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Abstract 

Understanding phase transitions in pharmaceutical materials is of vital importance for drug 

manufacturing, processing and storage. In this paper we have carried out comprehensive 

high-resolution spectroscopic studies on the polymorphs of the non-steroidal anti-

inflammatory drug diflunisal that has four known polymorphs, forms I – IV (FI – FIV), three 

of which have known crystal structures. Phase transformations during milling, heating, melt-

quenching and exposure to high relative humidity were investigated using Raman and 

terahertz spectroscopy in combination with differential scanning calorimetry and X-ray 

powder diffraction. The observed phase transformations indicate the stability order FIII > FI 

> FII, FIV. Furthermore, crystallization experiments from the gas phase and from solution by 

fast evaporation of different solvents were carried out. Fast evaporation of an ethanolic 

solution below 70 °C was identified as a reliable and convenient method to obtain the 

somewhat elusive FII in bulk quantities.  
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1. Introduction  

The existence of different polymorphic forms of drugs has led to major investment and 

efforts into the discovery and study of polymorphs (Dharmendra, 2004; Lee, 2014). During 

drug manufacturing an active pharmaceutical ingredient (API) undergoes various different 

processes and is subjected to different temperatures, pressures and relative humidities (Qiu et 

al., 2009). It is hence vital to understand any polymorphic transformation that a drug 

substance undergoes under different conditions. Understanding crystallization kinetics under 

various conditions will clarify the processes which underpin polymorphic transformations 

that can play an important role in the activity and stability of drugs.  

Traditional solution crystallization experiments can be controlled by adjusting the 

temperature and concentration of the system (Coquerel, 2014). In a liquid phase, the use of 

higher crystallization temperatures can lead to the most thermodynamically stable 

polymorphic form (Hao et al., 2012). Sublimation (Kamali et al., 2016) and melt quenching 

(Patterson et al., 2005) are solvent free techniques that can be used for purification and for the 

production of amorphous drug forms, respectively. Furthermore, polymorph seeds for bulk 

crystallization can be obtained by sublimation and melt quenching. It has been shown 

recently that templating can be applied to selectively grow polymorphs by sublimation 

(Kamali et al., 2016; Srirambhatla et al., 2016) that otherwise gives the high temperature 

metastable state (Pallipurath et al., 2015). The fast evaporation technique can provide access 

to kinetically controlled polymorphs (Bag et al., 2011). ROY by Eli Lilly is one of the most 

interesting polymorphic compounds, having nine known forms. The presence of these 

polymorphs were detected on a hot stage microscope, where they crystallized from the melt 

(Chen et al., 2005).  

Milling is regularly employed in the pharmaceutical industry for particle size reduction. 

However, it can also lead to polymorphic transformations, often yielding more 

thermodynamically stable forms (MacFhionnghaile et al., 2014). In contrast, cryogenic 

milling can provide access to metastable and amorphous forms (MacFhionnghaile et al., 

2014). This technique has the added advantage that the low temperature used makes the 

material more brittle and thus more millable. Small quantities of solvents added to the milling 

processes act as lubricants or mechanical catalysts for polymorphic transformation (Friscic et 

al., 2009). Liquid assisted grinding is a subset of solvent assisted milling techniques that are 

used to understand polymorphic transformation and also to screen for co-crystals (Friscic et 

al., 2009).  

Diflunisal is a Biopharmaceutics Classification System (BCS) class II, non-steroidal anti-

inflammatory drug used in the treatment of rheumatoid arthritis. It has four known 

polymorphs, all of which crystallize as long, thin needles. Form I (FI) is crystallized from 

toluene (triclinic; unit cell parameters – 3.8, 6.77, 21.65, 82.3, 83.99, 81.98; REF code: 
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FAFWIS01) (Cross et al., 2003). Form II (FII) is precipitated from ethanol using water as an 

anti-solvent (Brittain et al., 2005). The single crystal structure could not be determined due to 

the difficulty in growing X-ray suitable single crystals of this polymorph. Form III (FIII) is 

crystallized from ethanol (Cross et al., 2003) and its structure was solved through refinement 

of its powder pattern (orthorhombic; unit cell parameters – 39.7, 14.1, 3.83; REF code: 

FAFWIS02). Form IV (FIV) has a solvate channel structure and was reported by Hansen et 

al. (monoclinic; unit cell parameters – 34.66, 3.74, 20.737, β = 110.57; REF code: FAFWIS) 

(Hansen et al., 2001). The intrinsic dissolution rate was reported to follow the order 

IV>II>III>I, with zero order kinetics, however the order of thermodynamic stability amongst 

the polymorphs has not been clearly established (Perlovich et al., 2002). Sung et al. achieved 

polymorph control through the use of different surfactants and microemulsion systems (Sung 

et al., 2013). For example, they produced FIII using bicontinous or oil-in-water emulsions 

and the FIV hydrate using water-in-oil emulsion (Sung et al., 2013). Sung et al. were also 

able to modify the size and aspect ratio of crystals using various surfactants.  

In this paper, we report extensive spectroscopic studies of the phase transformations of 

diflunisal polymorphs. We have also identified a new technique to obtain FII in bulk that is 

superior to the currently used method.  

 

2. Materials and methods 

2.1 Materials  

Diflunisal was purchased from Baoji Guokang Bio-Technology Co.,Ltd, China. The solvents 

were purchased from Sigma Aldrich and were used without further purification.  

2.2 Preparation of polymorphs 

FI is the commercial form and was used as received. FII was obtained by dissolving FI in 

ethanol and precipitating it out with water (Brittain et al., 2005). FIII was obtained by 

recrystallization of FI from ethanol (Cross et al., 2003). FIV was obtained by recrystallizing 

FI from a 50:50 mixture of acetone and water (Hansen et al., 2001). The identity and phase 

purity of all forms was confirmed by X-ray powder diffraction. 

2.3 Ball milling  

Room temperature milling (RTBM) experiments were carried out in an oscillatory ball mill 

(Mixer Mill MM400, Retsch GmbH & Co., Germany) at 25 Hz. using a 25 mL stainless steel 

milling jar containing one 15-mm diameter stainless steel ball. 0.5 g of each sample was 

milled for 5, 15, 30, 60, 90 and 120 mins. For long milling times the jars were allowed to cool 

for 15 min after every 30 mins to avoid overheating.  
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Cryogenic milling (CBM) was carried out using the same set-up. The milling jars were 

initially cooled in liquid nitrogen for 5 min and subsequently for 2.5 min after every 7.5 min 

of milling. Polymorphs FI, FII and FIII were milled for 60 mins and 120 mins.  

Liquid assisted grinding (LAG) experiments were carried out using the same set up, using 

100 µL of nine different solvents, namely: water, acetone, ethanol, methanol, toluene, 

terahydrofuran (THF), dimethyformamide (DMF), valeric acid (VA) and chloroform. These 

systems were milled for 5, 10 and 15 min at room temperature.  

2.4 Fast evaporation   

Diflunisal FI was dissolved in five different solvents: methanol, ethanol, acetone, THF and 

chloroform. The solvents were evaporated at 60 ºC using a rotary evaporator. For higher 

temperatures, up to 130 ºC, fast evaporation was achieved through heating and rapid stirring 

of the solution in a round bottom flask, under reduced pressure in a conventional oil bath 

fitted with a solvent trap.  

2.5 Sublimation  

Sublimation experiments were carried out in a vacuum oven as previously described (Kamali 

et al., 2016), under vacuum (<200 mbar, oven temperature of 80 ºC). The samples were 

independently heated using a microheater fitted to the sublimation area to attain a final 

temperature of 160 °C. Sublimation was carried out for a time interval of 24 hrs for FI and 

FII, and 10 hrs for FIII.  

2.6 Melt quenching (QM) 

All three polymorphs of diflunisal were melted on a hot plate and subsequently immersed in 

liquid nitrogen and used for further analysis.  

2.7 X-ray powder diffraction (XRPD) 

XRPD patterns of all the samples were collected with an Inel Equinox 3000 (Cu K, 35 kV, 

25 A), between 5 and 80° (2θ) using a curved position sensitive detector calibrated using 

Y2O3. The sample holder was rotated during data collection to reduce preferred orientation 

effects. Calculated patterns for the polymorphs with known crystal structures can be found in 

the Appendix (Fig. A.1).  

2.8 Differential scanning calorimetry (DSC) 

DSC experiments were performed on a STA625 thermal analyser from Rheometric Scientific 

(Piscataway, New Jersey) in open aluminum crucibles, at 10 °C/min, under nitrogen gas. 

Calibration was performed using an indium standard. Further DSC experiments on FII were 

performed on a DSC 8500 (Perkin Elmer) in sealed aluminium pans at 100 °C/min under 

nitrogen gas following temperature and enthalpic calibration with an indium standard.  
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2.9 Near infra-red spectroscopy (NIR) 

NIR spectra of bulk samples (~250 mg) were collected in glass vials (15 mm × 45 mm) on a 

Perkin Elmer Spectrum One fitted with an NIR reflectance attachment. Spectra were 

collected in the range of 10000 − 4000 cm
−1

, with a resolution of 4 cm
−1

 and 32 integrated 

scans. 

2.10 Attenuated total reflectance infra-red spectroscopy (ATR-IR) 

FT-MIR spectra were collected on a Perkin Elmer Spectrum 400 fitted with an ATR 

reflectance attachment. Spectra were collected in the range of 650 − 3600 cm
−1

, with a 

resolution of 4 cm
−1

 and four integrated scans on a diamond/ZnSe window.  

2.11 Terahertz time-domain spectroscopy (THz-TDS) 

The terahertz time domain spectra were collected using the Advantest system (TAS7500TS) 

in the range of 0.2 to 5 THz, at a resolution of 7.6 GHz, and 8192 integrated scans. The 

polymorphs were highly absorbing, hence they had to be diluted by geometric mixing of the 

samples with PTFE powder and making pellets using a 2 ton tablet press. The pellets were 

placed in a cuvette under vacuum (2.8 x 10
-1

 mbar). The temperature was controlled using a 

50 W heater and data were acquired at 10 K intervals from room temperature up to 380 K. 

The absorption spectra were calculated in Matlab following a standard procedure for 

transmission terahertz measurements such as described by Jepsen et al. (Jepsen et al., 2017).  

2.12 Raman spectroscopy  

Raman spectra were collected using the Renishaw Invia micro-Raman spectrometer (100 – 

3600 cm
-1

 range, 4 cm
-1

 resolution, 10 s exposure time, 0.5% laser power, 785 nm laser).  

 

3. Results and Discussion  

IR spectral assignments were carried out by Martinez-Oharri et al. to unravel the 

intermolecular hydrogen bonding interactions involved in all four forms of diflunisal before 

the crystal structures were available (Martinez-Oharri et al., 1999). Martinez-Oharri et al. 

concluded that FI and IV have similar interactions, while the interactions in FII resemble 

those in FIII. The major difference between FIV and the other forms was found for the (C-

F) stretching bands between 1310 and 1410 cm
-1

. We have now carried out an extensive 

spectroscopic analysis of all four forms, taking into account the crystal structure data that are 

now available.  

Raman spectroscopy (Fig. 1) shows clear differences between the four polymorphs in the 

phonon regions, which suggests differences in crystal structure. FI and FIV have out-of-plane 

stretches at 708 cm
-1

, while FII and III have these stretches at 712 cm
-1

. All three polymorphs 

have intramolecular H-bonding and the eight membered carboxylic acid dimer motif (Cross 
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et al., 2003). A notable similarity in all four structures is the presence of OH deformations of 

monomeric COOH groups around 1270 cm
-1

 suggesting that there are free COOHs on the 

surface of the crystals. The major differences between the four structures are in the carbonyl 

regions, which are influenced by intramolecular H-bonding interactions. Three C=O stretches 

are observed in all polymorphs. Two of the C=O stretches occur at 1611 and 1629 cm
-1

. 

These stretches are roughly 50 cm
-1

 lower in wavenumber than typically observed for 

carboxylic acids due to the presence of the ortho-hydroxyl group (Socrates, 2001). The third 

C=O stretch indicates the extent of intramolecular H-bonding (Socrates, 2001). FI has this 

band at 1685 cm
-1

, at higher frequency than the other polymorphs. FIV has the corresponding 

stretch at 1665 cm
-1 

indicating the next highest degree of H-bonding, followed by FII at 1658 

cm
-1

 and FIII at 1651cm
-1

. While in all polymorphs intramolecular H-bonds and the 

carboxylic acid dimer are present, in FI the o-hydroxy groups of adjacent diflunisal molecules 

also form a four-membered ring, which in turn leads to the formation of a chain structure 

(Cross et al., 2003). This feature is missing in FIII and IV as the o-hydroxy groups on the 

adjacent diflunisal molecules face away from each other (Scheme 1). A more detailed list of 

the spectral differences can be found in Table 1. Brittain et al. carried out fluorescence 

spectroscopy to study the differences in the electronic levels, as a result of structural 

differences of the polymorphs (Brittain et al., 2005). This they attribute to the extent of 

interactions due to salicylate groups. FI had an emission pattern different from the others, 

where the double excitation bands were separated to a greater extent, which was attributed to 

the degree of face to face interactions of the salicylate group, with FI having no or lesser 

interactions than the other forms, owing to the absence of carboxylic acid dimers. This study 

was speculative and was carried out before the X-ray single crystal structures were 

determined. It is now evident that FI has a greater extent of H-bonding, with the four-

membered ortho-OH group H-bonding motif and the 1D chains apart from the carboxylic 

acid dimers, which could be the reason for the shift in the excitation peaks. 

MIR spectroscopy supports previous findings (Fig. A.2, Appendix-A), where FI is similar to 

FIV and FII is similar to FIII. Out-of-plane CH stretches at 895 cm
-1

 (1H, Fig. 1), out-plane-

deformation at 649 and 670 cm
-1

 (2H) in 1,2,4-substituted benzene rings and bending modes 

at 1376 cm
-1

 of COH in OH associated with C=O through H-bonding (Socrates et al., 2001) 

are present only in FII and III, while they are absent in FI and FIV. While there is ortho F 

disorder in FI and IV, FIII does not have any disordered F atoms (Cross et al., 2003). The 

stretching and bending modes at 895, 649, 670 and 1376 cm
-1

 suggest the absence of disorder 

in FII similar to FIII. Clear differences in the out-of-plane deformations of CH and CF can be 

found in the region between 1877 and 1990 cm
-1

 (Table 2). The major difference in the 

CH…F interactions is that in FI and FIII these interactions are between the rings carrying the 

F atoms, while in the case of FIV they are between the rings carrying the F and the carboxyl-

substituted ring of the adjacent molecule. In a previous study, we showed that the presence of 
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a co-former in a diflunisal co-crystal prevents disorder due to the presence of CH…F 

interactions between the two molecules (Pallipurath et al., 2016). Structural differences 

between the polymorphs are also reflected in the NIR spectra (Fig. A.3 and Table A.1). There 

are some shifts in the CH-CC combination bands. Red lines in Fig. A.3 represent peaks that 

are similar in Forms II and III, while green lines are peaks that are similar in FII, III and IV. 

Blue lines are peaks that are similar in FI and IV, with * denoting slight shifts in peaks in FI 

compared to FIV.  

3.1 Solution crystallization and fast evaporation techniques  

Diflunisal was crystallized from various solvents by fast removal of the solvent under 

reduced pressure. Acetone, chloroform and THF gave FIV, while methanol gave FIII as 

expected. The corresponding XRPD patterns are shown in Fig. A.4. Interestingly, ethanol 

showed temperature dependent results. Fig. 2a shows the XRPD patterns at intervals of 10 

°C, while Fig. 2b shows the shifting of the Raman peaks in the carbonyl region (1600 – 1700 

cm
-1

) to complement the XRPD data. While at higher temperatures no particular polymorph 

was reliably obtained, at temperatures between 40 and 70 °C FII was selectively produced. 

Usually, FII is prepared by precipitation from ethanol with water and tedious filtration of the 

precipitate in small portions to prevent conversion to FIII during filtration. As shown here, 

fast evaporation of an ethanolic solution of diflunisal below 70 °C presents a more 

convenient and reliable method for the preparation of bulk quantities of this polymorph. 

3.2 Heating-induced phase transformations 

3.2.1 Thermal analysis (TA) 

It is reported that all polymorphs melt at the same temperature, except for FIII that has an 

endotherm at 206 °C. Fig. 3a shows the DSC plot of the four polymorphs indicating that FI 

melts at 214.8 °C. FII gives two overlapping endothermic events, one peaking at 213 °C and 

the other at 214 °C, suggesting that FII converts to FI before melting. This has not been 

previously described in the literature. FIII shows a clear recrystallization peak at 196 °C and 

then melts at 214.5 °C, also suggesting a conversion to FI. This suggests that FI is the 

kinetically controlled, high energy phase, in line with the literature (Cross et al., 2003). FIV 

loses water at 96 °C and then melts at 211 °C. Fig. 3b shows the DSC thermograms of FII 

performed at a heating rate of 100 °C/min. On heating (H1) two endotherms are observed at 

200.5 and 215.5 °C that are assigned to the polymorphic transformation of FII to FI followed 

by the melting of FI, respectively. On cooling from the melt (C1) an exothermic 

crystallization peak is observed at 180 °C. On reheating (H2) only one endotherm is observed 

at 215.5 °C indicating crystallization of FI during cooling.  
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3.2.2 Terahertz time-domain spectroscopy 

Terahertz time-domain spectroscopy probes phonon absorption. To see if the observed 

transformations are gradual or sudden re-arrangements of atoms, we carried out temperature-

dependent terahertz spectroscopy. Fig. 4a shows that FI does not change over the whole 

temperature range, confirming that it is the structure stable at high temperature. In contrast to 

the DSC analysis, conversion of FIII to FI could not be observed on heating up to the 

maximum accessible temperature (Fig. 4b). The maximum temperature at which terahertz 

spectra could be recorded was 480 K (207 °C). As this is only slightly above the transition 

temperature observed by DSC it is likely that poor heat transfer between PTFE and diflunisal 

in the sample pellet is the reason for the failure to observe the FIII→FI conversion. Fig. 4c 

shows that FIV very gradually starts converting to FI at 440 K (167 °C). Very recently Zhang 

et al. published the mode analysis of FI and FIII, using the chirality of the molecules in the 

unit cell as a basis (Zhang et al., 2016). This study suggests that both of these polymorphs 

have similar vibrational characteristics below 200 cm
-1

 and have significant contributions 

from the coupling of inter- and intramolecular modes. Both forms have two molecules in the 

unit cell and in the case of FI, the two molecules are symmetrically equivalent, while in FIII 

they are not, giving rise to non-identical phonon modes. One may note that while the 

terahertz spectra reported by Zhang show very sharp absorption features, it is not so in our 

case. This is predominantly due to the thermal broadening of the spectral peaks as well as the 

use of PTFE as a diluent. While PTFE is not an ideal diluent for terahertz spectroscopy as it 

may cause scattering effects, it has been chosen over other diluents as it allows measurements 

up to 500 K. Despite these effects, the terahertz spectra reported here have sufficient spectral 

resolution to observe and distinguish different polymorphs of diflunisal.  

3.3 Milling induced phase transformations  

3.3.1 Room temperature ball milling 

XRPD patterns and Raman spectra of the milling experiments are shown in Figs. A.4 and A.5 

(Appendix-A). On milling for 30 minutes all polymorphs converted to FIII. This suggests that 

FIII is the thermodynamically stable structure. However, in the case of FI, FIII converts back 

to FI, when milling is continued for 120 min. Fig. A.5a shows the Raman spectral changes in 

the H-bonded C=O stretching region.  

3.3.2 Cryogenic ball milling 

Cryomilling of FI, FII and FIII for 60 min resulted in X-ray amorphous diflunisal (FA, Figs. 

5, A.6 and A.7). The three FA obtained from the different polymorphs were then subjected to 

accelerated temperature and humidity stress testing. Separate samples were placed in an oven 

at 60 °C for 2 hrs, in vacuum for 2 hrs and at 25 and 95 % relative humidity. Similar tests on 

other systems have been reported (Miyazaki et al., 1976). FA produced from all of the 
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polymorphs crystallized to FI (Figs. A.6 and A.7), suggesting that FI is the easily accessible 

high energy state, as per Oswald’s rule of stages (Nývlt, 1995).  

3.3.3 Liquid assisted grinding  

LAG experiments were carried out using various solvents. Solvents like chloroform, 

tertrahydrofuran (THF) and valeric acid resulted in FIV solvates (Fig. 6). Ethanol, methanol, 

acetone, toluene and water gave FIII (Figs. 6 and A.12). The formation of FIII on milling in 

the presence of traces of toluene is noteworthy, as solution crystallization from toluene yields 

FI. Similarly, water and acetone normally yield FIV solvate structures, while in the LAG 

experiments they seem to act as lubricants and lead to the thermodynamically stable FIII.  

3.4 Humidity induced transformations 

Another important factor during the processing of drugs is their stability under varying 

humidity conditions. All four polymorphs were placed in 95 % relative humidity chambers. 

FI, FIII and FIV were stable for 24 hrs, while FII converted to FIII as evident from the XRPD 

pattern (Fig. A.9). This may be explained by the fact that FII and III have very similar 

intermolecular interactions as discussed earlier, making the pathway for transformation easier 

than in the case of other polymorphs.  

3.5 Crystallization from the melt  

Melt quenching is often used as a technique to produce glasses, but in cases of fast 

crystallizers like diflunisal, this often results in the highest energy phase following Ostwald’s 

rule of stages. We have observed that some parts of the melt started crystallizing even before 

it was immersed in liquid nitrogen. The H-bonded carbonyl region in the Raman spectrum of 

melt-quenched FI (Fig. A.10) suggests that the H-bonding pattern of the crystallized melt is 

very much similar to FI. However, while peaks at 783 and 683 cm
-1

 in the IR spectrum of 

melt-quenched FI (Fig. 7b) are in agreement with this, a shoulder at 848 cm
-1

 also suggests 

the presence of FIV. The features around 1096 cm
-1

 suggest the presence of both FI and FIV. 

The XRPD pattern (Fig. 7a) indicates the presence of FIV but some FI cannot be excluded. 

Fast crystallization possibly gives rise to FI, while liquid nitrogen may act as a solvent in 

crystallizing the remaining melt into FIV. Another possibility is that FIV is formed initially 

and the liquid nitrogen temperature arrests its conversion to FI.  

3.6 Sublimation 

Sublimation is a technique often used as a recrystallization method to remove impurities. In 

the absence of any template, it invariably results in the high energy metastable phase. 

Sublimation of diflunisal resulted in FI, which is the high temperature metastable state. The 

XRPD pattern is shown in Fig. A.11. We have previously used polymorph templates to 

control the selective crystallization of carbamazepine polymorphs from the gas phase 
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(Kamali et al., 2016). Similar templating experiments with diflunisal were unsuccessful and 

only resulted in FI.  

3.7 Order of polymorph stability 

The observed phase transformations give insight into the stability order of the four 

polymorphs of diflunisal. With all forms converting to FI at high temperature, it is safe to say 

that FI is the high temperature metastable form. As all the forms resulted in FIII on milling, 

FIII can be assigned as the thermodynamically stable form. The packing coefficients 

computed for FI and FIII (with disorder removed from FI) of 70.4 and 72.9 % respectively 

also support this stability order. The only technique by which FIV sans solvent molecules in 

its channels can be produced is by melt-quenching, along with FI, suggesting that this form is 

probably formed as the first kinetic product according to Oswald’s rule of stages. The 

presence of solvent in the channels is known to give up to 9 kJ/mol added stability to 

structures (Cabeza et al., 2007), making the FIV solvate more stable than bare FIV. FII is 

known to convert into FIII on milling and also under humid conditions, making it less stable 

than FIII. However, it also converts partially to FI as seen in the thermal analysis, making FII 

less stable than FI at higher temperatures. The stability order of diflunisal polymorphs was 

first deduced from solubility experiments in water at 30 °C and was found to be FII > FIII > 

FI (Cotton and Hux, 1985). This was before the existence of either the channel solvate FIV 

(Hansen et al., 2001) or the more recent hydrate (Sung et al., 2013) were known. The 

possibility that conversion to hydrate forms during the original solubility experiments could 

invalidate any stability order conclusions from solubility measurements has been raised 

(Perlovich et al., 2002). The results reported here in contrast to the solubility based work 

suggest the order FIII > FI > FII, FIV. The relative stability of FII and FIV remains unclear 

and computational studies are currently on-going to establish the order of stability of these 

polymorphs.  

3.8 Merit of using spectroscopy 

For studying polymorphic organic or pharmaceutical compounds like diflunisal whose 

polymorphs have very similar and complex powder X-ray diffraction patterns, spectroscopic 

techniques are often superior. In this study we have used several spectroscopic techniques to 

identify the different phases and the choice of the different techniques warrant a discussion. 

Raman spectroscopy is an excellent tool to study crystals of different polymorphs and in the 

case of diflunisal, it has been one of the best ways to differentiate between the different forms 

based on the C=O bond vibrations and relating them to the strength of H-bonding of the 

motifs in the respective structures. However, a bulk technique like ATR-IR spectroscopy is 

generally more suited to study low quantities of impurities or of a second phase. For Raman 

microscopy, a 1 micron laser spot with a X5 objective results in the analysis of particles of 

roughly 200 µm in size, while the window in an ATR-IR is about 1mm so that bulk samples 
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can be easily studied. Hence, we employed ATR-IR spectroscopy to study the melt-quench 

samples, while other techniques did not give a conclusive result. Terahertz-time domain 

spectroscopy was used to study the phase transformations, as the set up in transmission-mode 

allowed for the entire sample to be placed in a heated chamber, without having significant 

signal loss. The spectral region (33 – 133 cm 
-1

) is generally not achievable by conventional 

Raman microscopes, as it is too close to the laser line corresponding to Rayleigh scattering 

from the sample. The terahertz region is an excellent spectral space that reliably distinguishes 

between different solid state forms, owing to changes in the behaviour of phonons in different 

structural arrangements.  

 

4. Conclusions 

In conclusion, we have, in this paper carried out extensive spectroscopic and phase 

transformation studies on the non-steroidal anti-inflammatory drug diflunisal. It is often 

difficult to reliably identify the polymorphs formed by XRPD. Spectroscopy can provide a 

useful alternative. The H-bonding patterns of the four polymorphs of diflunisal have a major 

influence on the carbonyl stretching frequencies observed in their Raman spectra. These 

differences provide a reliable basis for the distinction of diflunisal polymorphs. FI and IV, 

both have disordered F atoms and are structurally very similar, resulting in similar Raman 

and IR patterns. FII and III have similar spectral features suggesting that their structures are 

closely related. The various phase transformations undergone by the polymorphs are 

summarized in Scheme 2.  

FII, which has a higher intrinsic dissolution rate than FI and III, has generally been very 

elusive, with preparation of bulk quantities hampered by its rapid transformation into FIII. 

Fast evaporation of an ethanolic solution below 80 °C seems to be a reliable method for the 

production of bulk quantities of FII, especially. However, under high relative humidity 

conditions FII eventually converts to FIII.    
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Appendix-A. Supplementary data 

Additional X-ray powder patterns, near infrared spectral assignments, IR, NIR and Raman 

spectra.  
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Schemes:  

 

 

 

 

 

 

 

Scheme 1. Interactions in the polymorphs of diflunisal, (a) FI (FAFWIS01), (b) FIII 

(FAFWIS02), and (c) FIV (FAFWIS). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2. Phase transformations of diflunisal polymorphs under various conditions.  

The dashed arrows indicate that the pathway cannot be unambiguously assigned. 
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Figures 

 

Fig. 1. Molecular structure of diflunisal, with the positions of the carbon atoms in the 1,2,4 

tri-substituted ring denoted as 1H and 2H (left) and different wavenumber ranges of the 

Raman spectra of the four polymorphs (right). The areas highlighted inside blue boxes are the 

peaks that are influenced by the structural differences in the polymorphs, i.e. the nature and 

strength of H-bonding. 

 

Fig. 2. (a) X-ray powder diffraction patterns and (b) Raman spectra of diflunisal polymorphs 

obtained by fast evaporation of ethanol at various temperatures. The inset in (b) shows the 

carbonyl region of the Raman spectra, expanded for clarity. Both techniques show the 

formation of FII between 40 ºC to 70 ºC, and FI or FIII at higher temperatures. 
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Fig. 3. Thermal analysis of the polymorphs of diflunisal. (a) Solid lines represent differential 

scanning calorimetry (DSC) and the dotted lines represent thermogravimetric analysis (TGA) 

at 10 ºC/min heating rate. The inset in green shows the recrystallization event of FIII to FI. 

The inset in red shows the double peak in the case of FII. (b) DSC of FII run at 100 ºC/min 

(H1), followed by a cooling cycle (C1) and a reheating cycle (H2).  

 

Fig. 4. Temperature-dependant terahertz time-domain spectroscopic analysis of the 

polymorphs of diflunisal. (a) FI, (b) FIII, and (c) FIV (obtained from acetone and water) were 

mixed with PTFE and heated from room temperature to 205 °C. FIV converts to FI at 165 °C.  

The colour of the spectra denotes the temperature at which the spectra were obtained. The 

spectral region here represents phonon modes between 33cm
-1

 and 133 cm
-1

 (not achieved 

through conventional Raman spectroscopy) 
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Fig. 5. X-ray powder diffraction patterns of (A) FI, (B) FI cryomilled for 60 min and kept 

under vacuum for 2 hrs, (C) FI cryomilled for 60 min and kept at 60 ºC for 2 hrs, (D) FI 

cryomilled for 60 min, (E) FI cryomilled for 60 min and kept at 25% relative humidity and 

(F) FI cryomilled for 60 min and kept at 95% relative humidity. All patterns show ageing and 

formation of FI.  

 

 

 

 

 

 

 

 

 

 

Fig. 6. X-ray powder diffraction patterns of diflunisal polymorphs obtained from liquid 

assisted grinding of FI with (a) acetone, methanol, ethanol and water showing the formation 

of FIII and (b) with chloroform, terahydrofuran (THF) and valeric acid showing the 

formation of FIV channel solvates. 
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Fig. 7. X-ray powder diffraction patterns of FIV and melt-quenched FI (A), FII (B) and FIII 

(C); (b) Mid-IR spectra (transmission mode) of melt-quenched FI, pure FI and FIV showing 

the presence of both FI and FIV in the melt-quenched sample.  
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Table 1. Raman spectral assignments of peaks that are distinct in the four different 

polymorphs of diflunisal. 

 

FI FII FIII FIV Assignments 

126 118 (sh) 121 123 

Phonon region 

132 142 137   

181 183 186 181 

204 211 213 204 

234   234 229 

243 238   243 

250 254 254 263 

273 270 275   

        Out-of-plane CH deformation in 

trisubstituted benzenes, 

normally associated with the 

presence of halogen substitution. 

708 712 712 708 

  727 718 725 

        

1230 1221     

CH in-plane deformations 
 

1235   1230 

  1250 1250 1252 

 1275 1271 1273 1273 O-H deformation in COOH 

monomers     1292   

1611 1611 1610 1611 C=O stretching in aromatic 

COOH with ortho-OH 1629 1629 1629 1631 

1685 1658 1651 1665 

C=O stretches involved in intra-

molecular H-bonding 

interactions 
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Table 2. IR spectral assignments of the four polymorphs of diflunisal. 

 

FI FII FIII FIV Assignments 

  649 649   

Out-of-plane deformation 

(2H) in 1,2,4-trisubstituted 

benzene rings 

  670 670 
 

698 702 702 700 

714 718 718 716 

728     735 

  894 895   

Out-of-plane deformation 

(1H) in 1,2,4-trisubstituted 

benzene rings.  

1096     1095 C=C stretching in 

asymmetrically substituted 

benzene rings 
  1207 1208 

 

1298 1329 1329 1297 OH deformations 

  1376 1376   COH bending in OH 

groups associated with 

C=O groups through H-

bonding 
1400 1409 1409 1410 

          

2546 2532 2532 2531 OH stretch in intra-

molecular H-bonded o-

substituted carboxylic acid 

2566 2561 2561 
 

2603 2623 2618   

2872 2862 2862 2867 
OH stretch in associated 

carboxylic acid 

  2940 2949   

Aromatic C-H stretch   2991 2986 
 

3075 3052 3063 3077 

  3262 3262   
OH stretch in associated 

carboxylic acid 

1877     1876 

C-H out-of-plane 

deformation, overtones and 

combination bands 

  1908 1905 
 

  
 

1927 
 

  1934 1937 1941 

1980 
 

1980 1977 

      1990 

 


