44 research outputs found

    Measurements of the rare decay K_{L} -> e^{+} e^{-} e^{+} e^{-}

    Full text link
    We observe 441 K_{L} -> e^{+} e^{-} e^{+} e^{-} candidate events with a background of 4.2 events and measure B(K_{L} -> e^{+} e^{-} e^{+} e^{-}) = (3.72 \pm 0.18(stat) \pm 0.23(syst)) \times 10^{-8} in the KTeV/E799II experiment at Fermilab. Using the distribution of the angle between the planes of the e^{+} e^{-} pairs, we measure the CP parameters beta_{CP} = -0.23 \pm 0.09(stat) \pm 0.02(syst) and gamma_{CP} = -0.09 \pm 0.09(stat) \pm 0.02(syst). We also present the first detailed study of the e^{+} e^{-} invariant mass spectrum in this decay mode.Comment: 14 pages, 4 figure

    Hans Pfitzner

    No full text

    Einleitung

    No full text

    Epilepsia partialis continua bei Läsion des Stirnhirnes und des Thalamus opticus

    No full text

    Haemophilus influenzae phasevarions have evolved from type III DNA restriction systems into epigenetic regulators of gene expression

    No full text
    Phase variably expressed ( randomly switching) methyltransferases associated with type III restriction-modification (R-M) systems have been identified in a variety of pathogenic bacteria. We have previously shown that a phase variable methyltransferase (Mod) associated with a type III R-M system in Haemophilus influenzae strain Rd coordinates the random switching of expression of multiple genes, and constitutes a phase variable regulon-'phasevarion'. We have now identified the recognition site for the Mod methyltransferase in H. influenzae strain Rd as 5'-CGAAT-3'. This is the same recognition site as the previously described HinfIII system. A survey of 59 H. influenzae strains indicated significant sequence heterogeneity in the central, variable region of the mod gene associated with target site recognition. Intra-and inter-strain transformation experiments using Mod methylated or non-methylated plasmids, and a methylation site assay demonstrated that the sequence heterogeneity seen in the region encoding target site specificity does correlate to distinct target sites. Mutations were identified within the res gene in several strains surveyed indicating that Res is not functional. These data suggest that evolution of this type III R- M system into an epigenetic mechanism for controlling gene expression has, in some strains, resulted in loss of the DNA restriction function
    corecore