203 research outputs found

    THREE ESSAYS ON THE U.S. BEEF SUPPLY CHAIN: PRODUCTION, MARKETING, AND PRICE DYNAMICS

    Get PDF
    This dissertation contains three essays on select economic components of the U.S. beef industry. The first and second essays concentrate on the different economic problems in beef cattle production. The third essay evaluates the price dynamics and the impact of COVID-19 along the beef supply chain. The first essay explores the economics of culling decisions in cow-calf operations in the U.S. with a novel application of a dynamic mathematical programming model. The results provide an optimal culling strategy under the base model and a range of optimal strategies that vary with respect to different components such as fertility probabilities, market prices, production and replacement heifer costs, calf weights, and pregnancy check use. The results suggest that producers should cull all cows that are older than age 10 considering their productivity and production costs in light of base product prices. The model recommends culling open cows earlier (at age 7) given their productivity status and probabilities. To measure the sensitivity of the optimal results with respect to components, several experiments are run, and outcomes underline the sensitivity of the optimal strategies to market conditions, cost structure, cow fertility, and pregnancy check use. The second essay aims to contribute to the U.S. beef cattle price forecasting literature with its model selection framework which compares traditional time series techniques and machine learning algorithms to select the best technique to provide one-week-ahead steer, heifer, and cull cow price forecasts. The study performs these techniques using weekly Kentucky cattle auction prices with lagged variables and dummy variables for weekly seasonal structure. The results demonstrate that while ARIMA models without seasonality has better performance in forecasting steer prices, the LASSO regression provides better forecasts for heifer and cull cow prices. The model selection results point to the superiority of machine learning techniques over standard ARIMA models when forecasting U.S. livestock prices in larger samples. The third essay investigates the price dynamics along the U.S. beef supply chain and the impact of the COVID-19 shock on the dynamics of vertical price transmission using monthly farm, wholesale, and retail prices for the period 1970-2021. A vertical error correction model along with historical decomposition graphs is employed to measure the impact of the pandemic on price adjustment. The results reveal that the impact of COVID-19 has been uneven across the beef marketing channel, with farmers taking the burden of the shock. The results underline that in the case of the COVID-19 shock, wholesale prices adjusted more quickly than both farm (threefold) and retail prices (tenfold). Historical decomposition graphs also show that the COVID-19 pandemic caused retailers and wholesalers to have higher prices, while farmers received lower prices than their predicted values. The results indicate that the U.S. beef markets were resilient enough to absorb the shocks and return to their pre-shock patterns in 4 to 6 months

    Heart- and liver-type fatty acid binding proteins in lipid and glucose metabolism

    Get PDF
    Heart-type Fatty Acid-Binding Protein (H-FABP) is required for high rates of skeletal muscle long chain fatty acid (LCFA) oxidation and esterification. Here we assessed whether H-FABP affects soleus muscle glucose uptake when measured in vitro in the absence of LCFA. Wild type and H-FABP null mice were fed a standard chow or high fat diet before muscle isolation. With the chow, the mutation increased insulin-dependent deoxyglucose uptake by 141% (P<0.01) at 0.02 mU/ml of insulin, but did not cause a significant effect at 2 mU/ml insulin; skeletal muscle triglyceride and long chain acyl-CoA (LCACoA) levels remained normal. With the fat diet, the mutation increased insulin-dependent deoxyglucose uptake by 190% (P<0.01) at 2 mU/ml insulin, thus partially preventing insulin resistance, and completely prevented the threefold (P<0.001) diet-induced increase of muscle triglyceride levels; however, muscle LCACoA levels showed little or no reduction. With both diets, the mutation reduced the basal (insulinindependent) soleus muscle deoxyglucose uptake by 28% (P<0.05). These results establish a close relationship of FABP-dependent lipid pools with insulin sensitivity, and indicate the existence of a non-acute, antagonistic, and H-FABP-dependent fatty acid regulation of basal and insulin-dependent muscle glucose uptake. Liver fatty acid binding protein (L-FABP) has been proposed to limit the availability of chain LCFA for oxidation and for peroxisome proliferator-activated receptor (PPAR-alpha), a fatty acid binding transcription factor that determines the capacity of hepatic fatty acid oxidation. Here, we used L-FABP null mice to test this hypothesis. Under fasting conditions, this mutation reduced &#946;-hydroxybutyrate (BHB) plasma levels as well as BHB release and palmitic acid oxidation by isolated hepatocytes. However, the capacity for ketogenesis was not reduced: BHB plasma levels were restored by octanoate injection; BHB production and palmitic acid oxidation were normal in liver homogenates; and hepatic expression of key PPAR-alpha target (MCAD, mitochondrial HMG CoA synthase, ACO, CYP4A3) and other (CPT1, LCAD) genes of mitochondrial and extramitochondrial LCFA oxidation and ketogenesis remained at wild-type levels. These results suggest that under fasting conditions, hepatic L-FABP contributes to hepatic LCFA oxidation and ketogenesis by a nontranscriptional mechanism

    Antimicrobial resistance spectrum conferred by pRErm46 of emerging macrolide (multidrug)-resistant Rhodococcus equi

    Get PDF
    Clonal multidrug resistance recently emerged in Rhodococcus equi, complicating the therapeutic management of this difficult-to-treat animal- and human-pathogenic actinomycete. The currently spreading multidrug-resistant (MDR) “2287” clone arose in equine farms upon acquisition, and coselection by mass macrolide-rifampin therapy, of the pRErm46 plasmid carrying the erm(46) macrolide-lincosamide-streptogramin resistance determinant, and of an rpoB(S531F) mutation. Here, we screened a collection of susceptible and macrolide-resistant R. equi strains from equine clinical cases using a panel of 15 antimicrobials against rapidly growing mycobacteria (RGM) and nocardiae and other aerobic actinomycetes (NAA). R. equi isolates—including MDR ones—were generally susceptible to linezolid, minocycline, tigecycline, amikacin, and tobramycin according to Staphylococcus aureus interpretive criteria, plus imipenem, cefoxitin, and ceftriaxone based on Clinical and Laboratory Standards Institute (CLSI) guidelines for RGM/NAA. Susceptibility to ciprofloxacin and moxifloxacin was borderline according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria. Molecular analyses linked pRErm46 to significantly increased MICs for trimethoprim-sulfamethoxazole and doxycycline, in addition to clarithromycin, within the RGM/NAA panel, and to streptomycin, spectinomycin, and tetracycline resistance. pRErm46 variants with spontaneous deletions in the class 1 integron (C1I) region, observed in ≈30% of erm(46)-positive isolates, indicated that the newly identified resistances were attributable to the C1I’s sulfonamide (sul1) and aminoglycoside (aaA9) resistance cassettes and adjacent tetRA(33) determinant. Most MDR isolates carried the rpoB(S531F) mutation of the 2287 clone, while different rpoB mutations (S531L, S531Y) detected in two cases suggest the emergence of novel MDR R. equi strains

    Serum Lipidomics of Bovine Paratuberculosis: Disruption of Choline-Containing Glycerophospholipids and Sphingolipids

    Get PDF
    Objectives: Bovine paratuberculosis is a devastating infection with Mycobacterium avium subspecies paratuberculosis that ultimately results in death from malnutrition. While the infection is characterized by a long (2–4 years) subclinical phase with immune activation, ultimately host defense mechanisms fail and the bacteria spread from the small intestine to other organs. Since both the gastrointestinal tract and liver are essential for the biosynthesis of structural glycerophospholipids, we investigated the circulating levels of these lipids in field infections and experimentally infected cattle. Methods: Serum lipidomics of control and M. avium subspecies paratuberculosis–infected cattle were performed utilizing high-resolution mass spectrometry. Results: In M. avium subspecies paratuberculosis–positive cattle, demonstrating clinical signs, we monitored large decreases in the levels of circulating phosphocholine-containing lipids. These included phosphatidylcholines, choline plasmalogens, and sphingomyelins. Next, we monitored the time course of these lipid alterations in experimentally infected calves and found that altered lipid levels were only detected in cattle with clinical signs of infection. Conclusions: Our data indicate that altered availability of choline-containing lipids occurs late in the disease process and is most likely a result of malnutrition and altered biosynthetic capacities of the liver and gastrointestinal tract. Alterations in the bioavailability of these critical structural lipids presumably contributes to the demise of M. avium subspecies paratuberculosis–infected cattle. In light of increasing concern that M. avium subspecies paratuberculosis may be a zoonotic bacterium that contributes to the development of Crohn’s disease and multiple sclerosis, our data also have human clinical relevance

    Temporal Trends and Predictors of Antimicrobial Resistance Among \u3cem\u3eStaphylococcus\u3c/em\u3e spp. Isolated from Canine Specimens Submitted to a Diagnostic Laboratory

    Get PDF
    Background Resistance to commonly used antimicrobials is a growing concern in both human and veterinary medicine. Understanding the temporal changes in the burden of the problem and identifying its determinants is important for guiding control efforts. Therefore, the objective of this study was to investigate temporal patterns and predictors of antimicrobial resistance among Staphylococcus spp. isolated from canine specimens submitted to the University of Kentucky Veterinary Diagnostic Laboratory (UKVDL) between 1993 and 2009. Methods Retrospective data of 4,972 Staphylococcus isolates assessed for antimicrobial susceptibility using the disk diffusion method at the UKVDL between 1993 and 2009 were included in the study. Temporal trends were assessed for each antimicrobial using the Cochran-Armitage trend test. Logistic regression models were used to investigate predictors of antimicrobial resistance (AMR) and multidrug resistance (MDR). Results A total of 68.2% (3,388/4,972) Staphylococcus isolates were S. intermedius group (SIG), 18.2% (907/4,972) were coagulase-negative staphylococci (CoNS), 7.6% (375/4,972) were S. aureus, 5.8% (290/4,972) were S. hyicus, and S. schleiferi subsp. coagulans comprised 0.2% (12/4,972) of the isolates. The overall percentage of AMR and MDR were 77.2% and 25.6%, respectively. The highest levels of AMR were seen in CoNS (81.3%; 737/907), S. aureus (80.5%; 302/375), and SIG (77.6%; 2,629/3388). The lowest levels of AMR were observed in S. hyicus (57.9%; 168/290) and S. schleiferi subsp. coagulans (33.3%; 4/12). Overall, AMR and MDR showed significant (p \u3c 0.001) decreasing temporal trends. Significant temporal trends (both increasing and decreasing) were observed among 12 of the 16 antimicrobials covering 6 of the 9 drug classes assessed. Thus, significant increasing temporal trends in resistance were observed to ÎČ-lactams (p \u3c 0.001) (oxacillin, amoxicillin-clavulanate, cephalothin, and penicillin (p = 0.024)), aminoglycosides (p \u3c 0.001) (gentamicin, and neomycin), bacitracin (p \u3c 0.001), and enrofloxacin (p \u3c 0.001). In contrast, sulfonamide (p \u3c 0.001) (sulfadiazin) and tetracycline (p = 0.010) resistant isolates showed significant decreasing temporal trends in AMR. Staphylococcus spp., geographic region, and specimen source were significant predictors of both AMR and MDR. Conclusions Although not unexpected nor alarming, the high levels of AMR to a number of antimicrobial agents and the increasing temporal trends are concerning. Therefore, continued monitoring of AMR among Staphylococcus spp. is warranted. Future studies will need to identify local factors responsible for the observed geographic differences in risk of both AMR and MDR

    Development and Evaluation of a One-Step Multiplex Real-Time TaqMan\u3csup\u3eÂź\u3c/sup\u3e RT-qPCR Assay for the Detection and Genotyping of Equine G3 and G14 Rotaviruses in Fecal Samples

    Get PDF
    Background: Equine rotavirus A (ERVA) is the leading cause of diarrhea in neonatal foals and has a negative impact on equine breeding enterprises worldwide. Among ERVA strains infecting foals, the genotypes G3P[12] and G14P[12] are the most prevalent, while infections by strains with other genomic arrangements are infrequent. The identification of circulating strains of ERVA is critical for diagnostic and surveillance purposes, as well as to understand their molecular epidemiology. Current genotyping methods available for ERVA and rotaviruses affecting other animal species rely on Sanger sequencing and are significantly time-consuming, costly and labor intensive. Here, we developed the first one-step multiplex TaqMan¼ real-time reverse transcription polymerase chain reaction (RT-qPCR) assay targeting the NSP3 and VP7 genes of ERVA G3 and G14 genotypes for the rapid detection and G-typing directly from fecal specimens. Methods: A one-step multiplex TaqMan¼ RT-qPCR assay targeting the NSP3 and VP7 genes of ERVA G3 and G14 genotypes was designed. The analytical sensitivity was assessed using serial dilutions of in vitro transcribed RNA containing the target sequences while the analytical specificity was determined using RNA and DNA derived from a panel of group A rotaviruses along with other equine viruses and bacteria. The clinical performance of this multiplex assay was evaluated using a panel of 177 fecal samples and compared to a VP7-specific standard RT-PCR assay and Sanger sequencing. Limits of detection (LOD), sensitivity, specificity, and agreement were determined. Results: The multiplex G3 and G14 VP7 assays demonstrated high specificity and efficiency, with perfect linearity. A 100-fold difference in their analytical sensitivity was observed when compared to the singleplex assays; however, this difference did not have an impact on the clinical performance. Clinical performance of the multiplex RT-qPCR assay demonstrated that this assay had a high sensitivity/specificity for every target (100% for NSP3, \u3e 90% for G3 VP7 and \u3e 99% for G14 VP7, respectively) and high overall agreement (\u3e 98%) compared to conventional RT-PCR and sequencing. Conclusions: This new multiplex RT-qPCR assay constitutes a useful, very reliable tool that could significantly aid in the rapid detection and G-typing of ERVA strains circulating in the field

    Lipidomic Analysis of Immune Activation in Equine Leptospirosis and \u3cem\u3eLeptospira\u3c/em\u3e-Vaccinated Horses

    Get PDF
    Currently available diagnostic assays for leptospirosis cannot differentiate vaccine from infection serum antibody. Several leptospiral proteins that are upregulated during infection have been described, but their utility as a diagnostic marker is still unclear. In this study, we undertook a lipidomics approach to determine if there are any differences in the serum lipid profiles of horses naturally infected with pathogenic Leptospira spp. and horses vaccinated against a commercially available bacterin. Utilizing a high-resolution mass spectrometry serum lipidomics analytical platform, we demonstrate that cyclic phosphatidic acids, diacylglycerols, and hydroperoxide oxidation products of choline plasmalogens are elevated in the serum of naturally infected as well as vaccinated horses. Other lipids of interest were triacylglycerols that were only elevated in the serum of infected horses and sphingomyelins that were increased only in the serum of vaccinated horses. This is the first report looking at the equine serum lipidome during leptospiral infection and vaccination

    An epidemiologic study of antimicrobial resistance of Staphylococcus species isolated from equine samples submitted to a diagnostic laboratory

    Get PDF
    Antimicrobial resistance limits traditional treatment options and increases costs. It is therefore important to estimate the magnitude of the problem so as to provide empirical data to guide control efforts. The aim of this study was to investigate the burden and patterns of antimicrobial resistance (AMR) among equine Staphylococcussamples submitted to the University of Kentucky Veterinary Diagnostic Laboratory (UKVDL) from 1993 to 2009. Retrospective data of 1711 equine Staphylococcus samples submitted to the UKVDL during the time period 1993 to 2009 were included in the study. Antimicrobial susceptibility testing, that included 16 drugs, were performed using cultures followed by the Kirby-Bauer disk diffusion susceptibility test. The proportion of resistant isolates by animal breed, species of organism, sample source, and time period were computed. Chi-square and Cochran-Armitage trend tests were used to identify significant associations and temporal trends, respectively. Logistic regression models were used to investigate predictors of AMR and multidrug resistance (MDR)

    An Epidemiologic Study of Antimicrobial Resistance of \u3cem\u3eStaphylococcus\u3c/em\u3e Species Isolated from Equine Samples Submitted to a Diagnostic Laboratory

    Get PDF
    Background Antimicrobial resistance limits traditional treatment options and increases costs. It is therefore important to estimate the magnitude of the problem so as to provide empirical data to guide control efforts. The aim of this study was to investigate the burden and patterns of antimicrobial resistance (AMR) among equine Staphylococcus samples submitted to the University of Kentucky Veterinary Diagnostic Laboratory (UKVDL) from 1993 to 2009. Retrospective data of 1711 equine Staphylococcus samples submitted to the UKVDL during the time period 1993 to 2009 were included in the study. Antimicrobial susceptibility testing, that included 16 drugs, were performed using cultures followed by the Kirby-Bauer disk diffusion susceptibility test. The proportion of resistant isolates by animal breed, species of organism, sample source, and time period were computed. Chi-square and Cochran-Armitage trend tests were used to identify significant associations and temporal trends, respectively. Logistic regression models were used to investigate predictors of AMR and multidrug resistance (MDR). Results A total of 66.3% of the isolates were resistant to at least one antimicrobial, most of which were Staphylococcus aureus (77.1%), while 25.0% were MDR. The highest level of resistance was to penicillins (52.9%). Among drug classes, isolates had the highest rate of AMR to at least one type of ÎČ-lactams (49.2%), followed by aminoglycosides (30.2%). Significant (p \u3c 0.05) associations were observed between odds of AMR and horse breed, species of organism and year. Similarly, significant (p \u3c 0.05) associations were identified between odds of MDR and breed and age. While some isolates had resistance to up to 12 antimicrobials, AMR profiles featuring single antimicrobials such as penicillin were more common than those with multiple antimicrobials. Conclusion Demographic factors were significant predictors of AMR and MDR. The fact that some isolates had resistance to up to 12 of the 16 antimicrobials assessed is quite concerning. To address the high levels of AMR and MDR observed in this study, future studies will need to focus on antimicrobial prescription practices and education of both practitioners and animal owners on judicious use of antimicrobials to slow down the development of resistance

    Temporal trends and predictors of antimicrobial resistance among Staphylococcus spp. isolated from canine specimens submitted to a diagnostic laboratory

    Get PDF
    Background Resistance to commonly used antimicrobials is a growing concern in both human and veterinary medicine. Understanding the temporal changes in the burden of the problem and identifying its determinants is important for guiding control efforts. Therefore, the objective of this study was to investigate temporal patterns and predictors of antimicrobial resistance among Staphylococcus spp. isolated from canine specimens submitted to the University of Kentucky Veterinary Diagnostic Laboratory (UKVDL) between 1993 and 2009. Methods Retrospective data of 4,972 Staphylococcus isolates assessed for antimicrobial susceptibility using the disk diffusion method at the UKVDL between 1993 and 2009 were included in the study. Temporal trends were assessed for each antimicrobial using the Cochran-Armitage trend test. Logistic regression models were used to investigate predictors of antimicrobial resistance (AMR) and multidrug resistance (MDR). Results A total of 68.2% (3,388/4,972) Staphylococcus isolates were S. intermedius group (SIG), 18.2% (907/4,972) were coagulase-negative staphylococci (CoNS), 7.6% (375/4,972) were S. aureus, 5.8% (290/4,972) were S. hyicus, and S. schleiferi subsp. coagulans comprised 0.2% (12/4,972) of the isolates. The overall percentage of AMR and MDR were 77.2% and 25.6%, respectively. The highest levels of AMR were seen in CoNS (81.3%; 737/907), S. aureus(80.5%; 302/375), and SIG (77.6%; 2,629/3388). The lowest levels of AMR were observed in S. hyicus (57.9%; 168/290) and S. schleiferi subsp. coagulans (33.3%; 4/12). Overall, AMR and MDR showed significant (p Conclusions Although not unexpected nor alarming, the high levels of AMR to a number of antimicrobial agents and the increasing temporal trends are concerning. Therefore, continued monitoring of AMR among Staphylococcus spp. is warranted. Future studies will need to identify local factors responsible for the observed geographic differences in risk of both AMR and MDR
    • 

    corecore