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ABSTRACT

Heart- and  Liver-Type Fatty Acid Binding Proteins in Lipid and Glucose Metabolism.

(August 2004)

Erdal Erol, D.V.M., Firat University;

M.S., University of Missouri

Chair of Advisory Committee: Dr. Bert Binas

Heart-type Fatty Acid-Binding Protein (H-FABP) is required for high rates of

skeletal muscle long chain fatty acid (LCFA) oxidation and esterification. Here we

assessed whether H-FABP affects soleus muscle glucose uptake when measured in vitro

in the absence of LCFA. Wild type and H-FABP null mice were fed a standard chow or

high fat diet before muscle isolation. With the chow, the mutation increased insulin-

dependent deoxyglucose uptake by 141% (P<0.01) at 0.02 mU/ml of insulin, but did not

cause a significant effect at 2 mU/ml insulin; skeletal muscle triglyceride and long chain

acyl-CoA (LCACoA) levels remained normal. With the fat diet, the mutation increased

insulin-dependent deoxyglucose uptake by 190% (P<0.01) at 2 mU/ml insulin, thus

partially preventing insulin resistance, and completely prevented the threefold (P<0.001)

diet-induced increase of muscle triglyceride levels; however, muscle LCACoA levels

showed little or no reduction. With both diets, the mutation reduced the basal (insulin-

independent) soleus muscle deoxyglucose uptake by 28% (P<0.05). These results

establish a close relationship of FABP-dependent lipid pools with insulin sensitivity, and

indicate the existence of a non-acute, antagonistic, and H-FABP-dependent fatty acid

regulation of basal and insulin-dependent muscle glucose uptake. 
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Liver fatty acid binding protein (L-FABP) has been proposed to limit the

availability of chain LCFA for oxidation and for peroxisome proliferator-activated

receptor (PPAR-alpha), a fatty acid binding transcription factor that determines the

capacity of hepatic fatty acid oxidation. Here, we used L-FABP null mice to test this

hypothesis. Under fasting conditions, this mutation reduced β-hydroxybutyrate (BHB)

plasma levels as well as BHB release and palmitic acid oxidation by isolated hepatocytes.

However, the capacity for ketogenesis was not reduced: BHB plasma levels were

restored by octanoate injection; BHB production and palmitic acid oxidation were normal

in liver homogenates; and hepatic expression of key PPAR-alpha target (MCAD,

mitochondrial HMG CoA synthase, ACO, CYP4A3) and other (CPT1, LCAD) genes of

mitochondrial and extramitochondrial LCFA oxidation and ketogenesis remained at wild-

type levels. These results suggest that under fasting conditions, hepatic L-FABP

contributes to hepatic LCFA oxidation and ketogenesis by a nontranscriptional

mechanism. 
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CHAPTER I

INTRODUCTION

LCFAs and their metabolism

Lipids are a chemically diverse group of compounds. Their common feature is

insolubility in water. They are classified into different categories and have diverse

biological functions; fatty acids (FAs), which are carboxylic acids, are the principle

stored form of energy in many organisms whereas phospholipids and sterols are

partitioned into biological membranes.  Other lipids are found in relatively small

amounts in cells and  play crucial roles as enzyme cofactors (vitamin K), detergents (bile

acids) pigments (retinal), hydrophobic anchors (covalently attached fatty acids and

phosphatidylinositol), hormones (vitamin D derivatives) and intracellular messengers

(eicosanoids). 

 FAs are highly reduced compounds with hydrocarbon chains of 4 to 36 carbons

with an energy of complete oxidation (~38kJ/g) more than twice that for the same

weight of carbohydrate or protein. In some FAs, this chain is fully saturated (contains no

double bonds) and unbranched; others contain one or more double bonds. Because of

their hydrophobicity and extreme insolubility in water, they segregate into lipid droplets

in the form of triacylglycerols (TG), which do not raise the osmolarity of the cytosol.

TGs contain three FA molecules esterified to the three-hydroxyl groups of glycerol. The

relative chemical inertness of TGs allow their intracellular storage in large quantities, 

This dissertation follows the style and format of Research in Veterinary Science.
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but not extreme quantities, without the risk of undesired chemical reactions with other

cellular components.

Cells that derive energy from the oxidation of FAs may obtain FAs from three

sources, namely, fats in diet, fat stores in cells and fats in newly synthesized in cells (de

novo synthesis).  Because of their insolubility in water, TGs taken by food must be

emulsified before they can be digested by water-soluble enzymes in intestines. Bile salts

synthesized from cholesterol in liver help convert dietary fats into mixed miscelles of bile

salts and TGs. Lipid molecules are more accesible to the action of water-soluble lipases

in intestines. Here, TGs are converted into monoglycerides, DGs, free FAs and glycerol.

These compounds are small enough to diffuse into the epithelial cells lining the intestinal

mucosa, where they are reconverted into TGs and packaged with dietary cholesterol and

lipid-binding proteins, called apoliproteins, agregating into chylomicrons. These

chylomicrons go through from the lymphatic system, from which they enter the blood

and are carried to muscle, adipose tissues and liver. The extracellular enzyme lipoprotein

lipase is activated by apoprotein C-II, enabling hydrolysis of TGs into mainly long chain

FAs (LCFAs) and glycerol. FAs are ultimately oxidized for energy or reesterified for

storage as TGs, depending on the physiological condition of the individual. When the

diets contain more FAs than are needed immediately for fuel or precursors, they are

converted into TGs in the liver, and TGs are packaged with specific apoliproteins into

very-low density lipoproteins (VLDLs).  VLDLs are transported in blood from the liver

to adipose tissues, where the TGs are removed and stored in lipid droplets within

adipocytes. 
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 Although most cells are capable of de novo FA synthesis, cells with large

requirements for FA beta-oxidation, such as cardiac and skeletal myocytes, rely on

import of exogenous LCFAs to provide this critical metabolic fuel. Cells that store

potential energy in the form of TGs, such as adipocytes, have efficient mechanisms for

both LCFA import and export. Since most tissues contain only small amounts of storage

lipids, energy production depends on a continuous supply of FAs, mostly from adipose

tissues. The capacity of mammalians to store these LCFAs as triglycerides (TGs) in

cytosolic lipid droplets is an important adaptation for survival during periods of

nutritional deprivation.  In adipose tissue, FAs are produced by lipolysis, transported

bound to albumin in blood and taken up by tissues through passive diffusion or in a

process mediated by transport proteins in the plasma membrane, as explained above.

Once within the cells, free FAs are reportedly bound to fatty acid binding proteins

(FABPs) which are abundant in the cytosol (Ockner and Manning, 1982), depending on

the tissue and its metabolic demand. FAs are either converted to TGs, diglycerides

(DGs), membrane phospholipids or oxidized in mitochondria for energy production.

For a long time it was believed that the transport of FAs into the muscle cell was

purely a passive process. This was based on early observations that FA uptake increased

linearly with FA concentration. Recently, specific carrier proteins have been identified in

various tissues, including skeletal muscle.  In the sarcolemma, two proteins have thus far

been identified that are involved in the transport of FAs across the membrane but their

functional significances are still unclear. These proteins are a specific plasma membrane

FA binding protein (FABPpm) (Sorrentino et al., 1988) and a FA translocase protein

(FAT/CD36) (Abumrad et al., 1993). A third protein has been identified (FA transport
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protein, FATP) (Schaffer and Lodish, 1994), but its transport role is still under

investigation. It is worth noting, however, that not only LCFAs but also far more

hydophobic compounds, such as phospholipids and cholesterol, are fully capable of inter-

membrane transfer in the absence of any binding protein whatsoever (Brown, 1992).

Cytosolic transport of LCFAs to various intracellular organelles including

mitochondria may be mediated by FABPs (Figure I.1). In considering a transport function

for the FABPs in the cytoplasm, the intracellular FABPs have been proposed as

transporters of LCFAs in the soluble cytoplasm (Storch and Thumser, 2000).  The notion

that these proteins function as intracellular transporters originally derived from the

assumption that hydrophobic LCFAs would require a transport protein for transit in an

aqueous milieu such as cytoplasm. LCFAs are released from the LCFAs-FABP complex

when they reach their final destinanation in the cytoplasma and either esterified in the

cytoplasma or oxidized in mitochondria. 

 LCFAs in the cytoplasma may be activated by the enzyme acyl-CoA synthethase

to form an acyl-CoA complex. For oxidation, this acyl-CoA complex can be bound to

carnitine under the influence of the enzyme carnitine palmitoyl transferase I (CPT I),

which is located at the outside of the outer mitochondrial membrane (Schulz, 1985). The

binding of carnitine with the activated LCFA is the first step in the transport of the LCFA

into the mitochondria. As carnitine binds to the acyl-CoA moiety, free CoA is released.

The acyl-carnitine complex is transported with a translocase and reconverted into acyl-

CoA at the matrix side of the inner mitochondrial membrane by the enzyme carnitine

palmitoyl transferase II (CPT II). The carnitine that is released diffuses back across the
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into acyl- CoA at the matrix side of the inner mitochondrial membrane by the enzyme

carnitine palmitoyl transferase II (CPT II). The carnitine that is released diffuses back

across the mitochondrial membrane into the cytoplasm and thus becomes available again

for the transport of other LCFAs. 

The oxidation of LCFAs to Acetyl-CoA in mitochondria is a central energy-

yielding pathway in mammals. The electrons removed during FA oxidation pass through

the mitochondrial respiratory chain, beta-oxidation, driving ATP synthesis. The acetyl

CoA produced from the FAs may be completely oxidized to carbon dioxide via the citric

acid cycle, resulting in further energy production. Acetyl CoA can also be converted in

liver into ketone bodies-water soluble fuels exported to the extrahepatic tissues such as

brain and muscles when glucose is not available. 

Regulation of LCFA metabolism

It has been proposed that the regulation of FAs take place at several levels such as the

cell membrane, the mitochondrial membrane and through transcriptional regulation. FA

transporters are likely to be responsible for some of the transport of FA across the

sarcolemma, and these transporters can be regulated both acutely and chronically.

Recently, Bonen et al. (2000) demonstrated that FAT/CD36 can translocate from

intracellular vesicles to the cell membrane in a similar manner as the GLUT-4 protein,

indicating that FA transport can be regulated. Along with a higher density of FAT/CD36

at the cell membrane, an increased LCFA transport into the cell has been observed. At

present, however, it is not known if there are any physiological situations in which this

transport becomes limiting. It is also not known what the triggers are inside the cell for

the up- or down-regulation of transport proteins such as cytosolic FABPs.
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     Figure I.1: Fatty acid metabolism and FABPs (from Glatz et al., 2003).
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It is generally believed that CPT I is the rate-limiting enzyme in the transport of

LCFAs across the mitochondria and may be even rate-limiting for FA oxidation

(Ruderman and Dean, 1998). There is substantial evidence that CPT I activity is

influenced by numerous regulators. The most important regulator of CPT I activity is

malonyl-CoA concentration.

  A large number of in vitro studies have now established a role for malonyl-CoA

in regulating the entry of LCFAs into the mitochondria in a variety of tissues, including

skeletal muscle (Rewieved by Saha and Ruderman, 2003). Malonyl-CoA is a potent

inhibitor of CPT I and is thus a potential candidate for the regulation of fat metabolism

(McGarry and Brown, 1997). Malonyl-CoA is formed from acetyl-CoA, a reaction

catalyzed by the enzyme acetyl-CoA carboxylase (ACC). Malonyl-CoA levels decrease

in rodent skeletal muscle from rest to moderate intensity exercise, when energy

production from fat increases. It is believed that the resting concentrations of malonyl-

CoA are sufficiently high to inhibit CPT I, and a decrease in the malonyl-CoA

concentration would therefore result in a relief of the inhibition of CPT I and increased

LCFA transport into the mitochondria. It is also well known that acetyl-CoA

concentration in the muscle increases rapidly at the onset of high-intensity exercise,

which will stimulate the activity of ACC as it is the primary substrate for this enzyme.

The resulting increased concentration of malonyl-CoA could possibly explain a reduced

FA uptake into the mitochondria.  It should also be mentioned that activation of

adenosine monophosphate (AMP)-activated protein kinase (AMPK)-activated protein

kinase increases fatty acid oxidation by lowering the concentration of Malonyl-CoA

(Ruderman et al., 2003).



8

There are  now many evidences that peroxisome proliferator-activated receptors

(PPARs), members of the ligand-activated nuclear receptor superfamily, exert their

major influences on lipid and glucose metabolism (reviewed by Ferre, 2004). PPARs

selectively modulate cellular and tissue capacities for FA acid oxidation by acting as

lipid sensors. They bind to specific recognition sites known as peroxisome proliferator-

activated receptor response elements- PPREs, located in regulatory regions of certain

target genes. Most PPREs have been identified in the promoters of genes encoding

proteins related to FA oxidation and transport of FA synthesis. At least three different

PPARs have now been identified, i.e. PPAR- alpha, PPAR-gamma, and PPAR-delta),

which exert their regulatory function directly at the level of gene expression (Kliewer et

al., 1997). It has been suggested that PPAR- alpha activation stimulates FA catabolism

by inducing L-FABP expression (Kaikaus et al., 1993; Isseman et al., 1992). PPAR-delta

has been suggested to mediate the effects of LCFAs  in pre-adipocytes, thereby inducing

adipogenesis. However the effects of FAs may be mediated exclusively through PPAR-

gamma (Hu et al., 1995), or perhaps a combination of PPAR-delta and PPAR-gamma

(Ailhaud, 1997).

Regarding regulation of FA synthesis, the reaction catalyzed by acetyl CoA

carboxylase (ACC) is the rate-limiting step in the synthesis of fatty acids and this

enzyme has important regulatory function. When there is an increase in the

concentration of mitochondrial acetyl-CoA and of ATP, citrate is transported out of the

mitochondria and becomes both the precursor of cytosolic Acetyl-CoA and an allosteric

signal for the activation of ACC.
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ACC is also regulated by covalent alteration. Hormones like glucagon and

epinephrine trigger phosphorylation, which slows down FA synthesis. Other enzymes in

the FA synthesis pathway are also regulated. The pyruvate dehydrogenase complex and

citrate lyase, both of which supply acetyl-CoA, are activated by insulin through a

cascade of protein phosphorylation.  The rate of TG biosynthesis is profoundly altered

by the action of several hormones. Insulin promotes the conversion of carbohydrates

into TGs. People with severe diabetes, due to the failure of insulin secretion or action,

not only are unable to use glucose properly but also fail to synthesize fatty acids from

carbohydrates or amino acids. TG metabolism is also influenced by glucagon, growth

hormone and adrenal corticol hormones. 

Recent data strongly suggest that sterol regulatory element binding protein-1c

(SREBP-1c) is a key transcription factor that activates transcription of genes involved

with fatty acid synthesis (reviewed by Horton, 2002). SREBPs directly activate the

expression of more than 30 genes related to the synthesis and uptake of FAs, cholesterol,

TGs and phospholipids (PLs). It has been suggested that SREBP-1c mediates insulin’s

lipogenic action in liver. Insulin decreases the transcription of genes encoding

gluconeogenic enzymes and increases lipogenic enzymes such as fatty acid synthase and

ACC. Recent studies suggest that many of these transcriptional changes may be

mediated by an increase in the levels of transcripton factor SREBP-1c, whose mRNA

levels are increased by insulin (Kim et al., 1998; Foretz et al., 1999; Shimomura et al.,

1999).  The liver is the responsible organ for convertion of excess carbohydrates to FAs

to be stored or burned in muscle. In carbohydrate excess, insulin stimulates the FA

synthesis in liver and insulin’s stimulatory effect on lipid synthesis is mediated by an
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increase in SREBP-1c. Dominant negative forms of SREBP1 can block expression of

these gluconeogenic and lipogenic enzymes (Foretz et al., 1999), whereas

overexpression  can increase their expression (Shimomura et al., 1999).

FABPs

FABPs in mammalian cells  were discovered more than 30 years ago as a small

(13-15 kDa), non-enzymatic cytoplasmic proteins which bind long-chain fatty acids in

vitro (Ockner et al., 1972; Mishkin et al., 1972). So far, they have been now classified in

at least eight distinct types (Table I.1). FABPs from intestine (I-FABP) (Ockner et al.,

1972), liver (L-FABP) (Mishkin et al., 1972) and heart (H-FABP) (Fournier et al., 1978)

were the first of the family being characterized. Despite the relevant structural

similarities among all of them, each member presents distinct features, particularly in the

way they bind the ligand in these tissues. FA flux is substantial in all above-mentioned

organs and thus it was proposed that FABPs are necessary for intracellular binding and

transport of LCFAs. There are some other proposed functions for FABPs such as, (a)

modulation of specific enzymes of lipid (Storch and Thumser, 2000) and maintenance of

low FA concentrations in metabolic pathways, either anabolic or catabolic (Kaikaus et

al., 1990); (b) maintenance of cellular membrane FA levels (Glatz et al., 1995); and (c)

regulation of the expression of FA-responsive genes (Glatz and Van der Vusse, 1996).

Within these categories, numereous more specific functional roles may be assigned to

these proteins. For instance, FABPs may modulate lipid metabolism via an involvement

in the FA uptake or export process, by regulation of substrate and/or product
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Table I.1: The mammalian fatty acid binding protein family (modified from Storch and
Thumser, 2000).

Name Previous/other names Tissue localization
L-FABP

I-FABP

H-FABP

A-FABP

E-FABP

B-FABP

M-FABP

Z Protein, heme-binding
protein, hepatic FABP

Gut FABP

Muscle FABP

aP2, ALBP

K-FABP, Mal1-1,  KLBP, skin-
FABP, psoriasis-associated-
FABP

BLBP

Myelin P2

Liver, small intestine

Small intestine

Cardiac and skeletal muscle, brain,
mammary gland, kidney, adrenals,
ovaries, testis

Adipocyte, monocyte

Epidermis, adipocyte, mammary tissue,
tongue epithelia, testis

Brain, central nervous system

Peripheral nervous system
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 concentrations in the cytosolic compartments as a whole or more locally near particular

enzymes. In addition, FABPs can exert their action with more specific FABP-membrane

interactions at particular membrane sites. Finally, the FABPs might regulate gene

expression either by a passive maintenance of unbound FA levels as determined by

ligand partitioning, or by a more direct role in cellular targeting of FAs, for example via

direct interaction with nuclear hormone receptors. 

Although studies of binding properties do not directly address a role in cellular

FA trafficking, they nevertheless provide indirect support for such a function by

demonstrating the specificity and affinity of FABPs for FAs. Equilibrium binding

analyses and structural studies clearly demonstrate that most FABPs bind LCFAs (C16-

C20) with high affinity and a molar stoichiometry of 1:1 (Sacchettini et al., 1989;

Sacchettini et al., 1992; Cistola et al., 1989). The exception is L-FABP, which binds not

only LCFAs but also other acyl ligands such as bind other hydrophobic ligands,

including acyl coenzyme A, lysophospholipids, heme and bile salts. (Haunerland et al.,

1984; Vincent and Muller-Eberhard, 1985) The binding charecteristics of L-FABP are

also unique among the FABPs, as this protein can bind a molar ratio of two LCFAs

(Richieri et al., 1994).

The hydrophobic nature of LCFAs complicates the determination of binding

affinities. Therefore, a wide range of different techniques have been utilized to measure

ligand binding. Collectively, these studies are in general agreement concerning the

ligand specificity and binding stoichiometry, but offer widely differing absolute values

for binding affinities. Briefly, methods such as Lipidex and liposome assays have
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generally yielded affinities for LCFAs in the µM range (Glatz and Veerkamp, 1983;

Brecher et al., 1984). More recently, the sensitivity of florescence spectroscopy has led

to the development of several florescence-based assay. As determined by this method,

binding affinities differ for FABP and FA type, with Kd values ranging from 2 to 1000

nM, and in general affinities are higher for saturated vs. polyunsaturated LCFAs

(Richieri et al, 1994). Using the ADIFAB assay, Kd values of H-FABP, L-FABP and I-

FABP for oleate of 10, 9 and 39 nM, respectively are obtained (Richieri et al, 1998).

Affinities of most of the FABPs are generally highest for palmitate, oleate and stereate,

and increased water solubility of polyunsaturated LCFAs is reflected by higher Kd

values (Richieri et al., 1994).

A number of general correlations between the extent of lipid metabolic activity

and the amount of intracellular FABP have also been demonstrated, providing

additional, albeit indirect, support for a LCFA transport and /or trafficking function of

FABPs. For example, there is a correlation between H-FABP content and muscle

development, i.e. a requirement for mitochondrial beta-oxidation (Haunerland et al.,

1993), and induction of peroximal beta-oxidation correlates well with L-FABP levels

(Veerkamp and Moerkerk, 1993).

Among the most generally accepted functions for the FABPs is their

participation in the utilization of dietary lipids. Tissues with high targets of FA

metabolism and uptake/storage, e.g. intestine, liver, adipocyte and muscle, have

increased FABP levels which parallel FA flux and utilization (Glatz and Van der Vussa,

1996). Furthermore, the intestinal distribution of L-FABP and I-FABP, from duodenum
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to colon and crypt to villus tip, correlates well with the known distribution of dietary

lipid uptake and intracellular processing (Cohn et al., 1992). In addition to increasing L-

FABP content, the feeding of high fat diets to rodents results in peroxisomal

proliferation and increased levels of acyl coenzyme-A oxidase, cytochrome P-450 4A1

and peroxisomal beta-oxidation (Isseman et al., 1992).

The numerous links between cellular lipid metabolism and FABP levels,

including PPAR activation, have clearly demonstrated a role for the FABPs in mediating

diverse aspects of lipid utilization, quite possibly via transport mechanisms. To further

understand these roles and to enable the nutritional and/or pharmacological modulation

of FABP function, it is necessary to establish the fundamental mechanisms by which FA

trafficking in cells is modulated by the FABPs.

In addition to the many indirect approaches to an FABP transport function,

several direct approaches have been taken in recent years. In an in vitro system that

measures the flux of oleate through a lipid-water interface was found to increase three

fold (Weisiger et al., 1989). Similarly, L-FABP and H-FABP were reported to increase

the amount and rate of movement radiolabeled fatty acid between two compartments,

although a substantial loss of label to the surface of the apparatus was not accounted for

(Peeters et al., 1989). 

PPAR-alpha is predominantly expressed in tissues with high fatty acid catabolic

rates, such as the liver, kidney, heart and muscle (Kliewer et al., 1999), and ligands for

PPAR- alpha include LCFAs and FA derivatives such as leukotriene B4, as well as the

hyperlipidemic fibrates (Kaikaus et al., 1993). PPAR- alpha activation stimulates FA

catabolism by inducing mitochondrial and peroxisomal beta-oxidation levels, while also



15

inducing L-FABP expression (Kaikaus et al., 1993; Isseman et al., 1992). Since

intracellular FA accumulation leads to increased levels of L-FABP, it can therefore be

inferred that L-FABP is probably associated with mitochondrial and peroxisomal beta-

oxidation. It is hypothesized that FABPs promote the effects of LCFAs on gene

transcription and cell growth/differentiation by trafficking ligands directly to the PPARs,

in a manner similar to that proposed for cellular retinoic acid-binding protein (CRABP)

and the retinoic acid receptor (RAR)(Isseman and Green, 1990; Kaikaus et al., 1990).

Such a mechanism implies direct protein-protein interactions between FABPs and

PPARs, which have yet to be demonstrated. Nevertheless, Schachtrup et al., (2004)

speculated that PPARalpha mRNA was absent in the alveolar macrophages although

liver-type FABP was expressed, indicating that gene expression of liver-type FABP was

independent of PPARalpha.

The importance of FABPs in lipid metabolism has also been explored in a more

direct ways by creating knock-out mice models. It has been found that H-FABP null

mice have severe defect LCFA cellular transport and beta-oxidation in cardiac myocytes

(Binas et al., 1999; Schaap et al., 1999). This defect was manifested in the H-FABP null

mice by excercise intolerance, localized cardiac hyperthrophy, and increased myocardial

glucose uptake.

Creation of L-FABP null mice also showed that this protein is important in the

LCFA flux into the cytoplasm, as it is shown that lipogenesis is decreased in the L-

FABP null mice (Martin et al., 2003)

Studies of I-FABP null mice demonstrated that I-FABP is not required for

normal development or dietary fat absorbtion, but there was significant sexual
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dimorphism in the phenotype (Vassileva et al., 2000). Nevertheless, it should be noted

that mice lacking I-FABP is confounded by substantial compensatory upregulation of

epidermis-FABP (E-FABP), which is normally minimally expressed in wild-type

adipose tissue (Hotamisligil et al., 1996).

FABPs and their relation to LCFAs and glucose metabolism

“The last decade has seen a resurgence of interest in effects of fatty acids on

glucose metabolism” (Randle, 1998). Lipid and glucose metabolism are linked via

substrate competition, hormone signaling, and gene expression (Randle, 1998; Finck et

al., 2002). Patients with uncontrolled diabetes typically have abnormally high levels of

circulating lipids, especially non-esterified fatty acids (NEFA) (Saltiel, 2001). How

elevated NEFAs contribute to the dysregulation of glucose homeostasis, directly impair

insulin sensitivity remains uncertain, but evidence is emerging that muscle might be one

of the direct targets. 

Insulin resistance (IR), the failure to respond to normal circulating

concentrations of insulin, is a common state associated with obesity, aging, sedentary

lifestyle, and genetic predisposition. The failure of insulin to stimulate glucose uptake by

muscle appears to be a primary defect. Also, in certain fat depots, subsequent resistance

to antilipolytic effects of insulin causes increased lipolysis and fatty acid release. These

fatty acids attenuate the ability of insulin to suppress glucose production, but allow a

continual increase in insulin-stimulated fatty acid synthesis. Thus, the dysregulation of

carbohydrate and lipid metabolism accelerates the progression of IR. Beta-cells of the

pancreas normally compensate for the insulin resistant state by increasing basal and

postprandial insulin secretion. This consequently, further aggravates IR. At some point,
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beta-cells can no longer compensate, failing to respond appropriately to glucose. This

ultimately leads to the deterioration of glucose homeostasis and the development of

glucose intolerance, the inability to properly dispose of glucose. Adipose and liver cells

produce more FAs, the liver produces more glucose (gluconeogenesis) in an unregulated

fashion, and the beta-cells undergo progressive decompensation, resulting in the late

stages of disease, where high doses of insulin is required. Approximately, 5-10% of

glucose-intolerant patients progress to frank diabetes.

There are several mechanisms by which plasma fatty acid inhibits glucose

transport activity, leading to the FA-induced IR. Increased plasma free fatty acid

concentrations are typically associated with many IR states, including obesity and type 2

diabetes mellitus (Reaven et al., 1988; Boden et al., 1994; McGarry, 1992).  In a cross-

sectional study of young, normal-weight offspring of type 2 diabetic patients, it has been

found an inverse relationship between fasting plasma fatty acid concentrations and

insulin sensitivity, consistent with the hypothesis that altered fatty acid metabolism

contributes to insulin resistance in patients with type 2 diabetes (Perseghin et al., 1997).

About 40 years ago, Randle et al. (1963) demonstrated that fatty acids compete

with glucose for substrate oxidation in isolated rat heart muscle and rat diaphragm

muscle (Figure I.2). They hypothesized that increased fat oxidation causes the insulin

resistance associated with obesity. The mechanism they proposed to explain the insulin

resistance was that an increase in fatty acids caused an increase in the intramitochondrial

acetyl CoA/CoA and NADH/NAD+ ratios, with subsequent inactivation of pyruvate

dehydrogenase. This in turn would cause intracellular citrate concentrations to increase, 
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Figure I.2: Mechanism of fatty acid–induced insulin resistance in skeletal muscle (as 
proposed by Randle et al.,1963) (top). Potential mechanisms by which plasma fatty acid
inhibits glucose transport activity as proposed by Shulman (bottom). G6P = glucose-6-
phosphate; HK = hexokinase; NAD+ = nicotinamide-adenine dinucleotide; NADH =
reduced nicotinamide-adenine dinucleotide; PDH = pyruvate dehydrogenase; PFK =
phosphofructokinase. (From Shulman G.I. 2000; Perseghin et al., 2003). 
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leading to inhibition of phosphofructokinase, a key rate-controlling enzyme in

glycolysis. Subsequent accumulation of glucose-6-phosphate would inhibit hexokinase II

activity, resulting in an increase in intracellular glucose concentrations and decreased

glucose uptake.  

A recent series of work by Shulman group has challenged this conventional

hypothesis (Roden et al., 1996; Dresner et al.,1999) (Figure I.2). In the first study, the

authors used 13C and 31P NMR spectroscopy to measure skeletal muscle glycogen and

glucose-6-phosphate concentrations in healthy subjects. The subjects were maintained in

euglycemic, hyperinsulinemic conditions with either low or high levels of plasma fatty

acids (Roden et al.,1996). Increasing the plasma fatty acid concentration for 5 hours

caused a reduction of approximately 50% in insulin-stimulated rates of muscle glycogen

synthesis and whole-body glucose oxidation compared to controls. In contrast to the

results from the model of Randle and coworkers, which predicted that fat-induced insulin

resistance would result in an increase in intramuscular glucose-6-phosphate, they found

that the drop in muscle glycogen synthesis was preceded by a fall in intramuscular

glucose-6-phosphate. These data suggest that increases in plasma fatty acid

concentrations initially induce insulin resistance by inhibiting glucose transport or

phosphorylation activity, and that the reduction in muscle glycogen synthesis and

glucose oxidation follows. The reduction in insulin-activated glucose transport and

phosphorylation activity in normal subjects maintained at high plasma fatty acid levels is

similar to that seen in obese individuals (Petersen et al., 1998) and  patients with type 2

diabetes (Rothman et al., 1992).  Moreover, fatty acids seem to interfere with a very

early step in insulin stimulation of GLUT4 transporter activity or hexokinase II activity.
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This conclusion is at odds with the mechanism proposed by Randle et al. (1963) which

predicts an increase in intramuscular glucose-6-phosphate concentrations resulting from

inhibitory effects of fatty acid on phosphofructokinase activity (due to an increase in

intracellular citrate concentration). 

Much research has been published on the effects of LCFA on insulin action.

Increased extracellular fatty acid load can cause acute (Roden et al., 1996) and chronic

(Kim et al., 2001) skeletal muscle IR (reviewed by Petersen and Shulman, 2002).

Likewise, chronically reduced oxidative disposal of fatty acid has been shown to cause

muscle IR (Dobbins et al., 2001), and IR in obesity is associated with reduced oxidative

capacity (reviewed by Kelley and Mandarino, 2000; Kelley et al., 2002). These

situations have in common that they favor the accumulation of lipids such as TGs, fatty

acyl CoA, and DGs. Of these, the latter two are likely, but not certainly, critical in

inhibiting insulin-dependent glucose uptake (Yu et al., 2002). The mechanism of fatty

acid-induced IR is still not causally established and may involve also more than one

mechanism (Thompson et al., 2000; Schmitz-Peiffer, 2002); this is especially true for

the chronic situation. The “lipid oversupply” hypothesis (Kraegen et al., 2001) explains

chronic (skeletal muscle) IR with an accumulation on long chain acyl CoA (LCACoA)

or complex LCFA esters that inhibit insulin signalling (Shulman, 2000) or metabolic

enzymes (Thompson and Cooney, 2000). It is based on the findings that muscle

triglyceride (TG) and LCACoA levels are correlated with IR and that various

manipulations of LCFA metabolism that increase overall lipid supply and/or

esterification produce insulin resistance (Krssak et al., 1999; Dobbins et al., 2001; Kim

et al., 2001).
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Although these situations all favor the accumulation of lipids such as

triglycerides and fatty acyl CoA (Cooney et al., 2002; Kelley et al., 2002), the levels of

triglycerides and LCACoA in muscles are not always correlated with insulin sensitivity

(Straczkowski et al., 2001; Goodpaster et al., 2001; Bruce et al., 2003; An et al., 2004)

and the exact pathways of fatty acid-induced insulin resistance are still being elucidated

(Shulman, 2000; Thompson et al., 2000; Schmitz-Peiffer, 2000; An et al., 2004).  In

addition, sometimes (Storlien et al., 1991; Wilkes et al., 1998), but by far not always

(Kim et al., 2000), it has also been found that basal (insulin-independent) glucose uptake

can be increased due to fat diet, and basal skeletal muscle glucose uptake was increased

in obese patients (Kelley et al., 2002). Voshol et al. (2001) found normal skeletal

muscle, and increased cardiac insulin sensitivity while TG levels were increased in both

organs; nevertheless, other intracellulars were not measured. Skeletal muscle TG levels

were unchanged in rats made insulin-resistant with high-sucrose and high-starch diets

but increased in athletes with increased insulin sensitivity (Straczkowski et al., 2001).

Moreover, PPAR-alpha knockout mice showing decreased FFA oxidation and

accumulation of TG are protected from fat-induced insulin resistance (Guerre-Millo et

al., 2001), although PPAR-alpha agonistics improve insulin sensitivity (Tordjman et al.,

2001)

One of the proposed reasons for muscle IR is an inbalance between the fatty acid

load onto the cell and the cellular capacity to oxidize the load. In otherwise healthy

subjects, both increased extracellular fatty acid concentrations (review, Petersen and

Shulman, 2002) as well as a decreased oxidative capacity of muscle cells (review,

Kelley et al., 2002) can cause IR. 
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Another modifier of insulin sensitivity is muscle contraction (review, Tomas et

al., 2002). Although muscle contraction directly increases availability of GLUT4

transporters, it has a separate effect on insulin-dependent recruitment of GLUT4

transporters. However, the mechanism of this effect is less understood than in case of

LCFA-induced insulin resistance. 

In summary, the links between LCFA and glucose metabolism remain

incompletely understood, especially with regard to LCFA oxidation.  Sometimes

(chronically) decreased LCFA oxidation favors IR, sometimes not. Thus, the oversupply

hypothesis needs additional evidence, ideally through genetic, i.e., causal approaches

and lipid analysis beyond TGs. With H-FABP deficient mice as the model, we rely on a

protein whose expression under normal circumstances is essentially restricted to heart

and skeletal muscle, thus, avoiding difficulties in interpretations that are inherent in

transgenic models (Febbraio et al., 1999) with wider expression patterns. This model

should provide further arguments for or against the over/undersupply hypothesis;

specifically for the role of the ratio of LCFA esterification to oxidation and new insights

into the functions of H-FABP in skeletal muscle LCFA metabolism on glucose

metabolism, to causally relate them with glucose metabolism and insulin action.

The overall objective of this dissertation is to establish the role of H-FABP in the

lipid and glucose metabolism and the role of L-FABP in the LCFA oxidation and

relation to PPAR-alpha in knock-out mice models. No single treatment, pharmacological

or genetic, will cause only one change. For these reasons, it is important to compare

models of altered fatty acid usage with different primary lesions, and to identify the

common denominators. To this end, the dissertation records two primary steps. The first
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chapter documents uses H-FABP mice model to see the effects of H-FABP in the lipid

oxidation and esterification both in the standart diet and high fat diet.  Moreover, insulin

action is evaluated in H-FABP deficient mice kept under healthy (normal diet) and

disease conditions (high fat diet), the latter known to lead to severe whole body and

isolated muscle IR in wild type mice. The second chapter discusses the importance of L-

FABP in hepatic LCFA oxidation in vivo. In addition, this chapter records the

requirement of L-FABP for the action of the transcription factor PPAR-alpha, a master

onswitch for fatty acid oxidation  and a potential target of L-FABP under the conditions

of intense hepatic fatty acid oxidation.
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CHAPTER II

NON-ACUTE EFFECTS OF H-FABP DEFICIENCY ON SKELETAL MUSCLE

GLUCOSE UPTAKE IN VITRO*

Introduction

“Fatty acid overload” due to increased extracellular fatty acid levels (Randle,

1998; Straczkowski et al., 2001; Kim et al., 2001) or pharmacologically reduced fatty

acid oxidation (Dyck and Bonen, 2001) can impair insulin action on skeletal muscle

(review, Petersen and Shulman, 2002), and insulin resistance in obesity was associated

with reduced muscle oxidative capacity (reviews, Kelley and Mandarino, 2000; Kelley

et al., 2002). These situations all favor the accumulation of lipids such as triglycerides

and fatty acyl CoA (Cooney et al., 2002; Kelley et al., 2002). Conversely, genetic

interference with LCFA uptake was shown to prevent fat-induced accumulation of

muscle triglyceride and fatty acyl CoA as well as muscle insulin resistance (Kim et al.,

2004). However, the levels of triglycerides and LCACoA in muscles are not always

correlated with insulin sensitivity (Straczkowski et al., 2001; Goodpaster et al., 2001;

Bruce et al., 2003; An et al., 2004; Han et al., 2004) and the exact pathways of fatty

acid-induced insulin resistance are still being elucidated (Shulman, 2000; Thompson et 

*  Reprinted with permission from Am. J Physiol. “ Non-acute effects of H-FABP deficiency on skeletal
muscle glucose uptake in vitro” by Erol E., Cline G.W., Kim J.K., Taegtmeyer M,, Binas B. 2004. Am J
Physiol (accepted for publication, June, 2004). Copyright @ 2004, the American Physiological Society. 
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al., 2000; Schimitz-Peiffer, 2000, An et al., 2004).  In addition, in some cases

(Straczkowski et al., 2001, Wilkes et al., 1998) it has also been found that basal (insulin-

independent) glucose uptake can be increased due to fat diet, and basal skeletal muscle

glucose uptake was increased in obese patients (Kelley et al., 2002). The LCFA-induced

reduction of insulin sensitive muscle glucose uptake is non-acute, since it is maintained

for a while in the absence of LCFA (e.g., Kim et al., 2000; Thompson et al., 2000);

similarly, any stimulatory effects of LCFA on basal muscle glucose uptake would be

expected to be non-acute, since LCFA oxidation is well known to acutely reduce glucose

oxidation in skeletal muscle (Randle, 1998), an effect that is unlikely to be of

pathogenetic significance (Kelley and Mandarino, 2000; Shulman, 2000). 

Since no pharmacological or genetic treatment can be expected to act at only one

site, it is important to compare models of altered fatty acid usage with different primary

lesions in order to identify the common denominators of glucose uptake. Here we

examined the role of heart-type fatty acid binding protein (H-FABP) in the non-acute

regulation of basal and insulin-stimulated glucose uptake. H-FABP is an important, if

not dominant, LCFA binding protein in heart and skeletal muscle cytosol and is required

for high levels of skeletal muscle LCFA oxidation and esterification at least under

standard diet (Binas et al., 2003). Thus, we were interested to know whether the pool of

LCFA associated with H-FABP would be relevant for the non-acute regulation of

muscle glucose uptake. Accordingly, we measured the glucose uptake into soleus

muscles in vitro after subjecting wild type and H-FABP null mice (Binas et al., 1999) to

either standard or a high fat diet.
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Materials and methods

Mice. Mice lacking the H-FABP gene were originally produced on the

129/Balb/c background (Binas et al., 1999). For the experiments reported here, they

were backcrossed onto the C57/Bl6 background for at least 7 generations, and F1

offspring of heterozygous parents or F1 offspring of null X null and wild type X wild

type crosses were used. If not indicated otherwise, males were used. Mice were

genotyped with a reliable single-tube PCR assay as described (Binas et al., 2003). The

experiments were approved by the University Laboratory Animal Care Committee. 

Diets and starvation. Mice received a standard chow (Harlan Teklad, #8604) or

a high fat diet (Harlan Teklad, #TD 93075, main digestibles in g/kg: 289 protein, 207

starch, 90 sucrose, 274 shortening [Primex], 16 cellulose) for about 4 weeks, or they

were starved overnight (14-16 hours) in cages with fresh bedding. 

Blood metabolite levels. Blood was drawn with heparinized (for plasma) or non-

heparinized (for serum) glass capillaries from tails of overnight-fasted mice. It was

centrifuged immediately to remove blood cells, and the resulting plasma or serum was

kept on ice for metabolite analysis within the next 24 hours. Glucose levels were

measured (Sigma Diagnostics #315) in plasma, and free fatty acid levels were measured

(WACO, #994-75409E) in serum. Before determination of triglyceride (Sigma

Diagnostics #336) and insulin (Chrystal Chem. IL., kit #90060) levels, plasma was kept

frozen (-700C).

Glucose tolerance tests. Mice were starved overnight and injected i.p. with

glucose (20%, 2 mg /g body weight) for determination of tail blood glucose and insulin

at the indicated time points.
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Tissue metabolite levels. Muscle samples were shock frozen and stored at –

80oC. Muscle glycogen concentration was determined essentially as previously

described (Passonneau and Lauderdale, 1974) by digestion in 0.5 ml 1 N KOH,

neutralization with 1 N HCl, treatment of an aliquot (0.1 ml) with 0.5 mg/ml of

amyloglucosidase (Sigma, #A7420), and measurement of the released glucose with

Sigma’s kit # 315. Muscle triglyceride levels were measured with a modification

(Luiken et al., 2003) of a previously described method (Frayn and Maycock, 1980;

Storlien et al., 1991). Levels of LCACoA were determined in shock-frozen tissue

samples as described (Neschen et al., 2002; Yu et al., 2003). 

Deoxyglucose uptake by isolated muscle. Overnight-fasted mice were

anesthetized with Avertin. Soleus muscles were individually incubated in 1.5 ml of

buffer (composition see below) in continuously gassed (5% CO2/95% O2) 20 ml plastic

scintillation vials in a shaking water bath (29ºC). Following the procedure of Etgen et al.

(1999), three-step incubations (each step in a new vial) were performed in Krebs-

Henseleit buffer (KHB)/0.1% bovine serum albumin with the following supplements and

durations: Step 1, 8 mM glucose/32 mM mannitol, 40 minutes; step 2, 40 mM mannitol,

10 min; step 3, 1 mM [3H-]2-deoxyglucose at 0.5 mikroCi/ml (NEN #NET328)/ 39 mM

[U-14C]-mannitol at 0.1 mikroCi/ml (NEN #NEC314), 20 minutes. Insulin (Humulin, Eli

Lilly, #0002-8215-01) was present throughout the incubations at the concentrations

indicated in the main text. Muscles were then blotted on filter paper, trimmed, weighed

and dissolved in 0.1 ml hyamine hydroxide at 600C overnight. 30 mikroliter were

counted in a dual-label liquid scintillation spectrophotometer. Glucose-transport activity

(expressed in micromoles/20 min/g muscle) was calculated by subtracting the
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extracellular from intracellular [3H]-2-deoxyglucose by using the extracellular marker

[U-14C]-mannitol. 

Fatty acid metabolism in isolated soleus muscle. The same setup, but another

incubation medium and time schedule as for the glucose uptake experiments was used.

The incubation medium consisted of KHB, 2% bovine serum albumin (fatty acid-free,

Sigma), 0.1 mM palmitic acid (Sigma), 1 mikroCi/ml of either [3H]-palmitic acid (NEN

#NET043) or [3H]-oleic acid (#NET289), and insulin as indicated. Palmitic acid (125

mM stock in ethanol) was mixed with warmed albumin-containing medium until

completely clear. Freshly excised soleus muscles were incubated for 60 minutes at 290C

and freeze-clamped at the end. Fatty acid oxidation was measured through production of

tritiated water (Dyck and Bonen, 1998) in 1 ml of incubation medium, using a vial

incubated without muscle as blank. Fatty acid esterification into triglycerides was

quantified by homogenization of the muscles with a glass homogenizer in 1 ml ice-cold

chloroform-methanol (1:1), followed by lipid extraction and thin layer chromatography

(8). Bands of main lipid classes were visualized with iodine vapor, scraped out and

counted in 5 ml scintillation liquid (Scintisafe, Fisher Scientific).

Statistical analysis. Data are shown as means ± SE. They were calculated using

GraphPad Prism Statistical software program and analyzed using one way ANOVA

(Bonferroni’s multiple comparison test) and two-tailed Student’s t test, if not otherwise

indicated. Comparisons were made between H-FABP null and wild type mice

(*=p<0.05, **=p<0.01, ***=p<0.001), between standard diet and high fat/high sugar

diet (+=p<0.05, ++=p<0.01, +++=p<0.001), and between incubations in presence or

absence of insulin (#=p<0.05, ## =p<0.01, ###=p<0.001).
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Results

LCFA oxidation in isolated soleus muscles. In the absence of insulin, oxidation

of palmitate was decreased by 53% (Fig. II.1A) in mutant muscles from non-fasted,

chow-fed mice, while oleate oxidation was reduced by 56% (P<0.01, n=5 per genotype).

With this diet, insulin reduced the rate of palmitate oxidation in wild type soleus muscle,

but did not significantly reduce the already lowered rate in H-FABP null muscle (Fig.

II.1A, B). Accordingly, the decrement caused by the mutation was significantly (P<0.05)

larger in the absence of insulin than in its presence. A similar result was found with oleic

acid (not shown). With the high fat diet, the genotype-specific reduction was 67% for

palmitic acid in the absence of insulin (Fig. II.1A), and similar results were obtained

from skeletal muscles of fasted mice (Fig. II.1B) and females (not shown). With this

diet, the insulin-caused reduction of wild type muscle fatty acid oxidation became non-

significant. 

LCFA esterification in isolated soleus muscles. In the absence of insulin,

esterification of palmitate into triglycerides was lower by 26% in null as compared to

wild type muscles from non-fasted, chow-fed mice (Fig. II.1C), while esterification of

oleate was reduced by 38% (P<0.05, n=4 per genotype). With this diet, insulin

moderately but significantly (P<0.05) stimulated palmitate esterification in both

genotypes. With high fat diet, esterification of palmitate was reduced by 33% in null as

compared to wild type muscles (Fig. II.1C); this genotypic reduction occurred on a

lowered level, as the high fat diet reduced the esterification rates in both wild type (-

27%) and null (-34%) muscles. Similar results were obtained with muscles from fasted
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(Fig. II.1D) and female (not shown) mice. Again, insulin moderately stimulated

palmitate esterification in both genotypes (Fig. II.1C, D). 

Basal deoxyglucose uptake in isolated soleus muscles. Without insulin,

deoxyglucose uptake was lower by ~28% (P<0.05) in isolated soleus muscle from H-

FABP null as compared to wild type mice, regardless of whether the mice had been fed

chow or high fat diet (Fig. II.2A); similar results were seen in female mice (-29% and –

27%, P<0.05) and with extensor digotorum longus (EDL) muscle (-19%, P<0.05) (data

not shown). 

Insulin-stimulated deoxyglucose uptake in isolated soleus muscles. With standard

chow, high levels of insulin (2 mU/ml) increased deoxyglucose uptakes by 4.1

mikromol/mg/20 min (109%) in wild type, and by 4.7 mikromol/mg/20 min (+178.3%)

in H-FABP null samples (Fig. II.2A), but the difference between these increments was

not statistically significant. A similar result was obtained with female mice (data not

shown). The slightly (but not significantly) larger increment in H-FABP null muscles

prompted us to develop a dose response curve. This curve was significantly steeper in H-

FABP null as compared to wild type soleus muscle (Fig. II.2B). As a result, insulin-

dependent deoxyglucose uptake at 0.02 mU/ml insulin was significantly higher in null

vs. wild type soleus muscle (+141%) and approached plateau levels already at 0.2 mU

insulin/ml, but the plateau levels were similar in both genotypes. With the high fat diet,

total deoxyglucose uptake at 2 mU/ml insulin was only non-significantly (+30%)

increased in H-FABP null versus wild type muscle (Fig. II.2A); however, the genotypic

difference of the insulin-dependent increments (Fig. II.2B) was much larger (+190%)

and clearly significant (P<0.01). In the presence of the high insulin concentration, the 
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Figure II.1: Skeletal muscle LCFA oxidation and esterification are impaired in H-FABP
null mice under both standard diet and high fat diet. Isolated soleus muscles from wild type
(white columns) or H-FABP null (black columns) male mice maintained on diets as indicated
were incubated with labeled palmitic acid in the absence (-) or presence (+) of 2 mu/ml insulin as
indicated below the columns. A, palmitic acid oxidation in muscle from mice fed ad libitum; B,
same as A but mice were fasted overnight before sacrifice; C, esterification of palmitate into
triglyceride fraction, mice fed ad libitum; D, same as C but mice were fasted overnight. Each
column represent 6-13 mice. Comparisons were made using one way ANOVA (Bonferroni’s
multiple comparison test) between H-FABP null and wild type mice (*P<0.05, **P<0.01,
***P<0.001), between standard diet and high fat/high sugar diet (+=P<0.05, ++=P<0.01,
+++=P<0.001), and between incubations in presence or absence of insulin(#P<0.05, ##P<0.01,
###P<0.001).
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Figure II.2: Improved insulin action, but reduced basal glucose uptake in isolated H-
FABP null skeletal muscle. A, Male wild type (white columns) and H-FABP null (black
columns) mice were maintained on standard or high fat diet as indicated below columns, fasted
overnight, and then used for isolated soleus muscle incubation in presence of radiolabeled
deoxyglucose and absence (-) or presence (+) of 2 mU/ml insulin. Each column represents 6-10
mice. The unit is 2-dog uptake (nmol/20min/gr). B, Insulin dose response of insulin-dependent
glucose uptake (total minus basal). Male wild type (squares) or H-FABP null (triangles) mice
were used for measurement of deoxyglucose uptake as under A, except that variable insulin
concentrations were added to muscles from mice treated with standard diet. For mice maintained
under high fat diet, only the insulin-dependent uptake at 2 mu/ml is given. Each data point
represents 6-10 mice. *P<0.05, **P<0.01, comparisons between H-FABP null and wild type
mice; #P<0.05, ###P<0.001, comparisons between incubations in presence or absence of insulin;
+++P<0.001, comparison between standard diet and high fat/high sugar diet.
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total rate of deoxyglucose uptake by wild type soleus muscle was significantly reduced

(-43%) by high fat diet, whereas the corresponding reduction with H-FABP null muscle

was smaller (-24%) and not significant at P<0.05 (Fig.II.2A). 

Lipid levels in vivo. With standard diet, the mutation doubled (+97%) plasma

fatty acid levels, but did not affect plasma triglyceride levels (Table II.1), similar to the

phenotype before the backcross (Binas et al., 1999). With high fat diet, circulating fatty

acid levels more than doubled (+117%) in wild type mice, but increased less (+36%) in

H-FABP null mice due to the higher starting level, although the free fatty acid level

remained higher (+24%) than in wild type mice (Table II.1). No genotype-specific

differences were observed in plasma triglyceride levels of mice on a high fat diet,

although triglyceride levels were increased in both genotypes (Table II.1). 

Muscle triglyceride levels remained normal in the H-FABP null mice kept with

the standard diet, but the H-FABP null mutation effectively prevented the almost

threefold increase of muscle triglycerides caused by high fat diet (Fig. II.3A). Total and

individual LCACoA levels in gastrocnemius muscle were not affected by the mutation

with the standard diet, but with the high fat diet, they were moderately reduced (Table

II.2). Statistical significance at P<0.05 was reached for C18:3 (-43%) with the two-tailed

t-test, and for C16:0 (-39%), C18:3 (-43%), and total LCACoA (-26%) with the one-

tailed t-test (Table II.2). LCACoA were also measured in soleus muscles, but statistics

could not be applied because solei had to be pooled (1 muscle per mouse, 7 mice per

pool). The results (2 pools per genotype) showed total LCACoA levels of 23.3 and 27.6

(male wild type) versus 21.5 and 21.2 (male H-FABP null) nmol/g, and 21.1 and 20.1

(female wild type) versus 21.3 and 20.0 (female H-FABP null) nmol/g. Thus, with high
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fat diet there was moderate decrease of muscle LCACoA levels due to the mutation in

males. 

Carbohydrate and insulin levels in vivo. With the standard diet, fasting glucose levels

were decreased by ~25% in male and female H-FABP null vs. wild type mice (Table

II.3). With the high fat diet, glucose levels increased in both wild type (males, +110%;

females, +73%) and H-FABP null (males, +127%; females, +87%) mice, but remained

lower in null vs. wild type mice (males, -19.5%; females, -18%) (Table II.3). Skeletal

muscle glycogen levels were decreased in H-FABP null skeletal muscles by 25% under

standard diet and by 26.5% under high fat diet (Fig. II.3B). Mice maintained on standard

diet did not exhibit a genotype-specific difference of glucose tolerance, but with the high

fat diet (that significantly impaired glucose tolerance in both genotypes), we observed a

moderate yet significant improvement of glucose tolerance in H-FABP null versus wild 

type mice 15 minutes after injection, but not at the later time points (Fig. II.4A). With

the standard diet, fasting insulin levels in H-FABP null mice were significantly

decreased (-66%)compared with wild type levels (Table II.3) (in females the decrease (-

30%) was not significant), but after glucose injection, insulin levels increased faster in

H-FABP null mice than in wild type mice, resulting in identical levels by the end of the

assay (Fig. II.4B). With the fat diet, fasting insulin plasma levels increased by a

comparable factor in wild type (males, +446%; females, +803%) and H-FABP null

(males, +469%; females, +549%) mice, meaning that the insulin levels remained

substantially lower than in the H-FABP null mice (Table II.3). However, unlike after

standard diet, the insulin levels did not increase further during the glucose tolerance test

(Fig. II.4B).
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Table II.1. Blood levels of free fatty acids and triglycerides in H-FABP null (-/-)
and wild type (+/+) control mice (maintained under either standard chow or 4 weeks of
high fat diet). Mice were fasted overnight before blood sampling. Data are means ± SEM
(n). *P<0.05, **P<0.01, comparisons between genotypes. +P<0.05, ++P<0.01,
comparisons between diets.

FFA (mEq/L) TG (mM) FFA (mEq/L) TG (mM)

Standard diet High fat diet

+/+ 0.37 ± 0.02

(6)

0.10 ± 0.01 (5) 0.80±0.02++ (6) 0.13±0.01+ (6)

-/- 0.73 ± 0.04**

(6)

0.11 ± 0.01 (5) 0.99±0.06*, + (6) 0.14±0.01+(6)
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Table II.2. LCACoA contents (in nmol/g wet tissue) of H-FABP null (-/-) and
wild type control (+/+) gastrocnemius muscles (from mice maintained under either
standard chow or 4 weeks of high fat diet). Data are means ± SD. In brackets, P values
are shown for differences between wild type and H-FABP null samples that are
considered statistically significant according to one tailed (*) and two-tailed (**) t-tests.
Only genotypes, but not diets should be compared, since the diet groups differed by age
and pretreatment (fasted, standard diet; fed, fat diet). 

C16:0 C18:0 C18:1 C18:2 C18:3 Total

Standard diet
Males +/+
n=5 1.70±0.1

7
0.98±0.0
5

4.74±0.40
2.90±0.3
0

1.83±0.23
14.10±1.
30

Males -/-
n=5 1.75±0.1

0
1.16±0.0
8

5.68±0.31
3.20±0.3
8

1.73±0.17
15.21±1.
01

High fat diet
Males +/+
n=7

1.13±
0.2 1.63±0.1

4

4.52±0.47
2.26±0.2
8

1.81±0.28
11.94±1.
48

Males -/-
n=7 0.69±0.1

1
1.51±0.0
9

3.50±0.27
1.59±0.1
6

1.03±0.11 
8.84±0.7
3 

Females +/+
n=6 1.11±0.2

0
1.78±0.1
5

4.23±0.41
2.15±0.2
6

2.18±0.53
11.87±1.
75

Females -/-
n=6 0.81±0.0

9
1.85±0.0
9

4.01±0.26
1.99±0.1
8

1.71±0.24
10.94±0.
84



37

Table II.3. Blood levels of glucose and insulin in H-FABP null (-/-) and wild
type (+/+) control mice (maintained under either standard chow or 4 weeks of high fat
diet). Mice were fasted overnight before blood sampling. Data are means ± SEM (n).
*P<0.05, **P<0.01, comparisons between genotypes. +P<0.05, ++P<0.01,
+++P<0.001comparisons between diets.

Glucose 
(mM)

Insulin 
(ng/ml)

Glucose 
(mM)

Insulin 
(ng/ml)

Standard diet High fat diet
Males +/+ 7.57±0.32 

(7)
0.29 ± 0.06 
(11)

15.92±0.8+++ 
(6)

1.58 ± 0.15+++

(9)
Males -/- 5.66±0.27*

(7)
0.10 ± 0.03*

(9)
12.82±0.6*,+++ 
(6)

0.57 ± 0.15**,++

(8)
Females +/+ 6.86 ± 0.37 

 (8)
0.18 ± 0.03 
(10)

11.84 ± 0.7+++ 
(6)

1.59 ± 0.49++

 (9)
Females -/- 5.20 ± 0.39*

 (8)
0.12 ± 0.04 
(11)

9.71 ± 0.50*,+++

(6)
0.81 ± 0.28+ 
(11)
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Figure II.3. Triglyceride and glycogen levels in gastrocnemius muscle. Male
wild type (white columns) and H-FABP null (black columns) null mice fed ad libitum
either standard or high fat diet were used (n=6-8 [triglyceride] or 8-10 [glucogen] per
column). Results are given as mean ± SEM. +++=P<0.001, comparisons between diets;
P<0.05,***P<0.001, comparison between genotypes. 
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Fig. II.4. Glucose tolerance and insulin levels. A, Male wild type (triangles) and H-
FABP null (squares) mice maintained under standard diet (empty symbols) or high fat
diet (filled symbols) were fasted overnight and subjected to intraperitoneal glucose
injection (n=8-10 per data point). B, Acute insulin response of male wild type (triangles)
and H-FABP null (squares) mice during glucose tolerance test following standard diet
(empty symbols) and high fat diet (filled symbols). N=4 per data point for 30 and 60
minutes, but n= 8-11 for zero time (see table 3). Results are given as mean ± SEM.
*P<0.05, **P<0.01, comparisons between genotypes.
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Discussion

The present study provides further support for an important role of H-FABP in

muscle LCFA and glucose metabolism. 

First, our data extend our previous result that muscle H-FABP is a major

determinant of myocellular uptake and metabolic availability of palmitate during

standard diet (Binas et al., 2003, Luiken et al., 2003) by adding another fatty acid

(oleate), another diet (high fat diet), and comparing fasting with feeding. At least with

standard chow, LCFA metabolism was reduced without a decrease of total and

individual LCACoA levels, similar to reduced LCFA oxidation, but normal LCACoA

levels, in livers of mice lacking liver FABP (Erol et al., 2004). Further, under nutritional

stress (high fat diet), lack of H-FABP completely prevented the three-fold accumulation

of triglycerides (while reducing LCACoA levels only moderately), adding to our

previous finding that this mutation blunts the contraction-caused decrease of muscle

triglyceride levels (Binas et al., 2003). Thus, H-FABP is a limiting factor for muscle

LCFA metabolism regardless of physiological situation, but more work is needed to

clarify the mechanism leading to altered triglyceride levels in some (contraction, fat diet)

but not other (standard chow) conditions. 

Second, we showed here that FABP is an important mediator of at least some of

the fatty acid effects that reduce muscle insulin sensitivity or responsiveness. Current

thinking (Shulman, 2000;  Schimitz-Peiffer, 2000; Petersen and Shulman, 2002) holds

that relatively slow effects of non-oxidative LCFA metabolites are important in

opposing insulin action. In agreement with this notion, we found that H-FABP null

muscles not only showed increased insulin sensitivity (standard chow) and
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responsiveness (fat diet), but these effects were seen in the absence of added LCFA

(during both preincubation and labeling), making rapid substrate-level competition

between glucose and LCFA oxidation (Randle, 1998) an unlikely explanation. Our

results vary this notion by showing that insulin sensitivity of glucose uptake can be

increased by reduced LCFA binding/metabolism while maintaining normal insulin

responsiveness. It is also of note that LCACoA levels were not affected by the mutation

under this condition (standard chow). With the high fat diet, when insulin-dependent

deoxyglucose uptake by isolated soleus muscle was significantly stimulated by the H-

FABP null mutation even at high (2 mU/ml) levels, we saw only a trend toward

decreased cellular LCACoA levels. Therefore, we suggest that the metabolic availability

of LCACoA (indirectly determined by H-FABP) may be more relevant for insulin

sensitivity or resistance than cellular LCACoA levels. This would fit various recent

observations that a higher insulin sensitivity can be associated with moderate (Houmard

et al., 2002) or no (Bruce et al., 2003; An et al, 2004) decrease of myocellular LCACoA

levels. The H-FABP null mice are a useful model with which to study whether the

metabolic availability of LCACoA or another aspect of LCFA metabolism regulate

insulin-dependent glucose transport. 

Third, we observed that in vitro soleus muscle deoxyglucose uptake was reduced

by the mutation in the absence of insulin, regardless of the nature of prior diet. Thus, at

least in vitro and without added fatty acid, the decreased basal uptake antagonized the

increased insulin sensitivity/responsiveness, thereby reducing the net change of skeletal

muscle glucose uptake. These results resemble our previous observation that glucose

oxidation (measured in the absence of insulin but presence of fatty acid) was decreased
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in soleus muscle isolated from H-FABP null mice fed a standard diet (Binas et al, 2003),

and the decreased basal glycogen synthesis rates (measured in absence of fatty acid) in

isolated soleus muscle from mice lacking the plasma membrane LCFA transporter

CD36, a mutation that at the same time increases the insulin responsiveness of glycogen

synthesis (Hajri et al., 2002). 

Fourth, we found here that blood LCFA levels were increased, and blood glucose

and insulin levels were decreased, in H-FABP null mice. We speculate that hormonal

and substrate conditions in vivo dampen the non-acute genotype-specific changes of

muscle glucose uptake that we observed in vitro. For example, the reduced plasma

insulin levels might limit the effect of the non-acutely increased insulin

sensitivity/responsiveness, while the presence of LCFA might, through the glucose-fatty

acid cycle (Randle, 1998), reduce glucose uptake in wild type muscle more than in H-

FABP null muscle (that oxidize LCFA less efficiently) and thus offset the non-acutely

reduced basal glucose uptake. It may not surprise, then, that glucose tolerance was not

(chow) or only slightly (fat diet) improved in H-FABP null vs. wild type mice. Thus,

both the acute and the non-acute effects of substrate and hormone concentrations will

have to be studied in order to fully understand the role of H-FABP in muscle glucose

uptake in vivo. Such information will also be helpful to understand the energetic impact

of reduced LCFA oxidation in vivo that involves reduced soleus muscle ATP and

phosphocreatine levels, but not a reduced mitochondrial enzyme capacity (Binas et al.,

2003). 

In conclusion, we have described here two non-acute and opposite effects of H-

FABP on muscle glucose uptake. Our results are compatible with the view that lipid
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pools determined by H-FABP are more important for regulating basal and insulin-

dependent skeletal muscle glucose uptake than total cellular lipid levels.
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CHAPTER III

LIVER FATTY ACID BINDING PROTEIN IS REQUIRED FOR HIGH RATES

OF FATTY ACID OXIDATION BUT NOT FOR THE ACTION OF PPAR-

ALPHA IN FASTING MICE*

 Introduction

Liver fatty acid binding protein (L-FABP), a member of the genetically related

cytosolic FABP family (Mc Arthur et al., 1999; Hertzel and Bernlohr, 2000; Storch and

Thumser, 2000), is expressed in the liver, and together with other FABPs in intestine

and kidney. Its main known molecular function is the reversible binding of hydrophobic

ligands, including long-chain fatty acids (LCFA), LCFA-CoA, phospholipids,

peroxisome L proliferators, and others (Mc Arthur et al., 1999; Hertzel and Bernlohr,

2000; Storch and Thumser, 2000; Haunerland et al., 1984; Wolfrum et al., 2000). The

abundance (reaching 2.5% of cytosolic protein) and correlation of its levels with the

extent of LCFA metabolism in vivo (Ockner et al., 1979; Hung et al., 2003) suggest that

L-FABP is important in hepatic LCFA metabolism. In line with this, numerous

alterations of LCFA metabolism have been observed in cell lines transfected with L-

FABP cDNA (Mc Arthur et al., 1999), notably in the context of the present study 

* Reprinted with permission from FASEB J “ Liver fatty acid-binding protein is required for high rates of
fatty acid oxidation but not for the action of PPAR-alpha in fasting mice” by Erol E., Kumar L.S., Cline
G.W., Shulman G.I., Kelly D.P., Binas B. 2004. FASEB J 2004 18(2):347-9. Copyright © 2004, The
FASEB Journal Online by The Federation of American Societies for Experimental Biology.
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increases in LCFA uptake (Murphy et al., 1996) and oxidation (Linden et al., 2002), 

whereas an L-FABP antisense cDNA inhibited LCFA uptake (Wolfrum et al., 1999).

However, because these cell lines were poorly differentiated, it is not clear whether the

results apply to the metabolically highly active, fully differentiated hepatocyte.

Moreover, the mechanisms underlying the potential roles of L-FABP in LCFA

metabolism remain unclear.

Several observations are consistent with a substrate-level role of L-FABP.

Displacement of the fluorescent LCFA analog NBD-stearate from L-FABP by alpha-

bromopalmitate was accompanied by reduced cytoplasmic diffusion of NBD-stearate

(Luxon, 1996). Cytoplasmic diffusion of NBD-stearate was also reduced in

permeabilized hepatocytes, but restored by addition of L-FABP (Kaikaus et al., 1993).

Furthermore, L-FABP modulated ligand transfer and metabolism in cell-free systems

(Mc Arthur et al., 1999; Storch and Thumser, 2000). Finally, hepatic L-FABP levels are

boosted by peroxisome proliferators (Kaikaus et al., 1993; Lee et al., 1995) and reduced

in peroxisome proliferator-activated receptor alpha (PPAR-alpha) null mice (Kersten et

al., 1999), consistent with the idea that L-FABP itself might be part of the lipid

oxidation machinery. Thus, L-FABP might modulate the availability of its ligands for

metabolism by raising their cytosolic concentration, sequestering them, and facilitating

their intracellular movement. More recently, the possibility that L-FABP affects LCFA

metabolism by increasing the activity or level of the transcription factor PPAR-α has

caused great interest. L-FABP and PPAR-alpha exhibit a similar ligand binding

spectrum (compare ref Corton et al., 2000 with ref Wolfrum et al., 2000 and references

therein). LFABP can be found in the nucleus (Bordewick et al., 1989) and physically
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interacts with PPAR-alpha (Wolfrum et al., 2001). L-FABP ligands added to cultured

hepatoma cells stimulate transcription of a reporter gene carrying a peroxisome

proliferator-responsive element, in strict correlation with the endogenous content of L-

FABP (Wolfrum et al., 2001). Finally, overexpression of L-FABP in L cells increases

nuclear fatty acid uptake (Huang et al., 2002). Thus, L-FABP might stimulate the

intrinsic activity of PPAR-alpha Moreover, it might increase PPAR-alpha levels, because

transfection of L-FABP cDNA into hepatoma cells increased the levels of PPAR-alpha

mRNA (Linden et al., 2002). It was suggested (Wolfrum et al., 2001) that L-FABP is the

gateway of hydrophobic compounds to gene transcription, and this concept was most

recently extended to three other members of the FABP gene family, heart-type,

adipocyte, and keratinocyte FABP (Huang et al., 2002).

Taken together, the literature suggests substantial roles for L-FABP in LCFA

metabolism both by modulating availability of substrates as well as by increasing

enzymatic capacity throughactivation of PPAR-alpha and possibly other transcription

factors. Here, we used the recently created L-FABP null mice (Martin et al., 2003) to

study the role of L-FABP in hepatic LCFA oxidation and the potential involvement of

PPAR-alpha.

Materials and methods

Mice. The creation of mice lacking the L-FABP gene (L-FABP null mice) has

been described previously (Martin et al., 2003). The mutation was backcrossed onto the

C57/Bl6 (Harlan, Madison, WI) background for two to three (Fig. 1.3, Table 2) or four

generations (Table 1). PPAR- alpha null mice (Lee et al., 1995) were backcrossed for six

generations onto the C57/Bl6 (Jackson, Bar Harbor, ME) background. Experimental L-
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FABP null and PPAR- alpha null mice and their respective wild-type controls were

derived from heterozygous intercrosses. Mice were used at the age of 3.6 months (Fig.

1-3, Table 2) or 2-3 months (Table 1). In each physiological situation represented in a

given figure or table, null and wild-type mice of the same sex were exactly matched for

backcross generation and age (less than 2 weeks difference). However, animal groups

studied under different physiological situations differed by age and backcross within the

segments given above. In comparisons of PPAR- alpha null and L-FABP null mice, all

mice (including the wild-type controls) were treated identically and simultaneously.

Animal experiments were approved by the University Lab Animal Care Committee.

Diets and starvation. Mice were fed either a standard chow (#8604, Harlan

Teklad; 3.24 kcal/g [57.6% from CHO,12.2% from fat, 30.2% from protein]), a

ketogenic diet for 3 days (#TD 96355, Harlan Teklad; 6.69 kcal/g [0.3% from CHO,

90.7% from fat, 9.0% from protein]; main digestibles in g/kg: 586 shortening [Crisco],

86 corn oil, 151 protein, 5.4 carbohydrate), or a diabetogenic diet for ~4 weeks (#TD

93075, Harlan Teklad; 4.80 kcal/g [24.0% from CHO, 55.0% from fat, 21.0% from

protein]; main digestibles in g/kg: 289 protein, 207 starch, 90 sucrose, 274 shortening

[Primex], 16 cellulose). Alternatively, mice were starved overnight (14-16 h) in cages

with fresh bedding.

Determination of blood metabolites. Tail blood was drawn from conscious

mice in most cases, but in a few cases, blood was obtained by cardiac puncture under

Avertin. Serum was kept at 4°C and used within 24 hours for measurement of

nonesterified fatty acids (NEFA) (#994-75409E, Wako Diagnostics, Richmond VA),
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triacylglycerol (#336, Sigma, St. Louis, MO), β-hydroxybutyrate (BHB; #310UV,

Sigma), and glucose (#315, Sigma).

Octanoate challenge. Sodium octanoate (500 mM, in 0.9% NaCl) was injected

intraperitoneally at 6 mikroliter per gram of body weight into mice starved overnight. At

the indicated times, aliquots of 10 mikroliter of tail blood were withdrawn for analysis

of ΒΗΒ. 

Determination of long-chain acyl CoA.  Liver pieces from mice starved

overnigh were shock-frozen with liquid nitrogen, weighed, powdered, and processed as

previously described (Neschen et al., 2002).

Measurement of fatty acid oxidation in isolated hepatocytes. Primary

hepatocytes were obtained by an established method (Madden et al., 2000) with

modifications. In brief, mice were anesthetized with Avertin, and each liver was

perfused through the V. cava inferior with two consecutive solutions (prewarmed to

37°C): first, with Ca/Mg-free Earle.s balanced salt solution/0.5 mM EGTA (perfused for

4.6 min at 7.8 ml/min), and second with HEPES-buffered Hanks balanced salt solution

(#24020-117, Gibco-BRL, Gaithersburg, MD) containing 0.3 mg/ml collagenase D

(#17103-011, Gibco-BRL) (perfused for 6.8 min at 8.10 ml/min). Hepatocytes were

released into Dulbecco.s modified Eagle.s medium (DMEM), filtered, and centrifuged at

600 rpm for 2 minutes, followed by centrifugation in 50 vol/% each of DMEM (with

10% FBS) and of Percoll (with Hanks salts). The pellet was washed two times with

serum-free DMEM. Cell viability, determined by trypan blue exclusion, always

exceeded 95%. Hepatocytes (500,000 cells in a final vol of 1 ml) were incubated

(duplicate for each mouse) for 1 h at 37°C with agitation under an atmosphere of 5%
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CO2/95% O2 in sealed glass vials in Krebs-Henseleit bicarbonate buffer supplemented

with 1 mM carnitine (Sigma), 2% (w/v) fatty acid-free bovine serum albumin (BSA)

(Sigma), 1 mM palmitate (Sigma), and 0.5 mikroCi/ml [1-14C]-palmitate (#P- 8575,

Sigma). The fatty acid (0.4 M stock in ethanol) was completely dissolved by prewarming

the buffer at 37°C before adding the cells. At the end of incubation, 30 µl of the

suspension were removed onto ice for later enzymatic measurement of ΒΗΒ, a tube with

0.2 ml hyamine (ICN Radiochemicals, Irvine, CA) was inserted, the vial was sealed

again, and 0.3 ml of 3 M perchloric acid was injected into the cell suspension. After

incubation for 90 minutes at 4°C, the acid incubation mixture was centrifuged for 5

minutes at 6000 rpm and the supernatant as well as the hyamine sample were subjected

to liquid scintillation counting (Scintisafe, Fisher Scientific, Pittsburgh, PA). The rates of

palmitate oxidation were calculated as the sum of trapped 14CO2 (hyamine sample) and

14C-labeled acid soluble products (supernatant). BHB was determined with Autokit

3HB (Wako Diagnostics, Richmond, VA) after removing the cells (4°C, 2 minutes, 5000

rpm).

Measurement of fatty acid oxidation in liver homogenates. Guided by a

published protocol (Veerkamp et al., 1986), we determined palmitate oxidation rates in

duplicates per mouse. In brief, fresh liver pieces were homogenized at 5% (wt/vol) in

ice-cold buffer (10 Mm Tris-HCl, pH 7.4, 2 mM Na2-EDTA, 0.25 M sucrose) with a

tight-fitting Dounce homogenizer. 25 mikroliter of liver homogenate were added to 475

µl of assay buffer containing 75 mM Tris-HCl (pH 7.2), 10 mM K2HPO4, 1 mM

EDTA, 5 mM MgCl2, 0.5 mM L-carnitine, 25 mikroM cytochrome c, 0.1 mM CoA, 25

mM sucrose, 5 mM ATP, 0.5 mM malate, and 1 mM NAD. After preincubation for 30
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minutes at 37°C and agitation, palmitate was added to a final concentration of 1 mM (1

mikroCi/ml) palmitate/2% fatty acid-free BSA, and incubation was continued for

another 30 minutes. BHB and radiolabeled oxidation products were determined as

described for the hepatocyte incubations.

Northern blotting. Total liver RNA was isolated with RNAwiz (Ambion,

Austin, TX) and separated at 20 mikrogram/lane on 1% agarose/formaldehyde gels.

Northern blotting was performed according to standard methods (Sambrook and Russell,

2001), using BrightStar-Plus membranes, ULTRAhyb buffer, and the Strip-EZ DNA kit

(Ambion). Manufacturer.s instructions were followed except that washing was

performed at 60°C. The probes (26.29) used were cDNAs encoding medium-chain acyl

CoA dehydrogenase (MCAD), liver carnitine palmitoyltransferase 1 (L-CPT1),

cytochrome P4504A3 (CYP4A3), glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) and PPAR-alpha (26), long-chain acyl CoA dehydrogenase (LCAD) (27),

mitochondrial hydroxymethyl glutaryl (HMG) CoA synthase (28), and L-FABP (29).

Signals were visualized with a PhosphorImager (Molecular Dynamics, Sunnyvale, CA),

quantified with ImageQuant software, and normalized to the signal of GAPDH mRNA.

Data evaluation. Data were evaluated with statistics software (GraphPad Prizm,

San Diego, CA). Error bars represent the standard errors of the mean. Differences

between wild-type and null groups were analyzed by Student’s t test at the 95%

confidence level.
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Results

The ketone body ΒΗΒ is an end product of hepatic fatty acid oxidation (McGarry and

Foster, 1980), and its plasma levels are often used to assess hepatic fatty acid oxidation

in vivo (see Kersten et al., 1999 and Leone et al., 1999). Accordingly, we measured

plasma hydroxybutyrate levels in L-FABP null mice in order to obtain an indication for

potentially altered LCFA oxidation. Wild-type and L-FABP null mice were subjected to

standard diet (a nonketogenic condition), to starvation (a ketogenic condition), to a short

term high-fat, low-sugar diet (another ketogenic condition), and to a chronic highfat/

sugar (diabetogenic) diet, followed or not followed by starvation. Body weights were not

affected by the genotype under these nutritional conditions at the time point of metabolic

assays (results not shown). As shown in Figure III.1A, steady-state levels of blood ΒΗΒ

were significantly reduced in null vs. wild-type female mice under all ketogenic

conditions (ketogenic diet and starvation irrespective of type of prior diet), whereas

under nonstarving conditions (standard or diabetogenic diet), no significant ketogenesis

occurred in either genotype. Similar results were obtained in male mice, but unlike in

females, the genotypic difference in ΒΗΒ levels was further increased by long-term

diabetogenic diet before the starvation. Figure III.1B shows that in contrast to ΒΗΒ

levels, levels of circulating NEFA were not reduced under any ketogenic or

nonketogenic condition. Rather, NEFA levels tended to increase; this was not

statistically significant during starvation but reached significance under all other
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Figure III.1. A liver-intrinsic defect impairs hepatic long chain, but not medium chain, fatty
acid oxidation in LFABP null mice. Serum levels of beta-hydroxybutyrate (A) and NEFA (B)
were measured in female (left panels) and male (right panels) mice subjected to starvation
(overnight), standard diet, ketogenic diet (3 days), or diabetogenic diet (4 wk). Black columns,
wild type; white columns, L-FABP null. Each column pair represents mice that were matched for
age, sex, and backcross generation, but mice represented by different column pairs may slightly
differ by age and backcross generation. Each column includes 3 experiments with 2 mice each
per genotype (n=6 total per genotype), except for free fatty acid measurements in starved and
standard diet-fed mice where each column represents 2 experiments with 3 mice each (females,
n=6 per genotype total) or 3 and 2 mice each (males, n=5 per genotype total). *P<0.05;
**P<0.01, ***P<0.001; comparisons between genotypes. C) Octanoate injection restores
ketogenesis in L-FABP null, but not PPARa null, mice. L-FABP null mice (L–/–, empty circles;
n=5) and their wild-type litter mates (L+/+, filled circles; n=5) as well as PPARa null mice (P–/–
, empty triangles; n=4) and their wild-type litter mates (P+/+, filled triangles; n=4) were injected
with octanoic acid, and plasma beta-hydroxybuturate levels were determined at the indicated
time points. All mice were females. Error bars (SE) did not exceed symbol sizes.



53

Figure III.2. Expression of key genes of lipid oxidation in L-FABP null and PPARa null livers.
Shown are representative Northern blots prepared from mice starved overnight (14–16 h) (A)
and mice fed standard chow (B). L, LFABP; P, PPARa; +/+, wild type; –/–, null. Separate
matched wild-type controls were used for the L and P mice. For each genotype, two samples
from two different mice were applied to neighboring lanes on the gel. All mice were females. A,
B) Representation of two blots that were each hybridized multiple times. Identical results were
obtained with a second pair of Northern blots not shown that were prepared with RNA samples
from additional mice, resulting in 4 analyzed mice for each of the 4 groups of mice. C)
Quantification of expression levels in starved mice. D) Quantification of expression levels in fed
mice (except for CYP4A3 because of low levels). Signals of all bands of all blots were
normalized to the respective GAPDH signals, and the resulting numbers from null mice were
divided by those from wild-type control mice. White columns, (L–/–)/(L+/+) ratio; black
columns, (P–/–)/(P+/+) ratio. *P < 0.05; **P < 0.01; ***P < 0.001; comparison between null
and wild type. †Ratio equals zero by definition.
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conditions in females. In males, the increase was seen only after long-term diabetogenic

diet (Fig. III.1-B). The above results suggest that hepatic fatty acid oxidation is reduced

in L-FABP null mice and that this reduction is not due to decreased substrate provision

to the liver. To determine conclusively whether the decreased ΒΗΒ levels are due to an

intrahepatic defect, we isolated primary hepatocytes and incubated them with palmitate.

Table III.1 shows that freshly isolated hepatocytes from L-FABP null mice produced

significantly less ΒΗΒ than those from wild-type mice. In parallel, total fatty acid

oxidation was determined as the sum of radiolabeled carbon dioxide and radiolabeled

acid-soluble products released. Again, a reduction was seen in the L-FABP null variant,

similar in extent to the reduction of ΒΗΒ (Table III.1).

Taken together, the above results demonstrate that hepatic fatty acid oxidation is

impaired in the absence of L-FABP and that the reduction is due, at least in part, to an

intrahepatic defect. A potential explanation for the reduced fatty acid oxidation and

ketogenesis in L-FABP null mice might be decreased intracellular substrate levels. We

therefore measured levels of LCFA-CoA, the direct substrates for β oxidation. As shown

in Table III.2, a trend for increased stearoyl-CoA (C18:0) and decreased linoleoyl-CoA

(C18:2) levels was seen in both females and males, but only for stearoyl-CoA in females

was statistical significance reached at P<0.05. However, levels of palmitoyl-CoA

(C16:0) were not changed despite the significant reduction in palmitic acid oxidation;

moreover, total LCFA-CoA levels, defined here as the sum of all C16 and C18

LCFACoAs, were clearly unaltered. The essentially normal LCFA-CoA levels do not 

rule out their reduced availability. However, because L-FABP is able to increase the
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Table III.1. Fatty acid oxidation in isolated liver tissue.
 a: For each experiment, a wild-type (+/+) and an L-FABP null (–/–) mouse (both
female) were starved overnight and then used to obtain either intact hepatocytes (six
independent experiments total) or liver homogenates (four independent experiments
total). After incubating duplicate aliquots of the cells or homogenates with 1 mM
radiolabeled palmitate, we determined labeled oxidation products (nmol/h/500,000 cells
or nmol/min/g wet liver) and beta-hydroxybutyrate concentrations (mikromolar). ASP,
acid-soluble products. For experimental details, see Materials and Methods. Results are
given as mean ± SE. *P < 0.05; **P < 0.003 null vs. wild type. Comparisons were made
by Student’s t test.
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Table III.2. Profile of LCFA-CoA in livers of wild-type and L-FABP null mice.
Female (F) and male (M) wild-type (+/+) and L-FABP null (–/–) mice were starved
overnight. LCFA CoA levels (nmol/g) are given as mean ± SE, numbers (n) of analyzed
mice are given in brackets. *P < 0.05 null vs. wild type.
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activity (Wolfrum et al., 2001) and levels (Linden et al., 2002) of PPAR-alpha, a

transcription factor that is required for a high capacity of ketogenesis (Kersten et al., 

1999; Leone et al., 1999; Le May et al., 2000), it seemed possible that the capacity for

ketogenesis was reduced in L-FABP null mice. Three approaches were taken to assess

the capacity for fatty acid oxidation and ketogenesis.

First, we tested whether ketogenesis in L-FABP null mice can be restored with

octanoic acid. This fatty acid is a good substrate for ketogenesis in wild-type

hepatocytes, but it is not a physiologically significant primary substrate of ketogenesis,

not a ligand of L-FABP, and not efficiently metabolized by isolated PPAR-α null

hepatocytes (Le May et al., 2000). Octanoic acid was injected intraperitoneally into

starved wild-type, L-FABP null, and PPAR-alpha null mice, and ketogenesis was

followed over 6 h thereafter. Figure III.1C shows that after octanoate injection, a

massive increase in ketogenesis occurred in both wild-type and L-FABP null mice. The

resulting peak ΒΗΒ levels were comparable between wild-type and L-FABP null mice

even though the null mice had started from a much lower level and were much higher

than achievable in any physiological condition, indicating similar capacities for

ketogenesis. In contrast, the PPAR-alpha null mice that also exhibited low starting ΒΗΒ

levels were unable to raise these levels significantly after octanoic acid injection (Fig.

III.1C). These results suggest that the effect of LFABP deficiency on ketogenesis is

restricted to primary substrates that are ligands of L-FABP.

Second, as a composite enzymatic assay that assesses all steps of LCFA

oxidation except substrate provision, we measured the oxidation of albumin-bound

palmitic acid in liver homogenates. As shown in Table III.1, no difference in either ΒΗΒ
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production or radioactive palmitate oxidation was seen between L-FABP null and wild-

type homogenates. This suggests that the effect of L-FABP deficiency on LCFA

oxidation originates on the level of intracellular substrate availability rather then

oxidative capacity.

Third, the expression of key genes of lipid oxidation was compared between L-

FABP null, PPAR- alpha null, and wild-type mice. Figure III.2A shows that compared

with wild-type litter mates, starving PPAR- alpha null mice showed significantly

reduced levels of mRNAs encoding CYP4A3, MCAD, ACO, mitochondrial HMG CoA

synthase, and L-FABP, whereas mRNAs encoding LCPT1 and LCAD showed little or

no reduction. These results are quantified in Figure III.2C, giving the ratios of null to

wild-type levels. The expression of LCAD has not been previously measured in the

PPAR- alpha null mice, but all other results agree with published findings (Kersten et

al., 1999; Leone et al., 1999; LeMay et al., 2000). The published decrease of

mitochondrial HMG CoA synthase mRNA was more dramatic, however, perhaps

because Le May et al. (2000) starved their mice longer (24 hours) than we did (14-16

hours). More importantly, Figure III.2A and III.2C further show that none of the above

mRNAs (except L-FABP) was changed in L-FABP null vs. wild-type livers; moreover,

absence of L-FABP did not affect levels of PPAR- alpha mRNA.When the Northern

blotting experiments were repeated under feeding (standard diet), a similar tendency to

reduced gene expression was seen in PPAR- alpha null mice (Fig. III.2B, 2D), again in

agreement with literature, although we found a somewhat smaller genotypic difference

in HMG CoA synthase than Le May et al. (2000) and a larger difference in L-FABP
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Figure III.3. Effect of L-FABP deficiency on circulating triacylglycerol and glucose
levels. Blood samples were taken from mice subjected to starvation (overnight), standard
diet, ketogenic diet (3 days), diabetogenic diet (4 wk), and diabetogenic diet plus
starvation. Levels of triglycerides (triacylglycerols) (A) and glucose (B) were determined
in female mice (left panels) and male mice (right panels). Black columns, wild type;
white columns, L-FABP null. Each column includes 3 experiments with 2 mice each per
genotype (n=6 total per genotype). Each column pair represents mice that were matched
for age, sex, and backcross generation, but mice represented by different column pairs
may slightly differ by age and backcross generation. ***P<0.001; comparisons between
genotypes.
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mRNAs than Kersten et al. (1999). Again, in contrast with PPAR- alpha null mice, no

significant genotypic difference was seen in L-FABP null mice for most of the above

mRNAs. Unexpectedly, however, a significant reduction of mitochondrial HMG CoA

synthase mRNA was seen in all fed L-FABP null mice, and there was a similar tendency

with L-CPT1 that did not reach significance (Fig. III.2B, 2D).

Finally, we measured two more plasma metabolites in order to probe the broader

impact of the L-FABP null mutation on body fuel metabolism. As shown in Figure

III.3A, plasma triacylglycerol levels remained normal under standard diet, starvation,

and ketogenic diet. Interestingly, however, they were significantly increased in the

plasma of L-FABP null mice after long-term diabetogenic diet (Fig. III.3A). No

differences between wild-type and L-FABP plasma glucose levels were seen under any

condition (Fig. III.3B).

Discussion

To assess the physiological significance of L-FABP, we recently produced L-

FABP null mice. Using these mice, we demonstrated a major contribution of L-FABP to

cytosolic fatty acid binding capacity of the liver; other FABPs did not compensate for

this function (Martin et al., 2003). The present study was designed to answer the

following two related questions. First, Is L-FABP important for hepatic LCFA oxidation

in vivo? Second, Under conditions of intense hepatic fatty acid oxidation, is L-FABP

required for the action of the transcription factor PPAR- alpha, a master onswitch of

fatty acid oxidation (Kersten et al., 1999; Leone et al., 1999) and a potential target of L-

FABP (Wolfrum et al., 2001). The results presented herein answer the first question to

the affirmative, but strongly argue against the second possibility.
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The present study revealed a significant role of L-FABP in hepatic LCFA

oxidation, as concluded from the reduced LCFA oxidation and ΒΗΒ production in

isolated L-FABP null hepatocytes, which is in line with reduced ΒΗΒ levels seen in

blood plasma of L-FABP null mice. However, the effect did not exceed 35% in vitro

(Table III.1), whereas at comparable fatty acid concentrations in vivo (Fig. III.1B), it

approached and sometimes exceeded 50% (Fig. III.1A). The reasons for this discrepancy

may include shortcomings of the in vitro model or extrahepatic components of the

phenotype, but they are unlikely to include a reduced provision of substrate (NEFA) to

the liver. Indeed, compared with wild-type mice, plasma NEFA levels were

nonsignificantly increased in female L-FABP null mice during starvation following

standard diet but were significantly increased under ketogenic diet and starvation after

diabetogenic diet, as might be expected when fatty acid oxidation is inhibited in a major

organ. Also note that the phenotype of reduced fatty acid oxidation in L-FABP null mice

appeared to vary with gender.

 In line with the known fact that long-term high-fat diet raises L-FABP

expression in males to female levels (Kersten et al., 1999), male L-FABP null mice

showed the largest decrement in ketogenesis during starvation following a long-term

diabetogenic diet, whereas no such trend was seen in the females. Similarly, plasma

NEFA levels of male L-FABP null vs. wild-type mice were significantly increased only

under starvation following the diabetogenic diet, whereas the increase was significant in

females also under most other nutritional conditions.

Taken together, our results show that the blunted fatty acid oxidation and

ketogenesis is, at least in part, of intrahepatic origin, demonstrating that L-FABP is a
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cell-intrinsic stimulator of LCFA oxidation. The increase in plasma fatty acid levels

under some ketogenic conditions also implies that LFABP impacts whole body lipid

metabolism, a conclusion that can be extended to nonketogenic conditions. Both plasma

NEFA and triacylglycerols were increased in (at least female) L-FABP null mice after

chronic diabetogenic diet (without starvation), conceivably due to reduced hepatic

clearance. The mechanisms underlying the altered plasma levels in nonketogenic

conditions clearly deserve further investigation.

The second question addressed here concerns the mechanism by which L-FABP

stimulates LCFA oxidation. Although the high cytoplasmic concentration of L-FABP in

fully differentiated hepatocytes is suggestive of a substrate-level function, L-FABP

concentrations were recently shown to limit the activity of the lipid-dependent

transcription factor PPAR- alpha in PPAR- alpha - transfected cells (Wolfrum et al.,

2001). This suggested to us that transcription of PPAR- alpha target genes and

consequently the capacity for fatty acid oxidation might be compromised in the absence

of LFABP.

Ketogenesis from endogenous substrates is severely impaired in both PPAR-

alpha null mice (Kersten et al., 1999; Leone et al., 1999 and present study) and L-FABP

null mice (present study). However, we found that ketogenesis from medium-chain fatty

acid (octanoate) is reduced only in PPAR- alpha null mice, whereas octanoate boosted

ketogenesis in L-FABP null mice to levels higher than achievable in wild-type mice by

fat diet or starvation, showing that the capacity for ketogenesis was fully maintained.

This difference in ketogenic capacity can be explained by differences in gene

expression.
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In agreement with literature (Leone et al., 1999; Le May et al., 2000), we found

that upon starvation, levels of the mRNAs encoding MCAD and mitochondrial HMG

CoA synthase were reduced in the PPAR- alpha null vs. wild-type mice. In contrast,

they were normal in the L-FABP null mice. Thus, at least some PPAR- alpha target

genes and the associated biochemical process were not affected in starving LFABP null

mice. Two other PPAR- alpha target genes, ACO and CYP4A3, representing

peroxisomal and microsomal lipid oxidation, respectively, were also expressed

normally, suggesting that PPAR- alpha -dependent gene transcription was generally

unaffected in the starving L-FABP null mice investigated. In line with this, PPAR- alpha

mRNA levels were also normal. Finally, the normal levels of the mRNAs encoding

LCAD and L-CPT1 suggest that reduced hepatic LCFA oxidation in the starving L-

FABP null mice was not caused by altered gene expression through PPAR- alpha -

independent gene transcription either. In agreement with this conclusion, we did not find

a reduced rate of palmitic acid oxidation in liver homogenates of L-FABP null mice,

arguing that the levels of all enzymes involved in LCFA oxidation and ketogenesis are

maintained. In fact, because the principal difference between intact isolated hepatocytes

and liver homogenates is that in the latter, plasma membranes are disrupted and the

oxidative substrate is bound by another carrier (albumin), the oxidation defect is most

likely at the level of intracellular substrate provision.

Taken together, our data do not support a role for L-FABP in PPAR- alpha

function or indeed gene expression in general under starvation conditions in vivo. In this

respect, we note that similar to L-FABP null hepatocytes, H-FABP null cardiomyocytes

lack compensatory FABP expression, show substantially reduced LCFA oxidation
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(while maintaining normal oxidative capacity), and oxidize octanoic acid normally

(Schaab  et al., 1999). In contrast, octanoic acid oxidation is significantly impaired in

PPAR-α null hearts (Watanabe et al., 2000).

In apparent contradiction with the above results, Wolfrum et al. (2001) and Tan

et al. (2002) convincingly demonstrated that L-FABP and H-FABP are able to activate

PPAR- alpha in hepatoma and COS cells, respectively. Further, Tan et al. (2002) also

demonstrated activations of transfected PPAR-beta and -gamma by keratinocyte and

adipocyte FABP, respectively, suggesting that PPAR activation is a general feature of

the FABP family. We suspect that the solution of this contradiction may be the level of

lipid flux in the cells concerned. The cell lines used by Wolfrum et al. and Tan et al.

exhibit a low degree of differentiation that probably cannot support high LCFA fluxes,

and low endogenous PPAR- alpha levels that were actually raised by transfection.

Importantly, Tan et al. (2002) showed that transfected keratinocyte FABP activates

endogenous (nontransfected) PPAR-beta only at extremely low ligand levels. Thus, in

vivo, FABPs may be important for the action of cognate PPARs only under conditions

of low lipid metabolism, such as during onset of differentiation.

In contrast, at least in starved differentiated hepatocytes (present study) and

cardiomyocytes (Schaab et al., 1999; Binas et al., 1999), LCFA fluxes seem to remain

high enough to fully activate PPAR- alpha even in the absence of FABPs. In this

context, our observation of a reduction of mitochondrial HMG CoA synthase mRNA

levels in the L-FABP null liver under standard diet may be of interest. This decrease

occurred also in the PPAR- alpha null mice. However, under the same condition, MCAD

gene expression was clearly not reduced in the L-FABP null mice, whereas it was



65

substantially reduced in the PPAR- alpha null mice. Thus, PPAR- alpha -independent

mechanisms might contribute to the reduced expression of HMG CoA synthase under

standard diet, or a differential effect of PPAR- alpha on its target genes needs to be

postulated under these nonsaturating conditions. In any case, it is clear that in fed mice,

the reduced (compared with starving conditions) expression of most PPAR- alpha target

genes remains independent of L-FABP.

Although our results argue against a substantial transcriptional role of L-FABP

in maintaining hepatic LCFA oxidation in starving mice, elucidation of the precise

mechanism by which LFABP maintains high rates of LCFA oxidation in the liver will

require further work. Our previous results showed that although L-FABP exerts no

effects on cellular LCFA levels, it determines the cytosolic binding capacity for LCFAs

(Martin et al., 2003). The same may turn out true for LCFA-CoA, the proximal enzyme

substrate of LCFA metabolism and itself an L-FABP ligand (Frolov et al., 1997) whose

total levels were not altered in the absence of L-FABP in the present study. Recent

literature indicates that the metabolic availability of LCFA-CoAs is determined by their

binding to specific proteins rather than LCFA-CoA concentration per se (Chao et al.,

2003). Alternatively or in addition, the existence of several long-chain acyl CoA

synthases (Coleman et al., 2002) and subcellular compartmentalization of this metabolite

might lead to local differences in LCFA-CoA concentration.

In conclusion, the results presented here establish for the first time that L-FABP

plays a role in hepatic LCFA oxidation in vivo. Under starving conditions, this role

appears to be mainly direct, rather than through the recently proposed activation of

PPAR- alpha. In contrast, under standard diet, we did see a selective effect of L-FABP
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on hepatic gene expression. It thus appears that the relative importance of L-FABP in

substrate provision and gene expression may vary with physiological condition, a

concept that may be useful for the investigation of various members of the FABP

family.
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CHAPTER IV

     SUMMARY

In the first part of this dissertation, the results provide support for two opposing

effects of intracellular fatty acid flux on skeletal muscle glucose uptake, by decreasing

insulin-dependent glucose uptake and simultaneously increasing basal glucose uptake.

The results show that insulin sensitivity on glucose uptake is improved in H-FABP null

muscle from mice maintained under standard diet. That is, while the maximum effect of

insulin (i.e., insulin responsiveness) seen at supraphysiological insulin levels was

unaltered, low physiological concentrations of insulin caused a significantly larger

increase of deoxyglucose uptake by soleus muscle isolated from H-FABP null as

opposed to wild type mice. This result provides further support for the general notion

that fatty acids or their metabolites metabolism reduce insulin action. But, it is a novel

finding of the present investigation that insulin sensitivity was altered in the absence of

alterations of steady state levels of triglycerides and of both total and individual LCA

CoA. Given that rates of triglyceride synthesis and breakdown are reduced in H-FABP

null soleus muscle (Binas et al., 2003, and present dissertation), these results raise the

question whether lipid turnover as such might be a determinant of insulin sensitivity. 

Circulating insulin levels were dramatically decreased in H-FABP null mice

compared with wild type. This is unlikely due to impaired beta cell function, as a

glucose bolus raised insulin concentrations of H-FABP null and wild type mice to the

same level. More likely and in line with the soleus muscle incubations, increased muscle

insulin sensitivity is the cause of reduced insulin levels, although it may be asked
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whether decreased glucose and/or increased fatty acid levels in H-FABP null mice

exerting an additional influence on the pancreas (Rubi et al., 2002). 

The results also suggest  that in contrast to the absence of an effect of H-FABP

on muscle triglyceride levels under a standard diet, the H-FABP mutation completely

prevented the substantial increase of muscle triglyceride steady state levels normally

caused by a chronic high fat diet. Accumulation of stromal fat (comp. Dobbins et al.,

2001) is an unlikely contributor in this case because the mutation did not raise plasma

fatty acid levels under high fat more than it did under the standard diet. The dramatic

genotypic effect on triglyceride levels under one but not the other diet contrasts with the

rather similar decrements of rates of fatty acid esterification caused by the mutation

under both diets (although the high fat diet was causing an additional decrease).  More

work is needed in order to understand this discrepancy. Total LCA CoA levels were

reduced moderately but not significantly, although some larger (but still non-significant)

individual decreases, in particular linolenoyl CoA and palmitoyl CoA, were seen. These

alterations in lipid levels and turnover induced by the mutation under the high fat diet

were associated with an almost complete prevention of resistance of isolated soleus

muscle glucose transport to supraphysiological insulin concentrations. It should be noted

that the changes of LCA CoA in H-FABP null mice were more moderate than seen in

other rodent models with a comparable degree of insulin resistance (Thompson et al.,

2002; Yu et al., 2002). Although this has been interpreted as supporting a role of LCA

CoA levels in regulating insulin sensitivity, the disparity between the modest changes of

LCA CoA and the dramatic improvement of insulin sensitivity in this and the present

study is striking. These results thus emphasize the need to perform more detailed studies
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to clarify whether acyl CoA levels or some other aspect of LCFA metabolism, such as

lipid turnover, hold the key to regulating insulin-dependent glucose transport. 

The results of ex vivo incubations of isolated soleus muscle from mice kept

under high fat diet are in line with whole body measurements. Although the fat diet led

to impaired glucose clearance in both wild type and H-FABP null mice, the latter

showed a significant improvement compared with wild type. This effect can be

interpreted as a partial prevention of whole body insulin resistance. Incomplete

prevention was expected, as H-FABP is not expressed in white adipose and liver tissue

that also contribute to whole body insulin resistance. Furthermore, insulin levels of H-

FABP null mice maintained under the high fat diet were decreased compared with wild

type, although still increased compared with those on the standard diet. Unlike the

standard diet, however, a bolus of glucose injected into high fat diet-fed H-FABP null

mice did not increase circulating insulin to wild type levels, raising the question of

whether beta cell capacity is reduced.

In summary, the present study of fatty acid metabolism and glucose uptake in H-

FABP deficient skeletal muscles has provided strong evidence of the role of intracellular

fatty acid transport in both insulin-dependent and basal glucose uptake. The mutation

was shown to affect insulin sensitivity under standard diet and high fat diet. Reduced

levels of triglycerides and possibly LCA CoA were associated with an increased

maximum effect of insulin (insulin responsiveness) under the high fat diet, while

unaltered triglyceride and LCFA levels were compatible with improved insulin action at

lower, physiological insulin levels (insulin sensitivity) under the standard diet. These

improvements of insulin action in skeletal muscle occurred despite the increased plasma
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fatty acid levels seen with both diets, supporting the concept that plasma fatty acid levels

are irrelevant in determining muscle insulin sensitivity and responsiveness. Reduced

insulin plasma levels and improved glucose tolerance in H-FABP null mice are also

indicative of improved insulin sensitivity. Our finding of increased insulin sensitivity in

face of normal acyl CoA /triglyceride levels highlights the need for a more detailed

analysis of the role of acyl CoA levels and lipid turnover rates.

The second part of this dissertation revealed a significant role of L-FABP in

hepatic LCFA oxidation, as concluded from the reduced LCFA oxidation and ΒΗΒ

production in isolated L-FABP null hepatocytes. The results are consistent with the

reduced ΒΗΒ levels seen in blood plasma of L-FABP null mice. However, the effect did

not exceed 35% in vitro, whereas at comparable fatty acid concentrations in vivo, it

approached and sometimes exceeded 50%. The reasons for this discrepancy may include

shortcomings of the in vitro model or extrahepatic components of the phenotype, but

they are unlikely to include a reduced provision of substrate (NEFA) to the liver. Indeed,

compared with wild-type mice, plasma NEFA levels were not significantly increased in

female L-FABP null mice during starvation following a standard diet but were

significantly increased under ketogenic diet and starvation after a diabetogenic diet, as

might be expected when fatty acid oxidation is inhibited in a major organ. 

Taken together, the results show that the reduced fatty acid oxidation and

ketogenesis is, at least in part, of intrahepatic origin, demonstrating that L-FABP is a

cell-intrinsic stimulator of LCFA oxidation. The increase in plasma fatty acid levels

under some ketogenic conditions also implies that LFABP impacts whole body lipid

metabolism, a conclusion that can be extended to non-ketogenic conditions. Both plasma
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NEFA and triacylglycerols were increased in (at least in female) L-FABP null mice after

a chronic diabetogenic diet (without starvation), conceivably due to reduced hepatic

clearance. The mechanisms underlying the altered plasma levels in non-ketogenic

conditions clearly deserve further investigation.

The second question addressed in this part of the dissertation concerned the

mechanism by which L-FABP stimulates LCFA oxidation. Although the high

cytoplasmic concentration of L-FABP in fully differentiated hepatocytes is suggestive of

a substrate-level function, L-FABP concentrations were recently shown to limit the

activity of the lipid-dependent transcription factor PPAR-alpha in PPAR-alpha -

transfected cells (Wolfrum et al., 2001; Kersten et al., 1999; and present dissertation).

This suggested that the transcription of PPAR- alpha target genes, and consequently the

capacity for fatty acid oxidation, might be compromised in the absence of LFABP.

Ketogenesis from endogenous substrates is severely impaired in both PPAR- alpha null

mice (Wolfrum et al., 2001; Kersten et al., 1999; and present dissertation) and L-FABP

null mice (present study). However, we found that ketogenesis from medium-chain fatty

acid (octanoate) is reduced only in PPAR- alpha null mice, whereas octanoate boosted

ketogenesis in L-FABP null mice to levels higher than achievable in wild-type mice by

the fat diet or starvation, showing that the capacity for ketogenesis was fully maintained.

This difference in ketogenic capacity can be explained by differences in gene

expression.

 In addition, following starvation, levels of the mRNAs encoding MCAD and

mitochondrial HMG CoA synthase were reduced in the PPAR-alpha null vs. wild-type

mice. In contrast, they were normal in the L-FABP null mice. Thus, at least some



72

PPAR-alpha target genes and the associated biochemical process were not affected in

starving LFABP null mice. Two other PPAR- alpha target genes, ACO and CYP4A3,

representing peroxisomal and microsomal lipid oxidation, respectively, were also

expressed normally, suggesting that PPAR- -dependent gene transcription was generally

unaffected in the starving L-FABP null mice investigated. In line with this, PPAR- alpha

mRNA levels were also normal. Finally, the normal levels of the mRNAs encoding

LCAD and L-CPT1 suggest that reduced hepatic LCFA oxidation in the starving L-

FABP null mice was not caused by altered gene expression through PPAR- alpha -

independent gene transcription either. In agreement with this conclusion, we did not find

a reduced rate of palmitic acid oxidation in liver homogenates of L-FABP null mice,

arguing that the levels of all enzymes involved in LCFA oxidation and ketogenesis are

maintained. In fact, because the principal difference between intact isolated hepatocytes

and liver homogenates is that in the latter, plasma membranes are disrupted and the

oxidative substrate is bound by another carrier (albumin), the oxidation defect is most

likely at the level of intracellular substrate provision.

Taken together, the results of this research do not support a role for L-FABP in

PPAR- alpha function or indeed gene expression in general under starvation conditions

in vivo. In this respect, I note that similar to L-FABP null hepatocytes, H-FABP null

cardiomyocytes lack compensatory FABP expression, show substantially reduced LCFA

oxidation (while maintaining normal oxidative capacity), and oxidize octanoic acid

normally . In contrast, octanoic acid oxidation is significantly impaired in PPAR- alpha

null hearts.
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