1,211 research outputs found

    Supersymmetric black holes in 2D dilaton supergravity: baldness and extremality

    Full text link
    We present a systematic discussion of supersymmetric solutions of 2D dilaton supergravity. In particular those solutions which retain at least half of the supersymmetries are ground states with respect to the bosonic Casimir function (essentially the ADM mass). Nevertheless, by tuning the prepotential appropriately, black hole solutions may emerge with an arbitrary number of Killing horizons. The absence of dilatino and gravitino hair is proven. Moreover, the impossibility of supersymmetric dS ground states and of nonextremal black holes is confirmed, even in the presence of a dilaton. In these derivations the knowledge of the general analytic solution of 2D dilaton supergravity plays an important role. The latter result is addressed in the more general context of gPSMs which have no supergravity interpretation. Finally it is demonstrated that the inclusion of non-minimally coupled matter, a step which is already nontrivial by itself, does not change these features in an essential way.Comment: 30 pages, LaTeX, v2: mayor revision (rearranged title, shortened abstract, revised introduction, inserted section from appendix to main text, added subsection with new material on non-SUGRA gPSMs, added clarifying remarks at some places, updated references); v3: corrected minor misprints, added note with a new referenc

    Highly Stable Red-Light-Emitting Electrochemical Cells

    Get PDF
    The synthesis and characterization of a series of new cyclometalated iridium(III) complexes [Ir(ppy) 2 (N ∧ N)][PF 6 ] in which Hppy = 2-phenylpyridine and N ∧ N is (pyridin-2-yl)benzo[ d ]thiazole ( L1 ), 2-(4-( tert -butyl)pyridin-2-yl)benzo[ d ]thiazole ( L2 ), 2-(6-phenylpyridin-2-yl)benzo[ d ]thiazole ( L3 ), 2-(4-( tert -butyl)-6-phenylpyridin-2-yl)benzo[ d ]thiazole ( L4 ), 2,6-bis(benzo[ d ]thiazol-2-yl)pyridine ( L5 ), 2-(pyridin-2-yl)benzo[ d ]oxazole ( L6 ), or 2,2′-dibenzo[ d ]thiazole ( L7 ) are reported. The single crystal structures of [Ir(ppy) 2 ( L1 )][PF 6 ]·1.5CH 2 Cl 2 , [Ir(ppy) 2 ( L6 )][PF 6 ]·CH 2 Cl 2 , and [Ir(ppy) 2 ( L7 )][PF 6 ] have been determined. The new complexes are efficient red emitters and have been used in the active layers in light-emitting electrochemical cells (LECs). The effects of modifications of the 2-(pyridin-2-yl)benzo[ d ]thiazole ligand on the photoluminescence and LEC performance have been examined. Extremely stable red-emitting LECs are obtained, and when [Ir(ppy) 2 ( L1 )][PF 6 ], [Ir(ppy) 2 ( L2 )][PF 6 ], or [Ir(ppy) 2 ( L3 )][PF 6 ] are used in the active layer, device lifetimes greater than 1000, 6000, and 4000 h, respectively, are observe

    Electron-correlation effects in appearance-potential spectra of Ni

    Full text link
    Spin-resolved and temperature-dependent appearance-potential spectra of ferromagnetic Nickel are measured and analyzed theoretically. The Lander self-convolution model which relates the line shape to the unoccupied part of the local density of states turns out to be insufficient. Electron correlations and orbitally resolved transition-matrix elements are shown to be essential for a quantitative agreement between experiment and theory.Comment: LaTeX, 6 pages, 2 eps figures included, Phys. Rev. B (in press

    Oxygen adsorption on the Ru (10 bar 1 0) surface: Anomalous coverage dependence

    Full text link
    Oxygen adsorption onto Ru (10 bar 1 0) results in the formation of two ordered overlayers, i.e. a c(2 times 4)-2O and a (2 times 1)pg-2O phase, which were analyzed by low-energy electron diffraction (LEED) and density functional theory (DFT) calculation. In addition, the vibrational properties of these overlayers were studied by high-resolution electron loss spectroscopy. In both phases, oxygen occupies the threefold coordinated hcp site along the densely packed rows on an otherwise unreconstructed surface, i.e. the O atoms are attached to two atoms in the first Ru layer Ru(1) and to one Ru atom in the second layer Ru(2), forming zigzag chains along the troughs. While in the low-coverage c(2 times 4)-O phase, the bond lengths of O to Ru(1) and Ru(2) are 2.08 A and 2.03 A, respectively, corresponding bond lengths in the high-coverage (2 times 1)-2O phase are 2.01 A and 2.04 A (LEED). Although the adsorption energy decreases by 220 meV with O coverage (DFT calculations), we observe experimentally a shortening of the Ru(1)-O bond length with O coverage. This effect could not be reconciled with the present DFT-GGA calculations. The nu(Ru-O) stretch mode is found at 67 meV [c(2 times 4)-2O] and 64 meV [(2 times 1)pg-2O].Comment: 10 pages, figures are available as hardcopies on request by mailing [email protected], submitted to Phys. Rev. B (8. Aug. 97), other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    Graded Poisson-Sigma Models and Dilaton-Deformed 2D Supergravity Algebra

    Get PDF
    Fermionic extensions of generic 2d gravity theories obtained from the graded Poisson-Sigma model (gPSM) approach show a large degree of ambiguity. In addition, obstructions may reduce the allowed range of fields as given by the bosonic theory, or even prohibit any extension in certain cases. In our present work we relate the finite W-algebras inherent in the gPSM algebra of constraints to algebras which can be interpreted as supergravities in the usual sense (Neuveu-Schwarz or Ramond algebras resp.), deformed by the presence of the dilaton field. With very straightforward and natural assumptions on them --like demanding rigid supersymmetry in a certain flat limit, or linking the anti-commutator of certain fermionic charges to the Hamiltonian constraint-- in the ``genuine'' supergravity obtained in this way the ambiguities disappear, as well as the obstructions referred to above. Thus all especially interesting bosonic models (spherically reduced gravity, the Jackiw-Teitelboim model etc.)\ under these conditions possess a unique fermionic extension and are free from new singularities. The superspace supergravity model of Howe is found as a special case of this supergravity action. For this class of models the relation between bosonic potential and prepotential does not introduce obstructions as well.Comment: 22 pages, LaTeX, JHEP class. v3: Final version, to appear in JHE

    Insights into the Second Law of Thermodynamics from Anisotropic Gas-Surface Interactions

    Full text link
    Thermodynamic implications of anisotropic gas-surface interactions in a closed molecular flow cavity are examined. Anisotropy at the microscopic scale, such as might be caused by reduced-dimensionality surfaces, is shown to lead to reversibility at the macroscopic scale. The possibility of a self-sustaining nonequilibrium stationary state induced by surface anisotropy is demonstrated that simultaneously satisfies flux balance, conservation of momentum, and conservation of energy. Conversely, it is also shown that the second law of thermodynamics prohibits anisotropic gas-surface interactions in "equilibrium", even for reduced dimensionality surfaces. This is particularly startling because reduced dimensionality surfaces are known to exhibit a plethora of anisotropic properties. That gas-surface interactions would be excluded from these anisotropic properties is completely counterintuitive from a causality perspective. These results provide intriguing insights into the second law of thermodynamics and its relation to gas-surface interaction physics.Comment: 28 pages, 11 figure

    Energetics and Vibrational States for Hydrogen on Pt(111)

    Get PDF
    We present a combination of theoretical calculations and experiments for the low-lying vibrational excitations of H and D atoms adsorbed on the Pt(111) surface. The vibrational band states are calculated based on the full three-dimensional adiabatic potential energy surface obtained from first principles calculations. For coverages less than three quarters of a monolayer, the observed experimental high-resolution electron peaks at 31 and 68meV are in excellent agreement with the theoretical transitions between selected bands. Our results convincingly demonstrate the need to go beyond the local harmonic oscillator picture to understand the dynamics of this system.Comment: In press at Phys. Rev. Lett - to appear in April 200

    Size-Dependent Transition to High-Dimensional Chaotic Dynamics in a Two-Dimensional Excitable Medium

    Get PDF
    The spatiotemporal dynamics of an excitable medium with multiple spiral defects is shown to vary smoothly with system size from short-lived transients for small systems to extensive chaos for large systems. A comparison of the Lyapunov dimension density with the average spiral defect density suggests an average dimension per spiral defect varying between three and seven. We discuss some implications of these results for experimental studies of excitable media.Comment: 5 pages, Latex, 4 figure

    Adsorption of CO on a Platinum (111) surface - a study within a four-component relativistic density functional approach

    Get PDF
    We report on results of a theoretical study of the adsorption process of a single carbon oxide molecule on a Platinum (111) surface. A four-component relativistic density functional method was applied to account for a proper description of the strong relativistic effects. A limited number of atoms in the framework of a cluster approach is used to describe the surface. Different adsorption sites are investigated. We found that CO is preferably adsorbed at the top position.Comment: 23 Pages with 4 figure
    corecore