical materials is of vital importance for drug manufacturing, processing and storage. In this paper we have carried out comprehensive high-resolution spectroscopic studies on the polymorphs of the non-steroidal anti-inflammatory drug diflunisal that has four known polymorphs, forms I-IV (FI-FIV), three of which have known crystal structures. Phase transformations during milling, heating, melt-quenching and exposure to high relative humidity were investigated using Raman and terahertz spectroscopy in combination with differential scanning calorimetry and X-ray powder diffraction. The observed phase transformations indicate the stability order FIII>FI>FII, FIV. Furthermore, crystallization experiments from the gas phase and from solution by fast evaporation of different solvents were carried out. Fast evaporation of an ethanolic solution below 70°C was identified as a reliable and convenient method to obtain the somewhat elusive FII in bulk quantities.This work was supported by Science Foundation Ireland under Grant No. [12/RC/2275] as part of the Synthesis and Solid State Pharmaceutical Centre (SSPC). ARP would like to acknowledge ICHEC, Irish HPC system for computing time on the condominium access (nuig02). ARP also acknowledges the RIA Charlemont grant for financial support of a research visit to the University of Cambridge

    StreptomeDB:a resource for natural compounds isolated from <i>Streptomyces</i> species

    Get PDF
    Bacteria from the genus Streptomyces are very important for the production of natural bioactive compounds such as antibiotic, antitumour or immunosuppressant drugs. Around two-thirds of all known natural antibiotics are produced by these bacteria. An enormous quantity of crucial data related to this genus has been generated and published, but so far no freely available and comprehensive database exists. Here, we present StreptomeDB (http://www.pharmaceutical-bioinformatics.de/streptomedb/). To the best of our knowledge, this is the largest database of natural products isolated from Streptomyces. It contains >2400 unique and diverse compounds from >1900 different Streptomyces strains and substrains. In addition to names and molecular structures of the compounds, information about source organisms, references, biological role, activities and synthesis routes (e.g. polyketide synthase derived and non-ribosomal peptides derived) is included. Data can be accessed through queries on compound names, chemical structures or organisms. Extraction from the literature was performed through automatic text mining of thousands of articles from PubMed, followed by manual curation. All annotated compound structures can be downloaded from the website and applied for in silico screenings for identifying new active molecules with undiscovered properties

    The RNA workbench: Best practices for RNA and high-throughput sequencing bioinformatics in Galaxy

    Get PDF
    RNA-based regulation has become a major research topic in molecular biology. The analysis of epigenetic and expression data is therefore incomplete if RNA-based regulation is not taken into account. Thus, it is increasingly important but not yet standard to combine RNA-centric data and analysis tools with other types of experimental data such as RNA-seq or ChIP-seq. Here, we present the RNA workbench, a comprehensive set of analysis tools and consolidated workflows that enable the researcher to combine these two worlds. Based on the Galaxy framework the workbench guarantees simple access, easy extension, flexible adaption to personal and security needs, and sophisticated analyses that are independent of command-line knowledge. Currently, it includes more than 50 bioinformatics tools that are dedicated to different research areas of RNA biology including RNA structure analysis, RNA alignment, RNA annotation, RNA-protein interaction, ribosome profiling, RNA-seq analysis and RNA target prediction. The workbench is developed and maintained by experts in RNA bioinformatics and the Galaxy framework. Together with the growing community evolving around this workbench, we are committed to keep the workbench up-to-date for future standards and needs, providing researchers with a reliable and robust framework for RNA data analysis
    corecore