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ABSTRACT OF DISSERTATION 

 
 
 

THREE ESSAYS ON THE U.S. BEEF SUPPLY CHAIN:  
PRODUCTION, MARKETING, AND PRICE DYNAMICS 

 
This dissertation contains three essays on select economic components of the U.S. 

beef industry. The first and second essays concentrate on the different economic problems 
in beef cattle production. The third essay evaluates the price dynamics and the impact of 
COVID-19 along the beef supply chain.  

The first essay explores the economics of culling decisions in cow-calf operations 
in the U.S. with a novel application of a dynamic mathematical programming model. The 
results provide an optimal culling strategy under the base model and a range of optimal 
strategies that vary with respect to different components such as fertility probabilities, 
market prices, production and replacement heifer costs, calf weights, and pregnancy check 
use. The results suggest that producers should cull all cows that are older than age 10 
considering their productivity and production costs in light of base product prices. The 
model recommends culling open cows earlier (at age 7) given their productivity status and 
probabilities. To measure the sensitivity of the optimal results with respect to components, 
several experiments are run, and outcomes underline the sensitivity of the optimal 
strategies to market conditions, cost structure, cow fertility, and pregnancy check use. 

The second essay aims to contribute to the U.S. beef cattle price forecasting 
literature with its model selection framework which compares traditional time series 
techniques and machine learning algorithms to select the best technique to provide one-
week-ahead steer, heifer, and cull cow price forecasts. The study performs these techniques 
using weekly Kentucky cattle auction prices with lagged variables and dummy variables 
for weekly seasonal structure. The results demonstrate that while ARIMA models without 
seasonality has better performance in forecasting steer prices, the LASSO regression 
provides better forecasts for heifer and cull cow prices. The model selection results point 
to the superiority of machine learning techniques over standard ARIMA models when 
forecasting U.S. livestock prices in larger samples. 

The third essay investigates the price dynamics along the U.S. beef supply chain 
and the impact of the COVID-19 shock on the dynamics of vertical price transmission 
using monthly farm, wholesale, and retail prices for the period 1970-2021. A vertical error 
correction model along with historical decomposition graphs is employed to measure the 
impact of the pandemic on price adjustment. The results reveal that the impact of COVID-



     
 

19 has been uneven across the beef marketing channel, with farmers taking the burden of 
the shock. The results underline that in the case of the COVID-19 shock, wholesale prices 
adjusted more quickly than both farm (threefold) and retail prices (tenfold). Historical 
decomposition graphs also show that the COVID-19 pandemic caused retailers and 
wholesalers to have higher prices, while farmers received lower prices than their predicted 
values. The results indicate that the U.S. beef markets were resilient enough to absorb the 
shocks and return to their pre-shock patterns in 4 to 6 months.  

 
 

KEYWORDS: Beef-Cattle Supply Chain, Culling Decisions, Forecasting, Machine 
Learning, Price Transmission, COVID-19 
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CHAPTER 1.  INTRODUCTION 

1.1 Overview of the U.S. Beef Supply Chain 

The United States is the largest producer and consumer of beef in the world, 

accounting for 20% of the global beef production (USDA Foreign Agricultural Service, 

2022). In 2020, total beef production in the U.S. reached 27.2 billion pounds and the 

number of beef cows was 31.3 million (Tables 1.1 and 1.2). While the U.S. beef-cattle 

industry is geographically diversified, the top ten states with the highest cattle inventory 

in 2020 were Texas, Oklahoma, Missouri, Nebraska, South Dakota, Kansas, Montana, 

Kentucky, North Dakota, and Arkansas (Table 1.3). Although the U.S. has one of the 

largest cow herds and the largest beef production amounts in the world, it was a net 

importer in the beef trade with an export amount of 3.0 million pounds and an import 

amount of 3.3 million pounds in 2020 (USDA Economic Research Service, 2022). Figures 

1.1 and 1.2 display trends in the beef and cattle trade for the period 2000-2020. The U.S. 

beef trade had trade deficits for most of the period with the highest amounts observed 

between 2004-2007 due to the impact of Bovine Spongiform Encephalopathy (BSE) 

disease in the U.S. The United States was a net importer of live cattle during the period.  

The U.S. beef supply chain is a complex and dynamic system involving multiple 

stakeholders such as ranchers, feedlots, processors, retailers, and consumers. The main 

stages of the U.S. beef supply chain are cow-calf operations, stocker/backgrounding 

operations, feedlots, meat packers and processors, and retailers. The production process 

begins with the cow-calf farms where cows and calves are raised. Following this stage, 

stocker/backgrounding operations take over, placing calves on grass or other types of 

roughage to promote growth. Feedlots are the final step of cattle production. At this step, 
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cattle are given different rations of grain, silage, and/or protein supplements. Once 

finished, cattle are then sold to beef packers and processors where beef and beef by-

products are produced and sold to retailers (USDA Economic Research Service, 2022). 

The economic size of beef-cattle industry including direct and indirect economic 

contributions during on-farm and post-farm activities was estimated as $167 billion in 

2016 (English et al., 2020).  Beef is also an indispensable nutrition in American dietary 

behaviors. It is a highly nutritious food as a source of protein, zinc, iron, and other 

minerals, B vitamins, and choline. Different types of beef have quality standards and are 

regulated and monitored by USDA. Beef quality grading is an important beef quality 

measure, and it is based on tenderness, juiciness, and flavor. There are eight quality grades 

in U.S. grading system: U.S. Prime, U.S. Choice, U.S. Select, U.S. Standard, U.S. 

Commercial, U.S. Utility, U.S. Cutter, and U.S. Canner. U.S. Prime has the highest and 

U.S. Canner has the lowest quality 1. 

1.2 The Structure of the Dissertation 

This dissertation includes three essays on the U.S. beef supply chain and aims to 

contribute to the current literature with its methods and results.  

The first essay (Chapter 2) entitled “Optimal Beef Cow Culling Strategies in the 

U.S.: A Dynamic Linear Programming Framework” focuses on the economics of culling 

decisions in cow-calf operations in the U.S. Although culling decisions have been analyzed 

for decades, the literature has produced mixed results regarding the optimal culling age 

and the impact of culling decisions on herd profitability and productivity. This essay 

 
1 For further details for the facts and figures of the U.S. beef industry, see Erol (2022).  
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employs a novel application of a dynamic mathematical programming to construct a base 

model and conduct several experiments under various assumptions related to production 

and replacement heifer costs, cow fertility, calf weights, prices, and pregnancy check use. 

The objectives include assessing optimal culling decisions using the base model and 

experiments to determine under what conditions cows should be retained and estimating 

the impact of these decisions on herd structure and net returns. It also applies a pregnancy 

test experiment to analyze its impacts on the optimal culling decisions provided in the base 

model. Besides its methodological contributions in employing an infrequently used 

programming technique that is ideally suited to the problem considered, this study also has 

the potential to deliver practical guidance for beef cattle producers.  

The second essay (Chapter 3) entitled “Forecasting Beef-Cattle Prices in the 

Southern United States: A Model Selection Framework” contributes to the U.S. beef cattle 

price forecasting literature with its model selection framework which compares traditional 

time series techniques and machine learning algorithms. The current U.S. livestock 

forecasting literature has utilized various techniques, including structural models, time 

series models, and machine learning approaches, to determine the best forecasting methods 

using both cash prices and basis. However, there are only a limited number of studies that 

have compared traditional time series models with machine learning models using cash 

prices. This essay applies ARIMA-type models with and without seasonal components and 

machine learning techniques in a rolling origin cross validation scheme to select the best 

technique to provide one-week-ahead price forecasts for steer, heifer, and cull cow cash 

prices in the southern U.S. It provides a detailed discussion of selected machine learning 

models (ridge regression, LASSO regression, random forests, and gradient boosted 
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machine) and cross validation strategy. It also compares the prediction performance of the 

methods in small and large samples. The study performs these techniques using weekly 

Kentucky cattle auction prices with lagged variables and dummy variables for weekly 

seasonal structure. The approaches and outcomes of the essay offer valuable tools for 

livestock price forecasting, which can be utilized by extension specialists and producers to 

enhance their decision-making processes. 

The third essay (Chapter 4) entitled “The COVID-19 Shock and Dynamics of Price 

Adjustment in the U.S. Beef Sector” examines the price dynamics along the U.S. beef 

supply chain and analyzes the impact of COVID-19 on the dynamics of vertical price 

transmission within the U.S. beef industry using monthly farm, wholesale, and retail 

prices. Although numerous studies have examined the price transmission dynamics in the 

vertical chain of U.S. beef markets, only a limited number of studies have measured the 

impact of external shocks on these dynamics. In this essay, a vertical error correction 

model is utilized with historical decomposition graphs to estimate the impact of the 

pandemic on price adjustment. The methodology used in this essay accounts for 

endogenous structural breaks in the long-run cointegration relations of price series for the 

period from January 1970 to April 2021 and, to the best of my knowledge, it is only study 

that estimates the impact of COVID-19 on all stages of the beef supply chain, including 

the recent periods. The empirical results of the essay provide several implications to 

contribute to the current literature and construct a base for policy reactions for similar 

crises. 

The final chapter (Chapter 5) concludes the dissertation with the empirical results 

and discussions of each chapter. 
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Tables and Figures for Introduction 

Table 1.1 U.S. Beef Production 
Year Beef Production (Million Pounds) 
2020 27,243 
2019 27,224 
2018 26,939 
2017 26,251 
2016 25,288 
2015 23,760 
2014 24,315 
2013 25,790 
2012 25,989 
2011 26,270 

Data Source: USDA, National Agricultural Statistics Service. 
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Table 1.2 U.S. Beef-Cattle Inventory 
Year Number of Head (Thousands) 
2020 31,339 
2019 31,691 
2018 31,466 
2017 31,171 
2016 30,164 
2015 29,332 
2014 28,956 
2013 29,631 
2012 30,282 
2011 30,913 

Data Source: USDA, National Agricultural Statistics Service. 
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Table 1.3 U.S. Beef-Cattle Inventory by State-2020 
Year Number of Head (Thousands) 

TEXAS 4,570 
OKLAHOMA 2,109 

MISSOURI 2,083 
NEBRASKA 1,922 

SOUTH DAKOTA 1,783 
KANSAS 1,443 

MONTANA 1,428 
KENTUCKY 1,021 

NORTH DAKOTA 995 
ARKANSAS 915 

U.S. Total 31,339 
Data Source: USDA, National Agricultural Statistics Service. 

 

 

 

 

 

 

 

 

 



8 
 

 

Figure 1.1 U.S. Beef and Veal Trade (Million Pounds) 
Data Source: USDA, Economic Research Service, Livestock and Meat Trade Data. 
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Figure 1.2 U.S. Cattle Trade (Thousand Head) 
Data Source: USDA, Economic Research Service, Livestock and Meat Trade Data. 
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CHAPTER 2. OPTIMAL BEEF COW CULLING STRATEGIES IN THE U.S.: A DYNAMIC 
LINEAR PROGRAMMING FRAMEWORK 

2.1 Introduction 

Beef cow culling is defined as removing selected beef cows from the herd 

permanently. Culling decisions, i.e., the selection and timing of cows to cull, are an 

essential part of farm management to sustain profitability and productivity of the herd in 

the short run and long run. According to USDA data, the culling rate (the percentage of 

cows removed permanently from herd each year) was 12.9% in all operations and 18% in 

small operations where herd size is 1-49 cows in 2017 (USDA National Animal Health 

Monitoring System, 2020). Studies estimate the revenue generated from cull cow sales to 

be about 15-30% of a yearly revenue (Amadou et al., 2014; Blevins, 2009; National 

Cattlemen’s Beef Association, 2016). The reasons for cow culling are related to both 

biology and economics. Reproductive efficiency including pregnancy status and other 

fertility problems, age, disposition, cow’s health and physical soundness, concerns of 

producing inferior calves, and a desire for genetic improvement from replacement 

breeding stock are primary biological reasons to cull a cow (Arnold et al., 2021; Hersom 

et al., 2018). In addition to the cow health and herd structure, cow-calf prices and seasonal 

trends in the markets, production costs including maintenance and replacement heifer 

costs, expected future earnings, cash flow, and risk management are major economic 

factors affecting culling decisions (Hersom et al., 2018; Peel & Doye, 2017; Ward & 

Powell, 2017). Therefore, ranchers and farm managers can improve both profitability and 

productivity of the herd by utilizing a data-driven and informed culling strategy.  

There is an extensive literature analyzing the reasons and motivation behind beef 

cow culling and evaluating optimal culling strategies under a variety of assumptions 
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(Azzam & Azzam, 1991; Bentley et al., 1976; Boyer et al., 2020; Frasier & Pfeiffer, 1994; 

Ibendahl et al., 2004; Mackay et al., 2004; Melton, 1980; Tronstad & Gum, 1994). As 

parallel to some of these study’s conclusions, culling open cows immediately after 

pregnancy check is advised in practice where pregnancy check is not common (USDA 

National Animal Health Monitoring System, 2020). However, the literature has mixed 

conclusions and underlines the impact of fertility rates, age of open cows, prices, and costs 

on the optimal culling strategies that may improve herd productivity and provide a flexible 

strategy to cope with price cycles and costs. 

This study develops a model framework using dynamic linear programming for 

cow-calf operations in the U.S. to determine optimal beef cow culling age and measuring 

the sensitivity of the optimal strategy with respect to other factors such as cow’s fertility, 

cow-calf prices, variable costs, and replacement prices. The model is solved with the data 

obtained for a spring calving herd that sold weaned calves in the fall in Kentucky. In 

addition to the methodological contributions, this research aims to provide practical 

guidance for beef cattle producers. 

2.2 Literature Review 

The economics of culling decisions on cow-calf operations in the U.S. has been 

analyzed considering various aspects in the literature for decades. The majority of studies 

that specifically focus on the optimal culling age employed a net present value framework 

by either comparing the opportunity cost between retaining a cull cow and replacing with 

a bred heifer, or evaluating the contribution of cow to herd future revenue streams 

throughout the productive years of the cows (Bentley et al., 1976; Boyer et al., 2020; 

Ibendahl et al., 2004; Mackay et al., 2004; Melton, 1980; Trapp, 1986). These studies 
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based their models on variations of asset replacement methodology discussed in Burt 

(1965) and Perrin (1972). Azzam and Azzam (1991) and Frasier and Pfeiffer (1994) 

worked with Markovian multi-stage decision analysis with transition probabilities of 

different states including cow’s age, productivity, calving season, body condition scores, 

and calving dates. Dynamic programming has also been applied to find the optimal 

decision rule to cull a cow (Tronstad & Gum, 1994).  

The literature on culling versus keeping open cows has been mixed. Several studies 

have suggested that all open cows should be culled. In their Markovian decision analysis, 

Azzam and Azzam (1991) used cow’s productive status (open, pregnant, and unsound) in 

combination with cow’s age (2.5 to 10.5) and two calving seasons (spring and fall) for 

Nebraska as transition states and two decisions (keep and replace). They recommended 

replacing all open cows with spring-born heifers and retaining any pregnant cows of any 

age. Using a similar methodology augmented with the impacts of herd management 

practices, Frasier and Pfeiffer (1994) also suggested culling all open and late lactating 

cows. Their sensitivity analysis underlined the impact of different cow and calf prices and 

replacement heifer cost on the optimal culling strategies. The most recent study on the 

optimal culling decisions, Boyer, Griffith, and DeLong (2020) worked with Tennessee 

herd level data for both spring and fall calving seasons and analyzed the impact of 

productivity failure (missing a calf during the production life) on the operation’s long-term 

profitability. They concluded that selling an open cow after missing one calf would be a 

better option to increase the profitability instead of keeping and rebreeding the cow.  

The literature that has left the door open to retention has focused on the calving 

system, varying fertility of cow across ages, genetic improvement, the importance of 
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prices, and replacement costs in this determination. Bentley, Waters, and Shumway (1976) 

found the optimal replacement policy to be replacing a cow after her seventh calf is sold 

since the expected present value of the cow is maximized at age 8. In their sensitivity 

analysis, they conclude that changing cattle prices and feed costs does not impact the 

optimal policy. They demonstrated that culling decisions are sensitive to lower calving 

rates and changing cull cow prices with carcass quality (i.e., lower prices for older cows), 

which lead to an earlier optimal culling. Melton (1980) investigated the impact of an 

endogenous genetic progress in the herd on the optimal culling age with experimental herd 

data in Florida. Results suggested a culling age of 8 under genetic improvement and 11 

without genetic progress. Tronstad and Gum (1994) performed a stochastic dynamic 

programming model with biannual calving, cow fertility estimates, and stochastic prices 

under a multi-period horizon with the objective of maximizing expected wealth. Their 

model results emphasized that a dual calving system would be more profitable for 

ranchers. They also utilized a Classification and Regression Trees (CART) technique to 

provide more practical and interpretive culling advice based on dynamic programming 

model results. Their decision trees included “keep” and “replace” decisions and were based 

on 1,100 combinations of state variables (cow age, pregnancy status, calf price, 

replacement price, and cull cow prices) used in the model. Their tree-based analysis 

identified age for open cows and calf prices for pregnant cows as the most important 

variable in culling. CART results also rejected the culling strategy which suggests culling 

open cows all the time regardless of their productivity and stated that when spring and fall 

calving are possible that would make rebreeding possible, open cows should be kept 26% 

of time. This rate was found as 95% for pregnant cows in the study.  
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One of the early studies evaluating the impact of the prices on the culling decisions 

and herd decomposition,  Trapp (1986) assumed a varying herd size and nonconstant prices 

in a simulated herd model and pointed out a flexible culling strategy with culling ages 

varying from 5 to 12 to manage cyclical prices. Mackay et al. (2004) discussed the impact 

of prices on marketing strategies based on analysis using data from a Nebraska cow-calf 

operation. They pointed to the changing herd decomposition under different prices; an 

older herd was better when prices were lower, and a younger herd was better when prices 

were higher.  Ibendahl, Anderson, and Anderson (2004) studied the optimal culling policy 

within a net present value framework with fertility data obtained from Tronstad et al. 

(1993). They contradicted the conclusion of the studies which has been to cull open cows 

by focusing on the age of open cows and suggested a flexible culling strategy to deal with 

production costs. They emphasized the impact of replacement and production costs on the 

replacement decisions and recommended retaining younger open cows when calf crop 

value and production costs are low and the difference between replacement heifer cost and 

cull value is high.  

The culling rate is about 30% in dairy operations (USDA National Animal Health 

Monitoring System, 2020) and culling strategies are examined with a focus on the cow 

performance and milk production in the dairy literature (Cabrera, 2010; Lehenbauer & 

Oltjen, 1998; van Arendok & Dijkhuizen, 1985; van Arendonk, 1986).  Van Arendok and 

Dijkhuizen (1985) studied optimal policies for open cows with a variation in the time of 

conception and three alternatives: inseminating, leaving her open, and cull her 

immediately. They underlined the impact of replacement costs on culling open cows. 

Cabrera (2010) applied a Markovian linear programming model with a net revenue 
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maximization objective and solved the model with “keep” and “replace” decisions under 

different dietary treatments and state variables which are defined by parity, month in 

lactation, and pregnancy status. The model suggests that pregnant cows should be kept 

regardless of their production performance and higher culling rates should be allowed 

when milk prices and replacement costs are low and corn prices are high. Open cows are 

culled earlier depending on market conditions.  

This study aims to build upon this literature by constructing a model framework for 

cow-calf operations in the U.S. to evaluate culling strategies. The objectives of the study 

are to evaluate optimal culling decisions with a base model and several experiments 

performed with a variety of assumptions related to cost, fertility, weights, and prices, 

determine under what conditions open cows should be retained, and estimate the impact 

of pregnancy checking on the herd profitability and culling decisions. In addition to its 

methodological contributions in applying an infrequently used programming technique 

ideally suited to the problem considered, it also has potential to provide practical guidance 

for beef cattle producers.  

2.3 Methodology and Data 

The economic decision-making framework of a commercial size beef cow-calf 

producer is formulated as a single year dynamic linear programming model since cow 

culling decisions depend on the dynamic nature of changes in productivity by age of brood 

cow and stochastic factors (probabilities of pregnancy, cow death, calf loss, etc.). Optimal 

decision modeling of problems with such dynamic elements can be formulated with both 

multi-period and single period dynamic linear programming models. In multi-period 

models, the number of periods can be assumed to be known or unknown depending on the 
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problem’s nature and research considerations and optimal solutions are generated with the 

assumption of disequilibrium where decisions vary over a number of time periods. Single 

period dynamic linear programming models which are also called equilibrium models, 

assume that optimal decisions are repeatedly made in all time periods and defined as long 

run steady state solutions (McCarl & Spreen, 1997). The model used in the study is a single 

year steady-state equilibrium of unknown asset life with prices, costs, and probability 

values that is solved with results then being interpreted. The operation’s size is assumed 

constant by imposing a herd size constraint in the model formulation. 

The dynamic linear programming model used in the study is specified as:  

Max: Net Return above Selected Costs 

∑ �� 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑃𝑃,𝑌𝑌) ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑃𝑃,𝑌𝑌)𝑃𝑃 −  ∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶,𝑌𝑌) ∗𝐶𝐶𝑌𝑌$(𝑂𝑂𝑂𝑂𝑂𝑂(𝑌𝑌)≤12)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐶𝐶,𝑌𝑌)�                                                (2.1) 

Subject to: 

Herd Size:  

� 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐶𝐶,𝑌𝑌) ≤ 100(𝐶𝐶,𝑌𝑌)$(𝑂𝑂𝑂𝑂𝑂𝑂(𝑌𝑌)≤12)                           (2.2) 

Market Balance 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑃𝑃,𝑌𝑌) − ∑ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡(𝐶𝐶,𝑃𝑃,𝑌𝑌) ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐶𝐶,𝑌𝑌) ≤ 0     ∀ 𝑃𝑃,𝑌𝑌 𝐶𝐶 (2.3) 

Linkage between ages:  

Pregnant: 

� �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐶𝐶,′ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡′,𝑌𝑌) ∗(𝐶𝐶,𝑌𝑌)$(𝑂𝑂𝑂𝑂𝑂𝑂(𝑌𝑌)<12)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐶𝐶,𝑌𝑌)� − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(′𝐷𝐷𝐷𝐷𝐷𝐷′,𝑌𝑌 + 1) ≤ 0     ∀ 𝑌𝑌 < 12              (2.4) 

Open: 

� �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐶𝐶,′ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂′,𝑌𝑌) ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐶𝐶,𝑌𝑌)� −(𝐶𝐶,𝑌𝑌)$(𝑂𝑂𝑂𝑂𝑂𝑂(𝑌𝑌)<12)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(′𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛′,𝑌𝑌 + 1) ≤ 0   ∀ 𝑌𝑌 < 12                     (2.5) 
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Cull:  

� �𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐶𝐶,′ 𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙′,𝑌𝑌) ∗(𝐶𝐶,𝑌𝑌)$(𝑂𝑂𝑂𝑂𝑂𝑂(𝑌𝑌)<12)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐶𝐶,𝑌𝑌)� −∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐶𝐶,𝑌𝑌 + 1)𝐶𝐶 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(′𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙′,𝑌𝑌) ≤ 0   ∀ 𝑌𝑌 < 12 (2.6) 

Where: C is the index of 3 different types of cows depending on their pregnancy 

status: cow with calf at side from previous year (dam), cows with no calf from previous 

year (open), and first-time heifer (two-year-old bred heifers). Two-year-old bred heifers 

are purchased to replace cull cows. P denotes the 3 different products which are being sold 

at the market: steer, heifer, and cull cows. Y is the age (2 to 13 years old herein) of each 

cow. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐶𝐶,𝑌𝑌) is the number of cows that are raised in the operation at the 

equilibrium solution (repeated optimal decisions as discussed above). 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑃𝑃,𝑌𝑌) is the 

number of calves and cull cows that are sold under the equilibrium solution. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝐶𝐶,𝑌𝑌) includes annual variable cost per cow and ownership costs of a 

bred replacement heifer. There are two probability series in the model: fertility and 

retention.  

Fertility Probabilities(𝐶𝐶,𝑃𝑃,𝑌𝑌) are the chance of products P (having a steer, heifer, 

and live cow at year end) based on age Y and prior year status C (cow with calf at side or 

open last year). Retention Probabilities(𝐶𝐶,𝐾𝐾,𝑌𝑌) reflect the percentage of cows that have a 

calf at side or are open this year (after including the chance of her death or being unsound) 

and are available for retention to next year. Equation 2.1, the objective function is to 

maximize the expected herd level net return above selected costs while equations 2.2–2.6 

impose various constraints. A commercial operation herd size is assumed with a maximum 

of 100 cows allowed in equation 2.2. The herd size of 100 is selected to formulate a 

medium scale cow-calf operation (50 to 199 cows) and make results more interpretable in 

terms of percentages. Equation 2.3 assures market balance by limiting sales to the amounts 



18 
 

produced for every cow age. Linkage equations (2.4-2.6) are age sequencing constraints 

which ensure that the number of cows C of age Y+1 must be less than or equal to number 

of that cow type that were kept until age Y in a standard dynamic linear program fashion.  

Fertility and Retention probabilities given in Table 2.1 are calculated based on 

calving rates and fertility estimates obtained from Tronstad et al. (1993). The probability 

of calving, survival, and retention vary depending on cow’s age and her productivity status 

in the previous year. For example, if a cow is 5 years old and had a calf at her side last 

year, she has a 76.5% chance of having a calf this year and a 96.6% chance of surviving 

after calving. The probability of this live cow calving again is 71.9% and the probability 

of her failing to calve is 22.0% (the first panel of Table 2.1). The fertility rates are lower 

for cows without calves from previous year (the second panel of Table 2.1). These cows 

are assumed either have lost their calf or failed to calve in the previous season. On the 

other hand, if a cow of the same age did not have a calf at side last year, her chance of 

calving this year is 64.7% and her chance of surviving increases to 98.3%. She also has a 

lower probability (58.3%) to calve this year and higher probability (31.8%) to fail to calve 

again. The calving rate is assumed to be 97.8% for replacement heifers. Calf survival rate 

from birth to weaning is assumed to be 95.5% for all cows with 4.5% calf death loss 

(Strohbehn, 1994).  

The price data is obtained from the USDA Agricultural Marketing Service (AMS) 

and is given in Table 2.2. The 10-year (2012-2021) arithmetic average of monthly October 

and November feeder steer, heifer, and cull cow prices were used in the study to account 

for fall sales for spring calving herds in Kentucky. Steer and heifer prices for medium and 

large frame size and #1-2 muscling calves are utilized. Prices per pound are also adjusted 



19 
 

downward to account for the heavier calves (commonly referred as price slide). Steers and 

heifers from 5- to 10-year- old dams are assumed to be weaned and sold at an average 

weight of 600 and 550 lb respectively. The weights for other calves are adjusted based on 

dam’s age with Beef Improvement Federation (2018) data. Cull cow prices are estimated 

using historical USDA-AMS price data from the 80-85% boning cow category. Cull cow 

price per lb is assumed to be $0.62 per lb with an average cull cow weight of 1,200 lb. To 

adjust cull cow prices with respect to carcass quality across ages, breaking grade cull cow 

prices (for age 2) and lean grade cull cow prices (for age 13) are used as minimum and 

maximum prices and adjusted price data is computed by decreasing prices linearly from 

age 2 to age 13. 

Annual cost per cow by age is computed for a spring calving herd and it covers 

annual variable costs, cow depreciation, interest costs, and bred replacement heifer prices. 

Annual variable costs are obtained from Halich, Burdine, and Shepherd (2022) and are 

shown in Table 2.3. These estimates are made for a spring calving cow-calf operation in 

2021 and include only cash costs for the operation. The pasture stocking rate is assumed 

to be 2.0 acres per cow and hay consumption is assumed to be 2.5 tons per cow. The 

operation has its own pastureland and produces its own hay. Since operation costs 

presented in Table 2.3 may vary by herd size and management, an annual variable cost 

experiment is implemented to account for different annual cost per cow values and their 

impact on optimal culling strategies. Breeding costs are excluded from replacement 

heifers’ annual variable cost as they are purchased already bred. Annual depreciation and 

interest are computed with 3% interest rate for a $1,500 bred heifer which has 11 

productive years and $700 cull cow salvage value. 
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The model timeline constructed for the spring calving herd based on common 

practices in the South is presented in Figure 2.1. The model starts in October at production 

year t after all calves were weaned and sold in weaning season of production year t-1 and 

ends in September. Therefore, there are no calves from the previous calving season during 

the model period and calf crops born are sold in the following weaning season.  

The base model is a single year steady-state equilibrium of unknown asset life with 

base prices, costs, and probability values that is solved with results then being interpreted. 

Various experiments are conducted to analyze the study objectives by resolving the model 

after changing relevant coefficient values. This allows for the evaluation of the robustness 

of the model and performance of a sensitivity analysis by comparing experiment results to 

those of the base model.  

2.4 Results and Discussion 

The base model results can be seen in tables 2.4 and 2.5 and suggest that producers 

should cull all cows that are older than 10 based on their productivity, production costs, 

and price assumptions made. This result reflects the reproductive performance of the cows 

that is maximized between age 4 to 9 and starts to decline after age 10 (Arnold et al., 2021; 

Ward & Powell, 2017). The operation makes a modest net return above specified costs of 

$12,347 and purchases 15.6 bred replacement heifers annually. The 100-cow operation 

consists of 70.7 cows with calves at their side, 15.6 first-time heifers, and 13.8 open cows. 

The model suggests culling open cows earlier (at age 7) than cows with calf at side (at age 

10) given their productivity status and probabilities. Each year, the operation sells 36.8 

steers, 36.8 heifers, and 12.6 cull cows in the base model. The average cow age in the herd 

is 5 years and the average age of cows culled is 7.7 years with a 12.6% culling rate in the 
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base model. These results are consistent with the literature which suggests the optimal 

culling age between 7 and 11  (Bentley et al., 1976; Mackay et al., 2004; Melton, 1980; 

Trapp, 1986; Tronstad & Gum, 1994). 

2.4.1 Sensitivity Analysis 

To measure the sensitivity of the optimal results, several experiments are run with 

different prices, costs, fertility values, and genetic improvement resulting in weight gain. 

A pregnancy check experiment is also run to estimate the impact of pregnancy checking 

on the returns. The experiments’ outcomes underline the sensitivity of the optimal 

strategies to market conditions, cost structure, cow fertility, calf weights, and pregnancy 

check use (Table 2.4 – 2.6). That being said, optimal culling age and herd structure do not 

change under the experiments with adjusted cull cow prices by age (to account for 

decreasing carcass quality as cows get older) and simultaneous price changes in calf and 

replacement heifer prices (to reflect the price transmission between calf and replacement 

heifer markets). Changing the annual variable cost assumption also does not impact the 

optimal culling age, production level, or sale amount. This was an expected outcome since 

annual variable costs are assumed to be same across cow ages. These three experiments 

cause changes only in net return above selected costs comparing to base model results. 

2.4.2 Prices 

To evaluate the impact of different price assumptions on the optimal culling 

strategies, all output prices were changed by 10%. As expected, a simultaneous 10% 

increase in cow and calf prices enhances steer and heifer calf values, leading to a 

suggestion that producers should cull open cows older than 6 (one year sooner than the 

base model) and cull all cows older than 9. As shown in Table 2.5, calf sales rise to 74.8, 
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the number of cows with calf at side increases to 71.6, and the number of open cows 

decreases to 11.3. On the other hand, a 10% decrease in prices favors a strategy of culling 

later at age 8 for open cows. The optimal culling age for all cows is the same as the base 

model but the production amount is higher compared to the base model. This is a rational 

behavior since producers can take advantage of good market conditions and sell their 

calves and less productive cows, specifically by culling earlier when prices are high and 

keeping their cows and calves when prices are low. These results are consistent with 

Mackay et al. (2004) and Trapp (1986) who pointed to the varying herd decomposition 

with prices. 

To examine the impact of cull cow prices on decision variables, the model is run 

with a 25% increase only in cull cow prices. The results show a 20.8% increase in expected 

net return and the optimal strategy becomes culling cows with calves at their side at age 8 

and open cows at age 6. As expected, a stronger cull cow market encourages an earlier 

culling strategy. The experiment with the same amount of decrease in cull cow prices 

suggests a later culling strategy in which the optimal culling age is 8 for open cows and 11 

for all cows. These results underline the correlation between cull cow prices and culling 

age.   

2.4.3 Costs 

The model includes three cost components: variable production costs, replacement 

heifer purchase price, and interest costs. Cost experiments for each component are 

performed separately to assess their individual impacts on culling decisions. Although the 

experiment with annual variable costs does not alter optimal culling decisions, the optimal 

culling strategy in the base model is highly sensitive to ownership costs of bred 



23 
 

replacement heifer which includes both heifer value and interest rate. Replacement heifer 

costs are a major part of operation costs for those producers who prefer to purchase a 

replacement heifer instead of raising it in the operation (Halich et al., 2022). When 

replacement is costly, producers tend to keep cows longer despite their declining 

productivity.  

A 20 % increase in replacement heifer value leads to a culling age of 11 for cows 

with calf at side and 9 for open cows. The same percentage decrease in replacement heifer 

values suggests an optimal culling of cows with calves at their side at age 8 and open cows 

at age 5. These are the largest changes in optimal age among all experiments performed. 

The average cow age in the herd is 4.3 years and the average age of cows culled is 6.4 

years with a 16.6% culling rate when replacement heifer prices decrease by 20%. 

Producers buy 13.9 bred heifers when replacement heifer value increases by 20% and 19.1 

replacement heifers when replacement heifer value is 20% cheaper compared to the value 

in base model.  

Interest rate changes also affect results by changing optimal culling age, net return, 

and herd structure. A 12% interest rate which makes replacement heifer purchases more 

costly for the producer, results in a later culling age of 8 for open cows and age 11 for all 

cows. The herd becomes older with an average cow age of 5.3 years. 

2.4.4 Fertility 

Cow’s genetics, body condition, and age are major determinants of reproductive 

efficiency and can be improved by appropriate management practices (Corah & Lusby, 

2000; Tronstad et al., 1993).  
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The selection of better replacement heifers, improvement of health and nutrition 

programs, and adoption of advanced technologies in fertility assessment and improvement 

can lead to more productive beef cows in the herd (Moorey and Biase 2020). The model 

is also solved under different productivity values to see the impacts of enhanced 

management on optimal culling decisions. To this end, the probability of an open cow to 

be pregnant in the next year is changed by 1% across all ages, and calving rate is changed 

by 1% for age 2-12 and 0.4% for age 13. An increase in calving rate and fertility rates 

generate an additional 11.3% net return above specified costs and a similar optimal culling 

strategy of production with same ages but higher sale amounts and culling rates compared 

to the base model’s outcomes.  

2.4.5 Weight Gain 

An experiment is also run to measure the impact of calf weights on the optimal 

culling strategy. Steer and heifer weights are increased by 20% over the base model. Prices 

per pound are also adjusted downward to account for the heavier calves. A 20% increase 

in calf weights results in a considerable change in net return with a younger herd and an 

early culling strategy. The optimal culling age moves to 6 for open cows and 9 for dams. 

The operation sells 37.4 steers, 37.4 heifers, and 14.3 cull cows.  

2.4.6 Pregnancy Check 

Although pregnancy checking is generally advised, it is not common among U.S. 

beef operations. According to USDA National Animal Health Monitoring System (2020) 

data, the percentage of operations that regularly pregnancy checking their cows (palpation, 

blood test, and ultrasound) was 31.6 for all operations in 2017. The reasons are labor and 

time costs, test costs, and producers’ beliefs and habits. To estimate the impact of 
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pregnancy checking on the optimal culling decisions, an experiment with pregnancy 

checking is run. In the experiment, the marginal cost of pregnancy check is assumed to be 

$10 per cow with $150 trip charge and annual variable costs in the base model are adjusted 

accordingly. Fertility data is recalculated for the experiment. 

The base model, as defined by equations 2.1-2.6 is modified to run the pregnancy 

checking use experiment. The model objective function, herd size, market balance, and 

cull cows’ linkage constraints are the same as in the base model. Pregnant and open cows’ 

linkage constraints are adjusted, and two additional constraints are added to the model: 

Linkage between ages:  

Pregnant: 

� �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑦𝑦(𝐶𝐶,′ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡′,𝑌𝑌) ∗(𝐶𝐶,𝑌𝑌)$(𝑂𝑂𝑂𝑂𝑂𝑂(𝑌𝑌)<12)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐶𝐶,𝑌𝑌)� − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(′𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡′,𝑌𝑌 + 1) −

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(′𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′,𝑌𝑌 + 1) ≤ 0          ∀ 𝑌𝑌 < 12              (2.7) 

 

Open: 

� �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐶𝐶,′ 𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛′,𝑌𝑌) ∗(𝐶𝐶,𝑌𝑌)$(𝑂𝑂𝑂𝑂𝑂𝑂(𝑌𝑌)<12)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝐶𝐶,𝑌𝑌)� − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(′𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡′,𝑌𝑌 + 1) −

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(′𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂′,𝑌𝑌 + 1) ≤ 0       ∀ 𝑌𝑌 < 12         (2.8) 

Pregnancy Test Constraints:  

Dam: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(′𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡′,𝑌𝑌) ∗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(′𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡′, ′𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡′,𝑌𝑌) −

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(′𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷′,𝑌𝑌) ∗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(′𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡′, ′𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡′,𝑌𝑌) −

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(′𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶′,𝑌𝑌) ∗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(′𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡′, ′𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡′,𝑌𝑌) ≤ 0 (2.9)                                                                                                                                             
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Open: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(′𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡′,𝑌𝑌) ∗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(′𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡′, ′𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡′,𝑌𝑌) −

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(′𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂′,𝑌𝑌) ∗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(′𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′,′ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡′,𝑌𝑌) −

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(′𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶′,𝑌𝑌) ∗
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(′𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂′,′ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡′,𝑌𝑌) ≤ 0 (2.10)                                                                                                                                   

 
 

There are 5 different types of cows (index C) in the pregnancy check use model: 

dam tested as pregnant, dam tested as non-pregnant, open tested as pregnant, open tested 

as non-pregnant, and first-time heifer. Two-year-old bred heifers are not tested since they 

are purchased as bred heifers. The linkage equations (2.7-2.8) are modified versions of 

equation 2.4 and 2.5 and ensure that the number of cows C of age Y+1 must be less than 

or equal to number of that cow type that was kept until age Y. Equations 2.9 and 2.10 are 

the pregnancy test constraints and balance the production and cull amounts after testing 

dam and open cows for every cow age to ensure proper ratios of pregnant cows. The cow 

is tested as pregnant or non-pregnant and culled after the pregnancy test. 

The results are presented in Table 2.6. The model results suggest that producers 

should keep dam cows that are tested as pregnant until age 13 and cull all open cows that 

are tested as non-pregnant. This indicates that a producer is better off starting with a cow 

that is already confirmed to be pregnant each year, in this case a bred heifer. Based on the 

herd decomposition following pregnancy checking, the model only keeps open cows that 

are 4-year-old and younger and tested as pregnant. These results suggest that the producers 

should consider keeping younger open cows and contradict the common practice in the 

field and the studies that suggest selling open cows under any circumstance (Azzam & 

Azzam, 1991; Boyer et al., 2020; Frasier & Pfeiffer, 1994). The 100-cow operation 
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consists of 73.1 cows with calves at their side tested as pregnant, 2.9 cows with calves at 

their side tested as non-pregnant, 3.3 open cows tested as pregnant, and 20.7 first time 

heifers. The average cow age in the herd is 4.24 years and the average age of cows culled 

is 6 years. The net return above selected costs increases by 68.2% compared to the base 

model because of the culling management changes enabled by pregnancy check 

information and increased calf sales. Each year, the operation sells 44.9 steers (about 8 

more than the base model), 44.9 heifers, and 17.3 cull cows (4.7 more than the base model) 

in the model.  

2.5 Conclusion 

Developing a culling strategy has great influence on financial and structural 

soundness of cow-calf operations and draws substantial attention from academics and 

extension field specialists. This study contributes to the current discussions with its 

methodology and results.  

A single year dynamic linear programming model is formulated and run with cow 

fertility estimates as well as price and cost data obtained for a spring calving herd in 

Kentucky to provide a set of culling strategies with optimal cow culling age for beef cattle 

producers. The results of the base model suggest that producers should cull all cows older 

than age 10 and all cows that fail to calf once they reach the age of 7.  Given the base cost 

and price values, the 100-cow operation generates a net return above selected costs of 

$12,347 and produces 70.7 cows with calves at their side, 15.5 bred replacement heifers 

and 13.8 open cows. Each year, the operation sells 73.6 calves and 12.6 cull cows. The 

average cow age in the herd is 5 years and the average age of cows culled is 7.7 years with 

a 12.6% culling rate in the base model.  
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The impact of each variable on the optimal decisions is also measured with several 

experiments to evaluate the sensitivity of the optimal strategy to changes in the markets, 

farm production costs, and management practices. The outcome of these experiments 

underlines the sensitivity of the optimal strategies to market conditions, particularly 

calf/cull cow prices, ownership costs of bred replacement heifer, and herd management 

skills to increase cow’s productivity and calf weights as essential parameters in optimal 

culling. While cow-calf price changes impact net return values to a considerable extent 

among experiments conducted, the cost sensitivity analysis with changing bred heifer 

replacement value alter both net return and herd age decomposition most substantially. 

Culling age in the base model (age 7 for open cows and 10 for cows with calf at their side) 

decreases to 5 for open cows and 8 for cows with calf at their side when replacement prices 

decrease by 20% and increase to 9 for open cows and 11 for cows with calf at their side 

when replacement prices increase by 20%.  

When pregnancy checking is incorporated into the model, net return above selected 

costs increase by 68.2%. Producers only keep open cows that are 4-year-old and younger. 

Previous literature has been mixed on the retain/replace decision for open cows and this 

work suggests that younger open cows should be kept. It is also worthwhile to note that 

the assumed cost of pregnancy checking is relatively low at $10 per cow, which largely 

assumes that cattle were already being worked. 

 One of the primary implications of the sensitivity analysis is that producers should 

pay a considerable amount of attention to management practices to monitor and improve 

cow’s productivity and calf weights since better management creates a potential to have 

lower number of open cows in the operation and earn higher net returns. The impact of 
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higher weaning weights and increased probability of weaning calves results in substantive 

improvement in returns above the base model suggestions. 
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Tables and Figures for Chapter 2 

Table 2.1 Fertility and Retention Probabilities 

  
Cows with Calf from Previous Year 

Cow Age (Year) 3 4 5 6 7 8 9 10 11 12 13 

Fe
rt

ili
ty

 

% Calving 79.7 78.2 76.5 74.7 72.6 70.4 67.9 65.2 62.2 59.0 55.5 

% Cow survival 97.9 97.3 96.6 95.9 95.2 94.5 93.8 93.1 92.4 91.8 91.1 

Re
te

nt
i

 % Survival, sound, and back-to-back calves 76.9 74.6 71.9 68.8 65.3 61.6 57.5 53.2 48.7 43.9 39.0 
% Survival, sound, but no calf this year 19.6 20.8 22.0 23.3 24.6 25.9 27.2 28.4 29.5 30.5 31.3 

  
Cows without Calf from Previous Year 

Cow Age (Year) 3 4 5 6 7 8 9 10 11 12 13 

Fe
rt

ili
ty

 % Calving 69.0 67.0 64.7 62.0 59.3 56.4 53.7 51.0 48.7 46.7 45.2 

% Cow survival 99.4 98.9 98.3 97.6 96.7 95.7 94.6 93.3 91.9 90.3 88.7 

Re
te

nt
i

 % Survival, sound, and calf this year 66.3 62.6 58.3 53.7 49.0 44.3 40.0 36.0 32.5 29.6 27.4 
% Survival, sound, but no calf again 29.8 30.8 31.8 32.8 33.7 34.2 34.5 34.6 34.3 33.8 33.2 

Notes: Data in the table are calculated based on calving rates and fertility estimates obtained from Tronstad et al. (1993).
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Table 2.2 Calf Weights and Prices 

Cow Age Steer Heifer 
Weight(lb) Price($/lb) Weight(lb) Price($/lb) 

2 540 1.60 496 1.48 
3 560 1.59 514 1.47 
4 580 1.57 532 1.46 
5 600 1.55 550 1.44 
6 600 1.55 550 1.44 
7 600 1.55 550 1.44 
8 600 1.55 550 1.44 
9 600 1.55 550 1.44 
10 600 1.55 550 1.44 
11 580 1.57 532 1.46 
12 580 1.57 532 1.46 
13 580 1.57 532 1.46 

Notes: Author's calculations based on data obtained from USDA Agricultural Marketing Service.
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Table 2.3 Annual Variable Costs 
Item Annual Cost ($) 

Pasture Maintenance  

(Cash costs:2.0 acres and $20 per acre) 

  
40 

Hay  

(Cash costs: 2.5 tons and $35 per ton) 

  
88 

Mineral 35 

Vet 25 

Breeding 40 

Marketing 25 

Winter Feeding and Other Machinery (cash costs)  15 

Trucking (calves, supplies, etc.) 15 

Others (insurance, property taxes, water, etc.) 40 

Total 323 

Source: Halich, Burdine, and Shepherd (2022)
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Table 2.4 Optimal Culling Strategies: Net Return above Selected Costs and Culling Age 

 
 Herd Net Return  

(100 cows) Cull Age Weighted 
Average 

Price Costs Interest 
Rate Fertility $ % Changec Open All Cow 

Age 
Cull 
Age 

Base Case Basea Base Baseb Base 12,347 - 7 10 4.97 7.7 
Experiments 

Price 

+10% All Base Base Base  19,567  58.5% 6 9 4.65 7.07 
-10% All Base Base Base  5,272  -57.3% 8 10 5.16 8.14 

+25% Cull Base Base Base  14,909  20.8% 6 8 4.48 6.84 
-25% Cull Base Base Base  10,096  -18.2% 8 11 5.26 8.25 

Cost 

Base 
+20% 
Bred 

Heifer 
Base Base 7,236 -41.4% 9 11 5.44 8.63 

Base 
-20% 
Bred 

Heifer 
Base Base 18,208 47.5% 5 8 4.31 6.36 

Base Base 12% Base  848  -93.1% 8 11 5.26 8.25 
Base Base 0.01% Base  16,187  31.1% 7 9 4.84 7.54 

Productivity Base Base Base +1%d  13,747  11.3% 7 10 4.97 7.69 
Base Base Base -1%d  10,960  -11.2% 7 10 4.97 7.73 

20% Weight Gain Adjustede Base Base Base 20,162 63.3% 6 9 4.65 7.07 
Notes: aSteer and heifer prices are age adjusted and cull prices are same for all ages, bInterest rate is 3% in the base model, cChange from net return in the base 
case, dPregnant, live calf: 1%   for age 2-12 and 0.4% for age 13 & open to pregnant:  1%, eSteer and heifer prices are adjusted.
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Table 2.5 Optimal Culling Strategies: Production and Sales 

 
 Head Produced Replacements 

Bought Head Sold 

Price Costs Interest 
Rate Fertility Damc Open Bred Heifers Steers/Heifers Cull 

Cows 
Base Case Basea Base Baseb Base 70.69 13.76 15.55 36.8 12.58 

Experiments 

Price 

+10% All Base Base Base 71.65 11.32 17.03 37.4 14.27 
-10% All Base Base Base 69.14 16.13 14.73 36.4 11.64 

+25% Cull Base Base Base 70.53 11.76 17.70 37.6 15.07 
-25% Cull Base Base Base 69.66 15.86 14.48 36.3 11.32 

Cost 

Base 
+20% 
Bred 

Heifer 
Base Base 68.29 17.85 13.86 35.9 10.56 

Base 
-20% 
Bred 

Heifer 
Base Base 72.43 8.43 19.13 38.0 16.58 

Base Base 12% Base 69.66 15.86 14.48 36.3 11.32 
Base Base 0.01% Base 69.92 14.12 15.96 36.9 13.09 

Productivity Base Base Base +1%d 70.69 13.76 15.55 37.6 12.70 
Base Base Base -1%d 70.69 13.76 15.55 36.0 12.45 

20% Weight 
Gain Adjustede Base Base Base 71.65 11.32 17.03 37.4 14.27 

Notes: aSteer and heifer prices are age adjusted and cull prices are same for all ages, bInterest rate is 3% in the base model, cChange from net return in the base 
case, dPregnant, live calf: 1%   for age 2-12 and 0.4% for age 13 & open to pregnant:  1%, eSteer and heifer prices are adjusted. 

 

 

 



 

 
 

35 

Table 2.6 Optimal Culling Strategies: Pregnancy Check 

Model 
Results  

Net 
Returns-
NR ($) 

Change 
in NR-
Base 

Model 

Cull Age Weighted 
Average 

Head  
Produced 

Replacements 
Bought 

Head 
 Sold 

% Open  All Cow 
Age 

Cull 
Age 

Dam 
tested  

as 
Pregnant 

Dam 
tested  

as  
Non-

Pregnant 

Open 
tested  

as 
Pregnant 

Open 
tested  

as  
Non-

Pregnant 

Bred 
 Heifers 

Steers 
/Heifers 

Cull 
Cows 

Pregnancy 
Check 20,770 68.2 4 13 4.24 6.00 73.1 2.9 3.3 0.0 20.69 44.96 17.3 
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Figure 2.1 Model Timeline (Spring Calving System) 
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CHAPTER 3. FORECASTING BEEF-CATTLE PRICES IN THE SOUTHERN UNITED STATES: A 
MODEL SELECTION FRAMEWORK 

3.1 Introduction 

Price forecasts play an important role in agricultural policy, economic planning, 

and agri-business management. There is a vast literature using different techniques to 

forecast agricultural prices (Ates et al., 2019; Darekar & Reddy, 2017; Harris, 2017; Jha 

& Sinha, 2013; Kurumatani, 2020; Rusiman et al., 2017; Sabu & Kumar, 2020; Wang et 

al., 2018). Livestock price forecasting literature has had a focus on the distinctive features 

of the industry such as the biological characteristics of supply, seasonality, cattle cycles, 

and structural changes. Although time series models including autoregressive integrated 

moving average (ARIMA) models have been extensively used in the literature, machine 

learning (ML) techniques have also been examined as an alternative tool to obtain accurate 

livestock price forecasts. ML techniques have distinct advantages over ARIMA models as 

they have more flexibility in variable selection and can accommodate both linear and 

nonlinear behavior in data. In addition to price forecasts, basis forecasts are also common 

in the literature since they are less volatile and more predictable than spot prices. Basis is 

the difference between a local cash prices and the relevant futures contract prices for a 

specific time period. These futures are traded up to a year prior to their expiration date. 

Since market forces lead to a spot and futures prices, basis is easier to predict with simpler 

techniques such as moving historical averages (Kastens et al., 1998).  

This study aims to develop a model selection framework to forecast beef-cattle 

prices in Kentucky which is taken as a representative market for the southern region in the 

United States. The empirical analysis for out-of-sample one-week-ahead forecasts of beef-

cattle prices is based on a model comparison and selection process using weekly auction 
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data for steer, heifer, and cull cow cash prices. The contribution of this paper to the current 

U.S. livestock price forecasting literature is threefold: 

1. The study aims to develop a model selection framework to provide beef-cattle spot 

price forecasts to be used in decision making process by producers. A comparison 

of traditional time series models (ARIMA, seasonal ARIMA) and ML models is 

performed to evaluate the difference in the prediction performance of the models 

in small and large samples and select the best technique to forecast livestock cash 

prices in the southern U.S.  

2. Although there are many studies covering structural and time series modelling in 

the literature, a limited number of studies use ML models. Given the advancement 

in statistical learning, ML techniques are useful tools to perform predictive analysis 

including time series forecasting in the econometrician’s toolbox. The study 

contributes to the current U.S. livestock price forecast literature providing a 

detailed discussion of selected ML models: ridge regression, LASSO regression, 

random forests, and gradient boosted machine.  

3. This study performs a rolling origin cross validation in model evaluation for both 

ARIMA and ML techniques. This prevents the data leakage problem by taking the 

sequential order of time series data into account and avoids arbitrary choice of the 

test set with a nested algorithm. The rolling origin technique is applied in time 

series forecasting to ensure that the model does not predict lagged observations 

using future data during cross validation. The algorithm performed in the paper 

simultaneously measures prediction error and tunes ML parameters (Cochrane, 

2018). This cross-validation strategy provides a useful tool for researchers to obtain 
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an almost unbiased estimate of the true error in their model estimation process 

(Varma & Simon, 2006). 

Model selection results show that base ARIMA models provide the best forecasts 

for steer prices and the LASSO regression technique provides better forecasts for heifer 

and cull cow prices in the southern U.S. The results of this study point to the difference in 

the prediction power of the ARIMA and ML models in small and large samples and suggest 

ML techniques as an alternative tool to forecast U.S. livestock prices.  

3.2 Literature Review 

Prior works in U.S. livestock forecasting have employed structural models, time 

series models, and ML techniques to find the best forecasting methods and used both cash 

prices and basis. Maki (1963), an early example from the literature, constructed a multi-

equation model which takes the structure of the industry and cattle cycles into 

consideration. He identified seasonal and cyclical variability as the main source of errors 

in (two-year and five-year) price forecasts covering 1958-1965. Helmers and Held (1977) 

used a model comparison approach and they compared the forecasts of eight different 

models including randomly selecting prices from the previous year, futures prices, past 

yearly average, linear trend, and U.S. Department of Agriculture (USDA) Outlooks. 

Although there was not a significant difference between results of methods in terms of 

error variance, Outlook information provided the best forecasts with the lowest average 

residual and the smallest standard errors. Bentley and Shumway (1981) estimated a model 

for adaptive decision making to determine optimal replacement and culling decisions and 

used price forecasts derived from a cyclical forecasting equation with a cattle price cycle 

of ten years.  
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Time series models that use past observations of the same variable for prediction, 

are mostly preferred as they have a parsimonious approach and control for seasonal and 

cyclical structure of prices. In their case study for U.S. cattle and hog prices, Harris and 

Leuthold (1985) conducted a comparative analysis where they evaluate individual and 

composite techniques including regression (ordinary least squares) and time series models 

(auto regressive moving average-ARMA and ARIMA). They found that time series 

models, particularly ARMA, outperform regression models for cattle prices with the 

lowest root mean square error (RMSE) but do not predict turning points as well as other 

models. In the presence of nonstationarity, Zapata and Garcia (1990) examined the 

performance of multivariate and univariate time series with vector autoregressive (VAR) 

and ARIMA models using monthly U.S. cattle price data. They emphasized the importance 

of appropriate identification of data under nonstationarity. Their results demonstrated that 

the ARIMA modelling provides relatively accurate forecasts in the short term and the VAR 

specification provides more accurate results in the long term. Goodwin (1992) and Guney 

(2015) contributed forecast methodology with the presence of structural change by using 

the time varying parameter VAR model to evaluate forecasts for cattle prices. They found 

that forecast performance improves with a time varying parameter technique. Using model 

averaging methods, Payne, Karali, and Dorfman (2019) developed a Bayesian model 

averaging approach to examine cattle basis forecasts at three Georgia locations with 

weekly data. They pointed out that the Bayesian approach is superior to a set of models 

including naïve models which takes historical moving averages or the last observed value 

as the forecast. 
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 Machine learning (ML) techniques including traditional and deep learning models 

have been used in the literature as alternative techniques for estimation and forecasting. 

However, ML applications are limited due to data availability and required computational 

power. Ticlavilca, Feuz, and Mckee (2010) used a Bayesian learning machine approach 

for regression and artificial neural network (ANN) models for U.S. cattle, hog, and corn 

prices and stated that Bayesian model outperform ANN models in terms of overall 

prediction performance and robustness. There are also studies comparing ARIMA and ML 

methods to determine the best forecasting design for livestock prices. Kohzadi et al. (1996) 

proposed a model selection framework comparing Neural Network models and ARIMA 

models to predict U.S. monthly live cattle and wheat cash prices and found that Neural 

Network models have better performance to forecast livestock cash prices. 

This study aims to contribute to the literature with its model selection framework 

incorporating a rolling origin cross validation scheme to evaluate the predictive 

performance of ARIMA and ML models and propose the best techniques for steer, heifer, 

and cull cow prices in the southern U.S.   

3.3 Data 

Weekly auction prices for Kentucky (KY) and Kansas (KS) from 1993 to 2020 are 

used in the study and were obtained from USDA Agricultural Marketing Service and 

Livestock Marketing Information Center. Prices examined are the state averages for 500 

to 600 lb medium and large frame #1-2 steers, 450 to 550 lb medium and large frame 

heifers, and average dressing 80-85% boning cows. Weekly dummy variables are also 

included to allow for seasonality in the models.  
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Kentucky raw steer and heifer price samples whose sizes are 531 and 527 

respectively, cover the period from 2010 to 2020. As the level of learning in training sets 

is greatly influenced by sample size, it matters in model selection, particularly in ML 

applications. Although there is no consensus in the literature for minimum sample size 

requirement in ML, based on learning curve analysis, prediction accuracy improves and 

becomes more stable in larger samples (Zhu et al., 2016). On the other hand, the model 

performance grows logarithmically with sample size for deep learning models (Sun et al., 

2017). Furthermore, Cerqueira, Torgo, and Soares (2019) examine the impact of different 

sample sizes on the performance of traditional time series and ML models. They conclude 

that traditional time series models outperform ML methods with small samples of less than 

100 observations in terms of predictive power, but ML models start to perform better when 

sample sizes increase beyond 1,000 observations.  

As the KY samples are small, a data interpolation process detailed in the Appendix 

is used to impute missing observations in the samples and increase sample size for KY 

heifer and steer prices. The purpose is to eliminate sample size bias on model performance, 

improve performance of ML models, and have a robust model selection procedure. KS 

steer and heifer prices are used to predict KY prices and VAR causality tests and Structural 

VAR models are employed to predict statistical relation between the KY and KS series for 

the period 2010-2020. Then, estimated Structural VAR models are used to generate KY 

price series for the period from 1999 to 2010. Kansas has the third largest cow-cattle 

market in U.S. in terms of number of cattle on ranches and feedyards (USDA, 2020). The 

state has an auction system which is similar to most states including KY in structure and 

timing. Furthermore, it has more complete datasets than other states. Based on descriptive 
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analysis, KS prices are found to be higher than KY prices for most of the period from 2010 

to 2020 for both steer and heifer prices (Figures 3.1a and 3.1b).  Apart from the difference 

in levels, prediction analysis states a meaningful causal relation with a direction from KS 

prices to KY prices in VAR Granger causality test and SVAR analysis. After these steps, 

the samples used in steer and heifer forecasting increase to 1,124 observations with KY 

predicted values. Summary statistics for the data set are presented in Table 3.1. 

3.4 Methods 

3.4.1 ARIMA Models 

ARIMA models with and without seasonality are estimated as baseline standard 

time-series model comparisons. Seasonality is controlled with weekly dummy variables 

(Godahewa et al., 2020). Since the number of weeks can vary across years, the 53rd 

observation is treated as the 52nd when constructing dummy variables (Pan & Yang, 2017). 

The ARIMA model specified in equation 3.1 assumes a linear relation between KY prices 

at time 𝑡𝑡 (𝐾𝐾𝑌𝑌𝑡𝑡), past observations (𝐾𝐾𝑌𝑌𝑡𝑡−𝑖𝑖), random errors (𝜇𝜇𝑡𝑡) and moving average 

component (𝜇𝜇𝑡𝑡−𝑗𝑗) with a weekly dummy variables matrix (𝑊𝑊𝑘𝑘). 𝐿𝐿 represents the lag 

operator.  

�1 −∑ 𝛽𝛽𝑖𝑖𝐿𝐿i
𝑝𝑝
𝑖𝑖=1 �(1 − 𝐿𝐿)𝑑𝑑𝐾𝐾𝑌𝑌𝑡𝑡 =  �1 + ∑ 𝜑𝜑𝑗𝑗𝐿𝐿𝑗𝑗

𝑞𝑞
𝑗𝑗=1 � 𝜇𝜇𝑡𝑡 + ∑ 𝛾𝛾𝑘𝑘 𝑊𝑊𝑘𝑘

52
𝑘𝑘=2             (3.1) 

The ARIMA uses p auto-regressive (AR) terms (𝛽𝛽𝑖𝑖), d differencing terms and q moving-

average (MA) terms (𝜑𝜑𝑘𝑘) in base ARIMA models. The seasonal ARIMA models contain 

additional seasonality coefficients (𝛾𝛾𝑙𝑙 ). The auto.arima() function in the statistical software 

R is used to estimate ARIMA models with the optimal order for each parameter set using 

Schwarz information criterion (BIC) to assess model fit and complexity. 
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3.4.2 Machine Learning Models 

A series of supervised learning ML methods are employed in this study. These are 

divided as a set of shrinkage (ridge and LASSO) and tree-based (gradient boosted machine 

and random forests) methods. These methods are known as “off the shelf” ML models and 

commonly used in ML studies. They consider both linear and nonlinear relations among 

the variables. 

3.4.2.1 Shrinkage Methods 

Shrinkage methods are a class of linear models that shrink the coefficients toward 

zero to decrease the variance of predictions (Hastie et al., 2009). Like standard time-series 

models, these shrinkage models are linear and penalize model complexity but offer more 

flexible variable selection than standard ARIMAs.  The form of shrinkage models, shown 

in equation 3.2, is similar to regression techniques.  

𝐾𝐾𝑌𝑌𝑡𝑡 =  𝛽𝛽0 + ∑  𝑋𝑋𝑡𝑡𝑡𝑡𝛽𝛽𝑖𝑖 +𝑚𝑚
𝑖𝑖=1 𝜀𝜀𝑡𝑡                                        (3.2) 

Here 𝛽𝛽0 is the intercept term, 𝛽𝛽𝑖𝑖 is the regression coefficient for 𝑖𝑖 =  1, … ,𝑚𝑚, 𝑚𝑚 is 

dimension of the 𝑋𝑋𝑡𝑡𝑡𝑡 which is vector of lagged values (𝐾𝐾𝑌𝑌𝑡𝑡−𝑖𝑖) and dummy variables (𝑊𝑊𝑙𝑙), 

and 𝜀𝜀𝑡𝑡is the error term.  

Shrinkage methods penalize model complexity and minimize residual sum of 

squares (RSS) obtained from equation 3.2 and a penalty parameter which differs by the 

type of the shrinkage. Ridge regression and LASSO regression are widely used shrinkage 

techniques in the literature and the train() function in the caret package in R is used with 

different specifications to estimate ridge and LASSO regression models in the study.  
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3.4.2.1.1 RIDGE REGRESSION (RIDGE) 

The ridge regression uses the sum of squared coefficients as a penalty term and 

suppresses variable influence by “shrinking” coefficient values. It minimizes penalized 

RSS in equation 3.3 and allows the model to include all variables.  

𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
 (𝐾𝐾𝑌𝑌𝑡𝑡 −    𝛽𝛽0 − ∑  𝑋𝑋𝑡𝑡𝑡𝑡𝛽𝛽𝑖𝑖𝑚𝑚

𝑖𝑖=1 )2 + 𝜆𝜆�  𝛽𝛽𝑖𝑖2
𝑚𝑚
𝑖𝑖=1

=  𝑅𝑅𝑅𝑅𝑅𝑅 + 𝜆𝜆�  𝛽𝛽𝑖𝑖2
𝑚𝑚
𝑖𝑖=1

�                     (3.3) 

In the ridge regression, 𝜆𝜆�  𝛽𝛽𝑖𝑖2
𝑚𝑚
𝑖𝑖=1  is the shrinkage penalty and 𝜆𝜆 ≥ 0 is the complexity or 

tuning parameter. Larger values of λ lead to more shrinkage. The coefficients provide a 

best fit of the data by minimizing the combination of 𝑅𝑅𝑅𝑅𝑅𝑅 and the penalty. The trade-off 

between goodness of fit and model complexity are controlled by 𝜆𝜆. When 𝜆𝜆 = 0, results 

correspond with ordinary least squares. As 𝜆𝜆 approaches infinity, coefficients tend toward 

zero (James et al., 2017). 

3.4.2.1.2 LASSO REGRESSION (LASSO)  

LASSO 2 models are similar to ridge regressions in terms of shrinkage method and 

linearity. Unlike ridge regression, LASSO regressions allow some coefficients of the 

regression to be equal to zero by using feature selection. The LASSO algorithm minimizes 

penalized RSS in equation 3.4 and employs a Bayesian variable selection procedure 

(Storm et al., 2020). 

𝛽𝛽𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 � 
(𝐾𝐾𝑌𝑌𝑡𝑡 −    𝛽𝛽0 − ∑  𝑋𝑋𝑡𝑡𝑡𝑡𝛽𝛽𝑖𝑖𝑚𝑚

𝑖𝑖=1 )2 + 𝜆𝜆∑ |𝛽𝛽𝑖𝑖| 𝑚𝑚
𝑖𝑖=1

=  𝑅𝑅𝑅𝑅𝑅𝑅 + 𝜆𝜆∑ |𝛽𝛽𝑖𝑖| 𝑚𝑚
𝑖𝑖=1

�            (3.4) 

 
2 LASSO is an acronym for least absolute shrinkage and selection operator. 
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The minimization strategy in LASSO is similar to the ridge’s but the penalty is 

different. Because the LASSO uses the absolute value of the coefficients in its penalty, its 

penalty contours have sharp corners at points where each coefficient is zero. This allows 

LASSO regressions to outright remove variables. Conversely, ridge regressions reduce 

model variance by reducing the value of the coefficients. However, it does not force 

coefficients to exactly zero (James et al., 2017).  

3.4.2.2 Regression Tree-Based Methods 

Regression tree-based methods generally provide better results than linear methods 

when the linearity assumption is not met in the dataset. They split the variable set into 

subsets, and then fit a model in each one with different procedures (Hastie et al., 2009). 

They are nonparametric and provide non-linear predictions, but unlike the shrinkage 

methods, they do not have an interpretable functional form. This lack of interpretability 

may limit their usefulness in certain applications where understanding the underlying 

relationship between variables is important. Random forests and gradient boosted machine 

methods are used in this study and caret, randomForest, and gbm packages in R are 

employed to estimate regression three-based models. 

3.4.2.2.1 RANDOM FORESTS (RF) 

Proposed by Breiman Leo (2001), the random forest method is robust to small 

sample sizes, high-dimensional feature spaces, and complex data structures (Tyralis & 

Papacharalampous, 2017). It is an ensemble method that bases its estimate off of a set of 

predictions from individual trees. Each tree predicts the outcome variable using a random 

subset of input variables and a bootstrapped sample of the data. The final predictions of 

the forest are generated through a process called bagging. Here predictions from individual 
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trees are averaged together. The collective “ensemble” of individual tree predictions 

increases the stability and accuracy of the model and decreases variance (Divina et al., 

2019; Dudek, 2015). 

The optimal number of trees can be determined experimentally, the number of input 

variables in the random selection of subsets, and node size in each tree are parameters to 

be defined in RF algorithm. The number of input variables in random selection of subsets 

is suggested as one third of the total variables in the training set by default. It can be 

changed experimentally if out of bag error decreases.  Finally, the number of nodes which 

determines the depth of the tree is 3 by default and since RF is not too sensitive to this 

parameter, this number is accepted throughout the literature (Naing & Htike, 2015). 

3.4.2.2.2 GRADIENT BOOSTED MACHINE (GBM) 

GBM proposed by Friedman (2002; 2001) is another ensemble algorithm which 

trains a set of regression trees in a sequential procedure and performs an iterative gradient 

descent algorithm. In the iteration process, the gradient of the loss function is refitted 

sequentially until no improvement is detected (Divina et al., 2019; Masini et al., 2020). 

The technique begins with a single decision tree to predict outcome variable based on the 

input features. The errors of the first tree are then computed by comparing the predicted 

values and the actual values. The second tree is then constructed to predict the residual of 

the first tree rather than the original outcome variable. The process is repeated for several 

iterations, with each new tree aiming to correct the errors of the previous trees. The final 

prediction value is produced by combining the predictions of all the trees in the ensemble.  

The choice of shrinkage parameter, bag fraction, and number of trees are the main 

practical decisions in the algorithm. The shrinkage parameter determines the learning rate 
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in the procedure. The literature suggests that smaller values (≤0.01) provide better 

predictions (Friedman 2002). However, the disadvantage of the low values is 

computational costs in terms of storage and CPU time (Ridgeway, 2020). The bag fraction 

is the fraction of training set observations that are randomly selected to propose a new tree 

and is recommended as 0.5 by default (Flores et al., 2017; Ridgeway, 2020). As in random 

forests, the optimal number of trees in the GBMs can be determined experimentally.  

3.4.3 Cross Validation in Time Series Data and Tuning Parameters in ML Models 

Cross validation (CV) is a standard process to evaluate model performance to avoid 

the overfitting problem. Models with almost perfect predictive performance in the training 

set likely will not perform well with new observations. The CV procedure finds a 

compromise between model complexity and outside sample fit cross validation error. 

Proper data splitting into training, validation, and testing sets plays an important role in 

CV. Storm, Baylis, and Heckelei (2020) suggest that in cases of relatively small sample 

size as in the case in this study, instead of holding out a separate subsample for validation, 

k-fold CV can be used as an alternative method. In k-fold CV method, the data set is 

randomly divided into equal-sized k subsets. The model is fitted with k-1 subsets, validated 

with the remaining subset, and prediction error is measured with respect to model 

performance in validation subset. The process is repeated until each of k subsets is used as 

validation set (Hastie et al., 2009). Determining k in cross validation is important since 

there is a tradeoff between bias and variance for different numbers of k. Fewer subsets 

results in higher bias but lower variance. More subsets have lower bias but higher variance 

and require more computational power. The literature recommends between 5 and 10 

validation subsets (Hastie et al., 2009; James et al., 2017).   
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CV should be applied carefully in time series since there is a risk of data leakage. 

This occurs when the model uses future observations to predict prior observations and the 

dependency between observations is ignored (Tashman, 2000).  Following Bergmeir, 

Hyndman, and Koo (2015) and Schnaubelt (2019), a rolling origin cross validation is 

applied to evaluate a series of ARIMA and ML models. In the rolling origin scheme2F2F

3, 

models are trained with an initial sample size which grows iteratively by shifting forward 

by one month in each iteration. While the training observations grow across each iteration, 

the test sample size remains fixed. Therefore, data series are split into only training and 

test subsamples to train and test models in a CV scheme.  

As ARIMA models lack penalty parameters, they are predicted in the CV scheme 

with only training and test set splits. ML models are trained and validated in the CV 

scheme with training and evaluation set splits to tune the parameters selected for each ML 

technique. The training set is split into another training set and a validation set (10% of 

training set). A nested CV algorithm is used to tune ML parameters (Figure 3.2). The 

algorithm runs an inner loop for a set of parameter values in the validation set and measures 

the CV error (sum of square residuals). The parameter value with the minimum CV error 

is selected as the optimal parameter. The optimal parameter value from the inner loop is 

then used in corresponding training set to train the model in the outer loop. The process is 

repeated for each CV fold.  

10 cross validation subsets are used in the study. The initial training sample size is 

864 observations, and the testing sample size is fixed as 224 observations for each iteration 

for steer and heifer prices. For cull cow prices, the training sample size is 1,130 

 
3 It is also known as walk-forward validation. 
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observations. The test sample size is set as 20% of the data set for each series. Figures 3.3 

and 3.4 provide the 10-fold CV scheme for ARIMA and ML models using steer and heifer 

price series.  

The prediction error mean and standard deviation are measured and compared over 

the CV folds for each model among ARIMA and ML techniques. Prediction error means 

are the average performance of the technique, and their standard deviations are the 

variability of the predictive skill of the technique with respect to different samples. At the 

final step, the technique with the lowest average prediction error measure and standard 

deviation is selected as the best technique. 

3.4.4 Model Selection 

RMSE and Mean Absolute Percentage Error (MAPE) shown in equations 3.5 and 

3.6 are used to measure the prediction error. Here 𝑌𝑌𝑖𝑖 and 𝑌𝑌�𝑖𝑖 are the real and the predicted 

values, respectively.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ �𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1                                                      (3.5) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
� �𝑌𝑌𝑖𝑖−𝑌𝑌

�𝑖𝑖
𝑌𝑌𝑖𝑖

�
𝑛𝑛

𝑖𝑖=1
                                                           (3.6) 

These are commonly used to assess forecasting performance. The models are 

evaluated with out-of-sample RMSE and MAPE since in-sample accuracy may overstate 

the model predictive performance (Mullainathan and Spiess 2017).  

Lower RMSE and MAPE values mean higher accuracy. RMSE assigns high 

penalties to large errors, since the prediction errors are squared. This helps to avoid large 

forecasting errors, but it is sensitive to scale of measurement and data transformation 
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(Adhikari & Agrawal, 2013).  MAPE is computed in percentage terms, normalizes the 

error by actual values, and is independent of the scale of measurement. 

3.5 Estimation Results 

3.5.1 ARIMA Models 

3.5.1.1 Unit Root Tests 

The augmented Dickey Fuller (ADF) and Kwiatkowski, Phillips, Schmidt, and Shin 

unit (KPSS) tests are applied to check for stationarity and find the level of integration of 

variables (Dickey & Fuller, 1979; Kwiatkowski et al., 1992). The aim of the KPSS test is 

to check for stationarity under the presence of a deterministic trend.  

According to the ADF test results, the null hypothesis of a unit root is not rejected 

for all series at any significance level (Table 3.2). All series are determined to be I(1) at 

the 1% significance level. The KPSS test results reveal that the null hypothesis of 

stationarity is rejected for all series at levels with both intercept and trend (Table 3.3). The 

unit root tests using both constant and trend state that all variables are form of I(1). The 

first differenced series are used in the ARIMA models when the series are I(1). 

3.5.1.2 Estimation 

Two different ARIMA-type models are estimated: a base model without 

seasonality and the one with a control for weekly seasonality. The best models for series 

are selected based on minimum BIC information criteria. Model estimation results are 

presented in Table 3.4. The base ARIMA technique has lower average RMSE and MAPE 

values and standard deviations across 10 splits and works better for steer and heifer prices. 

Adding the seasonality component to the ARIMA design does not improve model 
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performance for steer and heifer prices. However, the ARIMA with seasonality produces 

better results for cull cow prices, with lower mean predictions errors and lower standard 

deviations. Peel and Meyer (2002) found that cull cow prices exhibit the largest seasonal 

patterns among all cattle classes, likely due to liquidation or expansion during the cattle 

cycle.   

3.5.2 Machine Learning Models 

3.5.2.1 Tuning the Parameters 

In the ridge and LASSO models, the parameter 𝜆𝜆 is tuned by using a set of 100 𝜆𝜆 

values. The optimal number of trees for each split is selected in the CV scheme among 

500, 1000, and 1500 trees in each model for RF, and among 500, 1000, 1500, 2000, and 

2500 trees in each model for GBM. Rf method in R package caret is used to estimate RF 

models and gbm package in R is used to estimate GBM models. 

3.5.2.2 Estimation 

The ML algorithms results are presented in Table 3.5. Among ML models, the 

LASSO algorithm produces models with lower average RMSE and MAPE values for steer, 

heifer, and cull cow prices.  

3.5.3 Model Selection and Discussion 

The model selection framework developed in this paper aims to find the best 

techniques to obtain one-week-ahead beef-cattle cash price forecasts in the southern U.S. 

Traditional linear ARIMA models with and without seasonality and different ML 

techniques that allow for linear or non-linear relations in the dataset are compared in a 

rolling origin cross validation scheme. The impact of sample size on the model 
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performance is also checked by running the techniques with original Kentucky and Kansas 

samples (Table 3.6 – 3.8). 

3.5.3.1 Steer and Heifer Prices 

In the larger Kentucky sample, the ARIMA model without seasonality is selected 

as the best technique to predict steer prices (Tables 3.4 and 3.5). The average prediction 

errors are 3.77 and 1.69 for RMSE and MAPE, respectively and they are lower than 

LASSO which is the best ML technique. The LASSO regression prediction error values 

are 3.91 and 1.86 for RMSE and MAPE, respectively. In the original Kentucky samples 

with 572 observations, ARIMA without seasonality still has the lowest average prediction 

errors and outperforms ML techniques (Table 3.6).  

In the larger Kentucky sample, LASSO is selected as the best technique to predict 

heifer prices (Tables 3.4 and 3.5). Its average prediction error values are 3.14 and 1.75 for 

RMSE and MAPE, respectively and they are lower than both ARIMA-type models. The 

base ARIMA average prediction error values are 4.35 and 2.60 for RMSE and MAPE, 

respectively. In the original Kentucky samples with 572 observations, base ARIMA has 

the lowest average prediction errors and outperforms ML techniques (Table 3.6). 

Table 3.7 displays the improvement in prediction performance between best 

techniques in small and large sample size. As the sample size increases, the difference 

between the best ARIMA and ML techniques’ prediction performance decreases. While 

base ARIMA model has the best prediction performance in the small sample, the LASSO 

regression is selected as the best technique to predict heifer prices in the larger Kentucky 

sample. These results suggest that as sample size increases, ML techniques become 

preferable over ARIMA-type models (Cerqueira et al., 2019; Sun et al., 2017; Zhu et al., 
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2016).  Model selection results indicate that the base ARIMA models yield the best steer 

cash price forecasts, and the LASSO regression provides the best heifer cash price forecasts 

in Kentucky. The difference in the selected best forecasting techniques for steer and heifer 

prices can be linked to the market structures and mechanisms for price determination. 

While steers are primarily raised for beef production, heifers are commonly raised for both 

rebreeding and beef production purposes, which can add complexity to the market structure 

and mechanism for price determination. Steers typically have a higher feed efficiency than 

heifers and the cost of gain for steers is lower than for heifers, which can increase their 

value in the market (Burdine et al., 2014; Martinez et al., 2021; Parish et al., 2018; Williams 

et al., 2012).   

Table 3.8 presents the forecasting results using longer Kansas dataset and the results 

are consistent when techniques are run with Kansas steer and heifer price samples, 

consisting of 1,124 observations.  

3.5.3.2 Cull Cow Prices 

LASSO is selected as the best technique to predict cull cow prices (Tables 3.4 and 

3.5). The average prediction errors are 3.79 and 4.33 for RMSE and MAPE, respectively 

and they are lower than ARIMA-type modes’ values. ARIMA with seasonality is the best 

ARIMA-type model to predict cull cow prices. Its average prediction error values are 4.58 

and 5.53 for RMSE and MAPE, respectively. The standard deviations are remarkably low 

in ML models compared to ARIMA-type models. ML techniques provide lower prediction 

error variance which results in more precise forecasts with new data. Based on these results, 

the final best technique is decided as LASSO regression for cull cow prices. The 
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improvement in prediction performance between ARIMA with seasonality and LASSO 

techniques is substantial, with a 17.25% reduction in RMSE (Table 3.7). 

Time series and ML models using dependent variables and lagged endogenous 

variables provide a parsimonious forecast strategy, particularly in the presence of data 

availability problems. The high prediction performance of the ML techniques presented in 

the study makes them useful alternative tools for U.S. livestock price forecasting, 

especially for heifer and cull cow prices. These ML techniques offer added flexibility in 

data, providing an advantage over ARIMA models and their added flexibility provides an 

advantage over ARIMA models (Kohzadi et al., 1996). However, the lack of exogenous 

variables such as input prices, trade related variables, and interest rates is a potential 

limitation of the study. Structural models using these variables as explanatory variables 

may improve forecasting accuracy. 

3.6 Conclusion 

This study contributes to the livestock price forecasting literature by comparing 

ARIMA and ML techniques for steer, heifer, and cull cow cash prices in the southern U.S. 

Different ARIMA and ML techniques are employed using price samples that differ by size 

and location. To tune, validate, and evaluate models, a rolling origin CV scheme which 

takes the sequential order of time series into account is used. For ML techniques, a nested 

cross validation algorithm which performs simultaneous cross validation and parameter 

tuning is developed and run. Mean and standard deviation of RMSE and MAPE values are 

compared to decide the best technique. The best models have the lowest average prediction 

error and standard deviation for each price series and sample. 
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The results emphasize the importance of the sample size in determining the 

superiority of ML techniques over standard ARIMA models when forecasting U.S. 

livestock prices. The model selection results show that ML techniques become preferable 

over ARIMA-type techniques in larger samples. Model selection results show that base 

ARIMA models provide the best forecasts for steer prices and the LASSO regression 

provides better forecasts for heifer and cull cow prices in the southern U.S.  

This study’s results suggest that ML techniques should be considered as a price 

forecasting tool for extension specialists and producers to improve their managerial 

decision-making process. Additionally, the CV scheme proposed in the study offers a 

strategy for researchers to validate and compare standard ARIMA-type models with newer 

ML techniques. 
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Tables and Figures for Chapter 3 

Table 3.1 Summary Statistics 

Variables Description Sample Period 
Sample 

Size 

Average 

($/cwt) 

Standard 

Deviation 

KYS 
KY  

Steer Prices 
6/11/1999-12/18/2020 1,124 129.50 44.08 

KYH 
KY  

Heifer Prices 
6/11/1999-12/18/2020 1,124 120.34 40.22 

KYC 

KY  

Cull Cow 

Prices 

2/5/1993-12/19/2020 1,455 52.22 16.77 

dumW1 

dumW2 

… 

Weekly dummy variables (e.g., where dumW1=1 in the first week of each 

year and 0 otherwise) 
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Table 3.2 Unit Root Test Results-ADF (t-Statistic)  

Note: *, **, *** indicate rejection of the null hypothesis at 1%, 5% and 10% levels, respectively.  
       KYS: Kentucky Steer Prices, KYH: Kentucky Heifer Prices, KYC: Kentucky Cull Cow Prices.

 
Levels 
Intercept 
 

Levels 
Intercept and Trend 

1st Difference 
Intercept 
 

1st Difference 
Intercept and Trend Result 

KYS -1.99 -2.35 -6.41* -6.43* I(1) 
KYH -2.06 -2.28 -7.13* -7.15* I(1) 
KYC -2.35 -2.86 -9.467* -9.463* I(1) 
Critical Values 
1% -3.44 -3.97 -3.44 -3.97 

 5% -2.86 -3.41 -2.86 -3.41 
10% -2.57 -3.13 -2.57 -3.13 



 

59 
 

Table 3.3 Unit Root Test Results-KPSS (LM Statistic)  

Note: *, **, *** indicate rejection of the null hypothesis at 1%, 5% and 10% levels, respectively.  
       KYS: Kentucky Steer Prices, KYH: Kentucky Heifer Prices, KYC: Kentucky Cull Cow Prices.

 
Levels 
Intercept 
 

Levels 
Intercept and Trend 

1st Difference 
Intercept 
 

1st Difference 
Intercept and Trend Result 

KYS 2.54* 0.27* 0.12 0.07 I(1) 
KYH 2.29* 0.275* 0.11 0.06 I(1) 
KYC 2.16* 0.285* 0.042 0.041 I(1) 
Critical Values 
1% 0.74 0.216 0.74 0.216 

 5% 0.46 0.146 0.46 0.146 
10% 0.35 0.119 0.35 0.119 
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Table 3.4 ARIMA Performance Evaluation*  
 Model Selection Criteria No Seasonality Seasonality 

Steer Prices 

RMSE 
Mean 3.77 3.81 

Standard Deviation 0.45 0.42 

MAPE 
Mean 1.69 1.71 

Standard Deviation 0.11 0.11 

Heifer Prices 

RMSE 
Mean 4.35 4.37 

Standard Deviation 2.69 2.52 

MAPE 
Mean 2.60 2.63 

Standard Deviation 2.05 1.88 

Cull Cow 
Prices 

RMSE 
Mean 7.07 4.58 

Standard Deviation 3.21 1.38 

MAPE 
Mean 8.88 5.53 

Standard Deviation 5.00 1.82 
*Bold represents the best techniques. 
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Table 3.5 ML Performance Evaluation* 

 Model Selection 
Criteria RIDGE LASSO RF GBM 

Steer Prices 

RMSE 
Mean 5.23 3.91 6.51 4.57 

Standard 
Deviation 0.36 0.42 0.30 0.38 

MAPE 
Mean 2.70 1.86 3.44 2.33 

Standard 
Deviation 0.14 0.13 0.09 0.13 

Heifer 
Prices 

RMSE 
Mean 4.67 3.14 5.91 3.95 

Standard 
Deviation 0.25 0.21 0.20 0.29 

MAPE 
Mean 2.70 1.75 3.65 2.36 

Standard 
Deviation 0.14 0.08 0.10 0.17 

Cull Cow 
Prices 

RMSE 
Mean 4.02 3.79 5.08 4.63 

Standard 
Deviation 0.04 0.11 0.15 0.28 

MAPE 
Mean 5.08 4.33 6.42 5.52 

Standard 
Deviation 0.12 0.06 0.12 0.15 

*Bold represents the best techniques. 
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Table 3.6 Performance Evaluation: Kentucky Samples with n=572* 

 Model Selection 
Criteria 

ARIMA       
No 

Seasonality 

ARIMA 
Seasonality RIDGE LASSO RF GBM 

Steer 
Prices 

RMSE 
Mean 3.06 3.51 4.42 3.83 3.78 3.30 

Standard 
Deviation 0.04 0.12 0.18 0.05 0.07 0.09 

MAPE 
Mean 1.41 1.71 2.12 2.05 1.92 1.65 

Standard 
Deviation 0.02 0.05 0.09 0.07 0.08 0.06 

Heifer 
Prices 

RMSE 
Mean 2.92 3.20 4.11 3.84 4.09 3.20 

Standard 
Deviation 0.06 0.11 0.20 0.06 0.07 0.10 

MAPE 
Mean 1.51 1.79 2.33 2.36 2.58 1.87 

Standard 
Deviation 0.02 0.06 0.12 0.07 0.07 0.10 

*Bold represents the best techniques. 
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Table 3.7 Performance Evaluation: The Improvement in Prediction Performance Between 
the Best ARIMA and ML Models in Small and Large Samples 

  The Best Model ARIMA ML % Reduction in RMSE 

Steer 
Prices 

Large 
Sample-
n=1,124 

RMSE 3.77 3.91 -3.58 

Small 
Sample-
n=572 

RMSE 3.06 3.30 -7.27 

Heifer 
Prices 

Large 
Sample-
n=1,124 

RMSE 4.35 3.14 -27.82 

Small 
Sample-
n=572 

RMSE 2.92 3.20 -8.75 

Cull 
Prices 

Large 
Sample-
n=1,455 

RMSE 4.58 3.79 -17.25 

*Bold represents the best techniques. 
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Table 3.8 Performance Evaluation: Kansas Samples with n=1124* 

 Model Selection 
Criteria 

ARIMA       
No 

Seasonality 

ARIMA 
Seasonality RIDGE LASSO RF GBM 

Steer 
Prices 

RMSE 
Mean 6.46 6.65 6.82 6.58 8.16 6.73 

Standard 
Deviation 0.04 0.11 0.06 0.15 0.17 0.32 

MAPE 
Mean 2.89 3.0348 3.139 3.0351 3.95 3.143 

Standard 
Deviation 0.04 0.09 0.03 0.06 0.12 0.15 

Heifer 
Prices 

RMSE 
Mean 5.72 5.84 6.29 5.40 7.38 5.79 

Standard 
Deviation 0.10 0.14 0.06 0.07 0.22 0.24 

MAPE 
Mean 2.94 3.02 3.30 2.77 3.97 2.97 

Standard 
Deviation 0.09 0.09 0.03 0.03 0.16 0.14 

*Bold represents the best techniques. 
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Figure 3.1a KY and KS Steer Prices 

 

 

Figure 3.1b KY and KS Heifer Prices 
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Original Set 
 

 

      Training Test Left out 
 

      Training Test Left out 
 

      Training Test Left out 
 

 

      

 

 

 

Figure 3.2 Nested Cross Validation Algorithm for ML Models

Training Validation 

Training Validation 

Training Validation 

Outer Loop: 
Train with 

optimal 
parameters 

Inner Loop: Tune 
Parameters and 
Select optimal 

parameters. 
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Initial Training Sample: 864 Fixed Test Sample: 224,  

Shift: 4 weeks, Iteration: 10 
Iterations Training Test Left out 
1       864 224 36 
2          868 224 32 
3          872 224 28 
4          876 224 24 
5         880 224 20 
6         884 224 16 
7         888 224 12 
8          892 224 8 
9           896 224 4 
10              900 224 
 Number of Observations 

Figure 3.3 Cross Validation Scheme: ARIMA Models 
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Initial Training Sample: 864, Fixed Validation Sample: 84, Fixed Test Sample: 224,  

Shift: 4 weeks, Iteration: 10 
 
Iterations Training Validation Test Left out 
1       780 84 224 36 
2                               784 84 224 32 
3 788 84 224 28 
4       792 84 224 24 
5           796 84 224 20 
6               800 84 224 16 
7                   804 84 224 12 
8                       808 84 224 8 
9                           812 84 224 4 
10                               816 84 224 
 Number of Observations 

Figure 3.4 Cross Validation Scheme: ML Models 
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CHAPTER 4. THE COVID-19 SHOCK AND DYNAMICS OF PRICE ADJUSTMENT IN THE U.S. 
BEEF SECTOR 4 

4.1 Introduction 

SARS-CoV-2 which turned into coronavirus disease in 2019 (COVID-19), was 

first detected in December of 2019 in China. The global impact was realized in March 

2020 after the World Health Organization (WHO) announced it as a global pandemic. 

COVID-19 has caused devastating health, social, and economic problems across the world, 

unlike other members of coronaviruses family: severe acute respiratory syndrome-SARS 

and Middle East respiratory syndrome-MERS (National Institute of Allergy and Infectious 

Disease, 2021). The first federal policy response in the U.S. was the declaration of a 

national emergency by President Trump on March 19, 2020. On March 27, 2020, the U.S. 

Senate passed a $2 trillion Coronavirus Aid Relief, and an Economic Security (CARES) 

Act to support hospitals, small businesses, and state and local governments.  

Supply chain disruptions during the COVID-19 pandemic led to unexpected price 

movements in the agricultural markets. The supply chain disruptions in the U.S. beef 

market were first experienced at the beef packing plants and processors due to the spread 

of COVID-19 among the workers. This caused temporarily shutdowns of some plants and 

capacity limitations at some facilities (Balagtas & Cooper, 2021; Bunge, 2020). These 

shutdowns and capacity shortages at the wholesale level resulted in price hikes at the 

wholesale and retail levels, and oversupply, lower prices, and income losses at the farm 

level (Cowley, 2020).  

 
4 This chapter is reproduced from Erol and Saghaian (2022). 
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Figures 4.1 and 4.2 depict the changes in the U.S. beef prices and price spreads. 

Price hikes were observed between March and May 2020 for wholesale prices and between 

March and June 2020 for retail prices (Figure 4.1). The increase was 58.9% in wholesale 

prices and 17.7% in retail prices in May 2020. Although price decreases at farm level 

started before pandemic, it worsened between March-July. The impact on price spreads is 

also worth mentioning. Intra-chain price spreads are the difference between prices at 

different stages and useful tools to measure efficiency and equity of the beef supply chain 

(Pouliot & Shulz, 2016). Wholesale-farm price spread started at 98 cents in May 2020, and 

jumped to 389 cents. Although it decreased to 97 cents after two months, it remained above 

the average value of the period January 2016-April 2021 (Figure 4.2). The opposite 

movements in the retail-wholesale price spreads were observed. Retail-farm and retail-

wholesale price spreads stayed above their averages after the initial pandemic effect. 

In this study, the type, magnitude, and speeds of price adjustments of the COVID-

19 shock along the beef marketing channel are investigated with different econometric 

methods. A vector error correction (VEC) model with structural breaks and historical 

decomposition graphs is used to investigate the impact of the COVID-19 pandemic shock 

on the short-run dynamics and speeds of price adjustment along the U.S. beef marketing 

channel to examine how the pandemic affected the adjustment patterns along the beef 

supply channel. In addition, the long-run relationships among the farm, wholesale, and 

retail beef prices are analyzed. The long-run convergence of the price series could point to 

market efficiency and integration of the beef marketing channel. Price adjustment along 

the farm, wholesale, and retail levels, and its impact on the economic agents across the 

beef marketing channel determine market structure and market efficiency of the U.S. beef 
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market. The historical decomposition graphs provide the dynamic effects of the impact of 

the COVID-19 pandemic on the price series in a neighborhood of the event.  

Although there is an extensive literature on price transmission in the U.S. beef 

markets, the number of the studies focusing on the impact of the COVID-19 pandemic on 

the adjustment processes is limited. Since the process is dynamic, analyzing the impact of 

external shocks such as COVID-19 would also contribute to the understanding of price 

discovery in the U.S. beef market. An understanding of price relations along the U.S. beef 

supply chain provides vital information for the beef market structure, producers’ welfare 

as well as public policy.  

The results of this study indicate asymmetric price adjustment in the U.S. beef 

supply channels, both in speed and magnitude. The empirical results show that U.S. beef 

markets return to their pre-shock patterns in 4 to 6 months. The results also reveal that the 

impact of the COVID-19 shock is uneven across the beef supply chain with farmers 

bearing most of the burden of the shock. The historical decomposition graphs demonstrate 

retailers and wholesalers having higher prices, while farmers receiving lower prices than 

their predicted values during the COVID-19 pandemic.  

4.2 Literature Review 

There is an extensive literature on the impact of the COVID-19 shock and policy 

responses in the agriculture sector, the U.S. and world economies (e.g., Baldwin & di 

Mauro, 2020; Bairoliya & İmrohoroğlu, 2020; Laborde et al., 2021; Beckman & 

Countryman, 2021). The state of agricultural food markets and supply chains under the 

COVID-19 pandemic are evaluated mostly with respect to demand shocks and supply 

channel disruptions. The immediate impacts are mostly tied to price changes, hoarding and 
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changes in the consumer behavior, decreases in incomes and job losses, food shortages, 

and increased uncertainty and recession risks under the pandemic conditions (Poudel et 

al., 2020; Swinnen & Vos, 2021). Although these impacts differed across countries and 

regions, lockdown policies, labor shortages, farm-level productivity reductions, and 

international trade restrictions under COVID-19 disrupted supply chains across countries 

and regions (Barman et al., 2021; Laborde et al., 2021; Swinnen & Vos, 2021; Van 

Hoyweghen et al., 2021). 

Siche (2020) stated that high-value products like meat and perishables have had 

more significant price spikes. Mead et al. (2020) evaluated price movements during the 

March-June 2020 period and confirmed that meat products had large price increases during 

the pandemic. Balagtas and Cooper (2021) discussed the impacts on the U.S. meat markets 

in terms of both domestic and international dynamics and pointed out that global trade 

restrictions put a downward pressure on the prices, and private precautions with mandated 

shutdowns altered demand structure in favor of food at home.  

There are also many vertical price transmission studies in the literature. The 

primary goal in the vertical price transmission literature is to identify the response of 

market participants at different stages of the supply chain to price and policy changes. 

Whether the shocks are passed asymmetrically with unequal magnitude and speed 

throughout the supply chain tells a great amount about the efficiency and equity of the beef 

supply chain. In an efficient market, price transmission is complete, and the value created 

in the supply chain is distributed equally among market participants. To explain these 

issues, these studies have applied different econometric techniques with different data 

frequencies for upstream and downstream stages of supply chains of various products for 
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different countries. Meyer and Von Cramon-Taubadel (2004), Vavra and Goodwin (2005), 

and Lloyd (2017) provide a detailed review on the literature in agri-food markets.   

The results of these studies depend on the models and data used in these studies, 

and the effects of COVID-19 in the U.S. beef markets remain unclear with mixed 

conclusions. The assumptions related to the type of adjustment i.e., whether it is symmetric 

or asymmetric, direction of price transmission, long run model specification, possible 

structural breaks, impact of exogenous shocks, and varying data types are the main 

differences among these studies. Most of these studies have investigated asymmetries with 

linear and nonlinear models such as VEC and threshold vector error correction (TVEC), 

threshold autoregressive (TAR), momentum threshold autoregressive (MTAR), and 

nonlinear autoregressive distributed lag (NARDL) models. 

Using TVEC model with weekly data for the period January 1981-March 1998, 

Goodwin and Holt (1999) found a unidirectional causal relation from farm to wholesale to 

retail level and concluded that adjustment was symmetric, which implies an efficient 

market structure in the U.S. beef market. Paying a special attention to the data type, Rojas, 

Andino, and Purcell (2008) used Bureau of Labor Statistics (BLS) and scanner data for 

retail level prices in a unidirectional relation in a VEC model. Based on the model 

coefficients and impulse response functions, they found a symmetric adjustment between 

retail and wholesale prices for both BLS and scanner data and stated that there is a quicker 

adjustment with larger magnitude in scanner prices to wholesale price changes comparing 

to BLS data. The relatively short sample size of 56 observations and a questionable 

representation power of their scanner data are counted as two drawbacks of the study.   
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Boetel and Liu (2010) contributed to the literature with structural breaks in a long 

run cointegration relation among the price series. They investigated possible structural 

breaks in a unidirectional long-run relation from farm to wholesale to retail level for beef 

and pork prices endogenously and used these structural breaks in a form of structural 

dummies in an asymmetric VEC model to test for asymmetry in price transmission in 

monthly price data from January 1970 to February 2008. Their results indicated an 

asymmetrical speed of adjustment and a bidirectional relation for the price series. 

Surathkal et al. (2014) employed TAR and MTAR models for monthly wholesale and retail 

prices and augmented their models for product cuts and quality grade differences. Their 

results showed significant asymmetries with different effects of decrease or increase in the 

wholesale prices on retail prices and confirmed the variation with quality grades.  

Emmanouilides and Fousekis (2015) applied a copula-based modelling to test the 

degree of price dependency between monthly farm and wholesale, and wholesale and retail 

price data for the period from January 2000 to June 2013. They detected strong positive 

asymmetric price transmission between farm and wholesale prices and pointed out market 

power and efficiency concerns in the U.S. beef markets. Fousekis, Katrakilidis, and 

Trachanas (2016) used a NARDL model to farm-wholesale and wholesale-retail prices 

with monthly data from January 1990 to January 2014. They concluded the existence of 

asymmetry in magnitude for the farm-wholesale price transmission and the presence of 

asymmetry both in speed and magnitude for the wholesale-retail price transmission. Their 

results implied an advantage for wholesalers over farmers and for retailers over 

wholesalers.  
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Pozo, Bachmeier, and Schroeder (2021) focused on the importance of the data type 

in the price transmission studies, using BLS and scanner datasets with both weekly and 

monthly frequencies for retail level prices. The authors used a TVEC model with a 

unidirectional relation from farm to wholesale to retail levels. They concluded that 

symmetry existed in scanner data, implying efficiency of U.S. beef markets, but detected 

asymmetry in the BLS data. 

Although there is a vast literature testing price transmission asymmetry in the 

vertical chain of U.S. beef markets, number of studies which investigate these dynamics 

under external shocks is limited. Livanis and Moss (2005) and Saghaian (2007) 

investigated the impact of food safety scares on price spreads and adjustments in the U.S. 

beef markets. Using monthly farm, wholesale, and retail price data, Livanis and Moss 

(2005) employed impulse response functions analysis based on a symmetric VEC model 

specification with structural break dummies for farm and wholesale prices and an impulse 

dummy for Food Safety Index. They used the index as a proxy variable for the impact of 

mad cow disease on consumer behavior in beef purchasing. Their analysis concluded that 

each of these prices has a different response to a shock from the food safety index. They 

stated that retail prices are less responsive, while farm and wholesale prices are more 

responsive with a longer recovery period. 

Saghaian (2007) investigated the case of Bovine Spongiform Encephalopathy 

(BSE) discovery in the U.S. beef sector and applied symmetric VEC model with weekly 

farm, wholesale, and retail price series. The study found a bidirectional transmission with 

asymmetric adjustment in both speed and magnitude among different stages. The study 

also performed historical decomposition analysis to measure the impact of the shock. The 
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results manifested a differential impact of the shock, which increased price margins, 

particularly at the retail price level. The outcomes of the study emphasized concerns about 

the efficiency of the U.S. beef markets.  

Darbandi and Saghaian (2016) estimated the impact of Great Recession with a 

symmetric VEC model and historical decomposition analysis for monthly price series for 

three stages of the beef supply chain. They found evidence of asymmetric price adjustment 

in both speed and magnitude, indicating the inefficiency of the beef supply chain. 

Furthermore, their historical decomposition results demonstrated a positive impact of the 

Great Recession with significant difference across the stages.  

Ramsey et al. (2021) estimated both linear and threshold models with weekly data 

ending in July 2020 for pair of wholesale-retail price transmission, and analyzed the 

dynamic relations in chicken, beef, and pork markets along with the impact of COVID-19, 

using an event study. They concluded that while retail and wholesale prices have different 

speeds of adjustment, the immediate shock of COVID-19 is transitory and U.S. beef 

markets are well functioning, with prices returning to their predicted levels quickly. 

In this study, the dynamic price relations in the U.S. beef supply chain are 

examined in a symmetric VEC model and a historical decomposition analysis is applied 

to measure the impact of COVID-19 pandemic on the price adjustment process. The 

study’s contribution to the current literature is twofold: the methodology used accounts for 

endogenous structural breaks in the long-run cointegration relations of price series for the 

period from January 1970 to April 2021, and it estimates the impact of COVID-19 on all 

the stages of the beef supply chain, including the recent periods. 
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4.3 Methods and Data 

The empirical VEC model is specified in equation 4.1:  

∆𝑃𝑃𝑡𝑡 =  𝛼𝛼0 + ∑ 𝛤𝛤𝑖𝑖∆𝑃𝑃𝑡𝑡−1𝑘𝑘−1
𝑖𝑖=1 + 𝛱𝛱𝑃𝑃𝑡𝑡−1 + ∑ 𝛾𝛾𝑗𝑗𝑀𝑀𝑗𝑗 + ∑ 𝜆𝜆𝑙𝑙𝐷𝐷𝑙𝑙4

𝑙𝑙=1 +12
𝑗𝑗=2 𝜀𝜀𝑡𝑡            (4.1) 

Where 𝑃𝑃𝑡𝑡  is a p-element vector of observations on three endogenous price variables in the 

system at time t, 𝛼𝛼0 is a vector of intercept terms, 𝛤𝛤𝑖𝑖∆𝑃𝑃𝑡𝑡−1 term accounts for the short-run 

relationships among the price series, and 𝛱𝛱 matrix contains the long-run cointegration 

relationship. 𝑃𝑃 is a 3×1 vector since there are three price series. 𝑀𝑀𝑗𝑗  is seasonal dummy 

variables which are used to gauge more accurate pattern in predictions in historical 

decompositions and 𝐷𝐷𝑙𝑙  is structural dummy variables. 𝜀𝜀𝑡𝑡 is the error term with zero mean 

and non-diagonal covariance matrix.   

VEC is a vector autoregressive (VAR) model in the first difference form that is 

suitable to estimate the relationship between non stationary-I(1) series which are 

stationary-I(0) after first differenced if their linear combination is I(0) (Engle & Granger, 

1987). That means they are cointegrated and deviations from equilibrium are stationary. 

These conditions allow us to use an error correction specification to model their relation. 

The Johansen (1991) procedure is applied to test for the existence of cointegration and 

model estimation.  

Herein, the traditional Augmented Dickey Fuller (ADF) and the Kwiatkowski, 

Phillips, Schmidt, and Shin (KPSS) tests are employed to check the stationarity of series. 

The rejection of the null hypothesis in ADF test means that the series is stationary, and the 

mean and variance are stable over time (Dickey & Fuller, 1979). The KPSS test, which 

has a null hypothesis of stationary is performed since the inclusion of a trend term may 

reduce the power of the ADF test (Kwiatkowski et al., 1992; Özertan et al., 2014). As these 
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tests do not account for structural breaks in time series, and results may fail due to 

structural breaks in the series, the Zivot-Andrews test which allows for endogenous 

structural breaks is used to avoid the impact of structural breaks on unit root tests (Zivot 

& Andrews, 1992). The rejection of the null hypothesis means that the series is stationary 

under a structural break.  

To have a proper model specification in the VEC model under the existence of 

structural breaks, structural breaks are checked in the long run equilibrium relationship 

specified in equation 4.2 which follows a direction from farm prices to wholesale and retail 

prices based on pairwise causality tests.  

𝑅𝑅𝑡𝑡 =  𝛽𝛽0 +  𝛽𝛽1 ∗ 𝑊𝑊𝑡𝑡 + 𝛽𝛽2 ∗ 𝐹𝐹𝑡𝑡 + 𝑣𝑣𝑡𝑡                                                (4.2) 

Here 𝑅𝑅𝑡𝑡, 𝑊𝑊𝑡𝑡, and 𝐹𝐹𝑡𝑡 denotes retail, wholesale, and farm prices, respectively. Bai (1997) is 

used to detect multiple unknown structural breaks in the long run equation. The process is 

as follows; the algorithm starts from the whole sample and performs a test which has a null 

hypothesis of constant parameters. If the null hypothesis is rejected, then it divides the 

sample into two subsamples at a break point. The algorithm applies the test to both 

subsamples, and it estimates another break in case of rejection of the null hypothesis. The 

process ends when subsamples do not reject the null hypothesis.  

Structural breaks are modelled in VEC specification with different methods in the 

literature. After detecting structural points in the series with Zivot-Andrews and Clemente-

Monates-Reyes unit root tests with thresholds, Pala (2013) divides the full sample into two 

subsamples at the break points and estimate two separate VEC models to account for the 

impact of the structural breaks on the cointegration relationship between crude oil and food 

prices. Özertan, Saghaian, and Tekgüç (2014) and Livanis and Moss (2005) construct 
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structural dummies for individual series and specify their models with dummy variables. 

Following Boetel and Liu (2010), structural dummies for the break points are detected in 

the long run equation and the VEC system is specified accordingly.  

Finally, historical decomposition graphs are used to measure the impact of the 

COVID-19 pandemic. The historical decomposition function tracks the evolution of beef 

prices through the system and breaks down the price series into historical shocks in each 

series to determine their responses in a neighborhood (time interval) of the event (Chopra 

& Bessler, 2005). This method specified in equation 4.3, decomposes each price series to 

determine the impact of the shock on prices in a neighborhood of the event:  

Pt+j = ∑ 𝜓𝜓𝑠𝑠𝑈𝑈𝑡𝑡+𝑗𝑗−𝑠𝑠
j−1
s=0 + �𝑋𝑋𝑡𝑡+𝑗𝑗𝛽𝛽 + ∑ 𝜓𝜓𝑠𝑠𝑈𝑈𝑡𝑡+𝑗𝑗−𝑠𝑠∞

s=𝑗𝑗 �                                  (4.3) 

Where Pt+j is a multivariate stochastic process, 𝑈𝑈 is its multivariate noise process, 𝑋𝑋 is the 

deterministic part of Pt+j, and s is a counter for the number of time periods (Regression 

Analysis of Time Series, 2010). The first part of equation 4.3 represents the part of Pt+j 

that is due to the shock, and the second part is the forecast of price series based on the 

information available at time t, the date of the event (Saghaian, 2007). 

In historical decomposition graphs, each series in the representative VEC model 

are partitioned into two parts: one is due to innovations that drive the joint behavior of beef 

prices for period 𝑡𝑡1 to 𝑡𝑡𝑗𝑗, the horizon of interest, and the other is the forecast of price series 

based on information available at time t, the date of the COVID-19 pandemic event. This 

latter forecast of prices reflects how prices would have evolved if there had been no 

COVID-19 shock. It traces the response of forecasted prices to the beef price innovations 

in the absence of a shock as well as actual values in the presence of the shock. Hence, the 

historical decomposition equation estimates the percentage deviation in the actual prices 
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explained by the shocks compared with the forecasted prices. A potential limitation of this 

method is that the effect of other shocks on beef prices during the COVID-19 pandemic is 

ignored or assumed to be accounted for in the estimated models. Due to the substantial 

impacts of the pandemic given in the study and the period selected in historical 

decomposition analysis, the method is still a useful tool which enables evaluation of the 

impact of the pandemic on the markets and provides insights to the dynamics of markets 

during the pandemic. 

The dataset used in this study covers monthly farm, wholesale, and retail price data 

from January 1970 to April 2021. The price data is obtained from USDA, Economic 

Research Service. Table 4.1 provides summary statistics for both level and logarithm form 

of data. All prices are related to Choice grade and in cents per pound. Economic Research 

Service calculates retail value as a weighted average of retail meat cuts and wholesale 

value as the value of the meat when it leaves the packing plants. The farm value represents 

the value of the meat to the farmers, and it is equal to the difference between the value of 

the cattle and by products. Natural logarithm of prices is used in empirical analysis.   

4.4 Estimation Results and Discussion 

4.4.1 Unit Root Tests 

Unit root test results are presented in tables 4.2 and 4.3. Two specifications of the 

trend function are used in all tests. One includes only the intercept term, while the other 

one has both intercept and trend terms. The results show that retail prices are stationary 

after taking the first difference. Although ADF results state that wholesale prices are 

stationary with trend, KPSS test concludes that the series is stationary after first difference. 
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The KPSS test concludes that farm prices are stationary with trend. The results of the Zivot-

Andrews test show that all series are stationary at the first difference. All series have break 

points in June 1993, when tested at levels with only the intercept term. The test results 

confirm the existence of structural breaks in the individual series and suggest that model 

specifications incorporating structural breaks would yield better results compared to 

models that do not account for the breaks. 

4.4.2 Structural Breaks in the Long-run Cointegration 

The results of pairwise Granger causality tests confirm a unidirectional price 

transmission in the U.S. beef supply chain and the direction of causality is from upstream 

to downstream (Table 4.4). These results state that retail markets are responsive to the 

shocks at farm and wholesale levels.  

The structural break test applied to the long run equilibrium relationship specified 

in equation 4.2, detects four structural breaks (Table 4.5). Heteroscedasticity and 

autocorrelation consistent covariance matrix tests were used in the estimation of the 

equation for a maximum of 5 breaks with a 15% trimming rate. The null hypothesis in the 

test checks the significance of l break points against l+1 break points, and critical values 

are obtained from Bai and Perron (2003). As shown in Table 4.5, the four estimated 

structural break dates are November 1980, July 1993, May 2001, and September 2013. 

Boetel and Liu (2010) also detected similar dates with lagged specification in the 

long-run equation. They used different datasets for farm level prices, and lagged variable 

of farm prices in their specification and their period ended in February 2008; hence the 

year of breaks are similar. They argued that 1978 energy prices in 1981 break, the trade 

regime changes in the U.S. exports in 1993, and the impact of Atkins diet phenomenon on 
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the beef industry in 2001 could be the reasons for the breaks. The study herein similarly 

relies on their reasoning for the break points. The break in 2013 might be related to the 

herd contraction that started in 2010 and worsened all through 2013 because of unfavorable 

dry conditions. These break dates divide the sample into 5 different regimes. Structural 

dummies are constructed for these regimes in the VEC model specification. Each dummy 

takes value of 1 from its starting period until the beginning of the other break, and 0 for 

the other periods. For the model in this study, dummies are specified only to allow intercept 

shifts because price series are nonstationary. 

4.4.3 The Johansen Cointegration Test and VEC Model Estimation 

This study follows the Johansen (1991) testing procedures to specify a 

cointegration model including intercept and slope coefficient consistent with the 

underlying data generation process. Test results are provided in Table 4.6. At the 5%level 

of significance for the trace test, the null hypotheses that rank is equal to 0 and 1 is rejected. 

However, there is a failure to reject the null hypothesis that the cointegrating rank of the 

system is at most two at the 5% level. These results confirm that there are two long-run 

equilibrium relationships between the series. The cointegration relation assures that there 

is a long-run relationship among the series. Hence, the model can empirically address the 

recovery of the deviation from long run equilibrium with the speed of adjustment. 

The optimal lag length for the VEC model is selected as one based on the 

underlying VAR model and Bayesian information criteria. The Durbin-Watson bounds 

test confirms that there is no evidence of the first-order autocorrelation at the 5% level of 

significance. The stability of the model is also checked with characteristic roots and ensure 

that they have modulus less than one and lie inside the unit circle. Model results are 
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provided in Table 4.7. The R2 values indicate that between 17% and 38% of the variation 

in the price series are explained by the models. The speeds of adjustment for all series are 

statistically significant. 

The speed of adjustment for the wholesale prices is much higher (0.21), in absolute 

value, than both farm prices (0.074) and retail prices (0.021). This is an indication of 

asymmetric price transmission with respect to speed among the different stages of the U.S. 

beef supply chain. The result shows that following the COVID-19 shock, wholesale prices 

adjusted more quickly than both farm (threefold) and retail prices (tenfold). This suggests 

that wholesale prices were more flexible than retail and farm prices to restore to the long 

run equilibrium with the COVID-19 shock. This result is consistent with the results of 

Saghaian (2007) and Darbandi and Saghaian (2016), who used a similar methodology. 

However, it rejects the conclusion of Goodwin and Holt (1999) whose results showed a 

symmetric adjustment. Ramsey et al. (2021) also found an asymmetric relation between 

retail and wholesale prices, but the speed of adjustment for retail prices was larger, having 

a higher speed of adjustment compared to the wholesale prices using weekly data.  

The economic literature accounts for a variety of reasons for the asymmetric 

adjustment in the U.S. beef markets. Balagtas and Cooper (2021) discussed the market 

power exercised by meatpackers during the COVID-19 pandemic and concluded that 

meatpackers took advantage of their market power to increase price margins. In addition 

to the market power, product heterogeneity, long-term contracts, and adjustments or menu 

costs are other reasons stated for the existence of asymmetric price adjustment along the 

U.S. beef supply chain (Goodwin & Holt, 1999; Saghaian, 2007; Zachariasse & Bunte, 

2003).  
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4.4.4 Historical Decomposition Graphs 

The empirical results show that there is asymmetric adjustment in speeds of prices 

in the U.S. beef supply chain. To measure the magnitude of price adjustment, historical 

decomposition graphs are employed. These graphs show the short-run dynamic effects of 

the COVID-19 shock on the prices in the neighborhood of the event, i.e., the COVID-19 

shock. Figures 4.3a-c provide the historical decomposition graphs of the price series for 

15 months of the forecast horizon. Herein, it is assumed that the initial impact of COVID-

19 on the prices started in March 2020, when the official policy responses and decisions 

took stage. Before April 2020, the actual and predicted data show almost the same patterns. 

However, significant differences between actual and predicted prices start to emerge after 

that period.  

The historical decomposition graphs of predicted prices show positive changes for 

the retail and wholesale prices, but a negative impact for the farm level prices. Actual retail 

and wholesale prices rose above their predicted values and actual farm prices fell below 

their predicted values following COVID-19 shocks. The historical decomposition graph 

of the wholesale prices, that includes the impact of the shock, presents a wide departure of 

actual prices occurring immediately in April 2020 and continuing until July 2020. The 

maximum deviation from the predicted value is almost 10% in May 2020. The wholesale 

prices approach their predicted levels after 4 months.  

The historical decomposition graph of the retail prices also shows a positive change 

with divergence of actual prices starting in April 2020 and continuing until August 2020. 

The maximum deviation from predicted value is almost 3% in May 2020. The adjustment 

process of actual prices takes about 6 months to converge to the predicted price values. 
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However, actual prices stay slightly above the predicted values after 6 months. These 

results, consistent with the results for speeds of adjustment, indicate a differential impact 

of COVID-19 on wholesalers and retailers.  

More severe differential impact is observed when analyzing the historical 

decomposition graph for the farm prices. As mentioned earlier, farm prices likely fell due 

to the COVID-19 shock. The negative divergence of actual prices starts in April 2020 and 

ends by July 2020. The maximum deviation from predicted value is almost -4% in July 

2020. These results imply that in the short run, an exogenous COVID-19 shock on the U.S. 

beef sector impacted cattle producers negatively, while it positively affected packers and 

retailers. Although the initial time of the shock is similar at all stages, its impact was felt 

at different periods across the series. The magnitudes of price effects are substantially 

different for the price series, resulting in widening the producer-retail price spreads.  

The results confirm an asymmetry in the magnitude in the U.S. beef prices. The 

outcomes of the event study in Ramsey et al. (2021) also find similar results for retail and 

wholesale prices and they cite the supply shortage during the pandemic as a reason for 

price spikes during April and May 2020 as stated early. They define these shocks as 

transitory and point out that the transition period is 1 to 3 months; results of the study 

herein found 4 to 6 months. Although some minor differences between actual and 

predicted prices that imply price stickiness and incomplete price transmission after the 

shock period for some of the price levels can be experienced, it can be said that U.S. beef 

markets are resilient enough to absorb the shocks and return to their pre-shock patterns in 

4 to 6 months. Another point is that farmers are the only and most adversely impacted 

economic actors in the U.S. beef supply chain during the COVID-19 shock. This outcome 



 

86 
 

rationalizes the base for policy makers to prioritize farmers in support policies during 

similar crises such as COVID-19.  

4.5 Conclusion 

The U.S. beef industry has drawn a considerable amount of attention from research 

institutions and academia. Apart from its size and economic impact, the structural changes 

in the production and market efficiency, alongside the federal and state level supports, add 

to the importance of the price discovery and price adjustments in the beef sector.  

This study proposes a methodology to investigate how COVID-19 shock impacted 

the U.S. beef supply chain and examines whether dynamic price relations among retailer, 

wholesaler, and farmers changed during this historical shock. Contemporary time-series 

techniques are employed in a VEC methodology augmented with structural breaks to 

measure the speeds of price adjustments, and historical decomposition graphs to estimate 

the magnitude of the adjustments across the supply chain with monthly prices for the 

period from January 1970 to April 2021. The assumed actual shock period started in March 

2020 after the spread of COVID-19 and initiation of related policy reactions in the U.S.  

The empirical results provide several implications to contribute to the current 

literature and construct a base for strategic agribusiness reactions for similar crises. First, 

in this study, the capability of markets to recover after a shock like COVID-19 is evaluated. 

Results suggest that the U.S. beef markets are resilient enough to absorb the shocks and 

return to their pre-shock patterns in 4 to 6 months. To obtain more accurate results, 

structural breaks are incorporated in the model estimating the dynamic price relations in 

the U.S. beef markets. Model results show that the direction of price relationships is from 

farmers to wholesalers, to retailers in this study’s dataset. Furthermore, the VEC model 
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results indicate that there is an asymmetry in the speeds of price adjustments during the 

COVID-19 shock. The wholesale prices adjusted more quickly than farm (threefold) and 

retail prices (tenfold). That suggests higher flexibility of wholesale prices compared to the 

retail and farm prices when prices restore to the long run equilibrium. These results have 

welfare and policy implications for the U.S. beef industry.  

In addition, historical decomposition graphs show the existence of asymmetry in 

the magnitude of the price adjustments. This is consistent with the differential speeds of 

adjustments discovered. The impact causes retail and wholesale prices to be higher than 

their predicted values.  That is, price spreads are widened due to the COVID-19 shock in 

favor of wholesalers and retailers. Hence, the shock has adversely affected the consumers 

in the U.S. beef marketing chain.  

Meanwhile farm prices are lower than their predicted values due to the COVID-19 

shock. That has an important agribusiness implication for the farmers in the U.S. beef 

supply chain. This study concludes that beef producers’ incomes are highly adversely 

impacted because of the shock and should be prioritized by policy makers during similar 

crises like COVID-19.  
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Tables and Figures for Chapter 4 

Table 4.1 Summary Statistics 
Level Retail Wholesale Farm 
 Mean  330.00  198.48  166.95 

 Median  283.85  176.00  150.85 
 Maximum  758.51  638.56  367.02 
 Minimum  98.00  71.50  58.80 
 Std. Dev.  152.98  78.10  63.25 

 Observations  616  616  616 
Log Retail Wholesale Farm 

 Mean  5.69 5.22 5.05 
 Median  5.65 5.17 5.02 

 Maximum  6.63 6.46 5.91 
 Minimum  4.58 4.26 4.07 
 Std. Dev.  0.49 0.39 0.38 

 Observations  616  616  616 
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Table 4.2 ADF and KPSS Test Results 

Note: Critical values are -3.44, -2.86, and -2.57 for levels and intercept and -3.97, -3.41, and -3.13 for levels, 
intercept, and trend respectively at 1%, 5% and 10% for ADF. Critical values are 0.74, 0.46, and 0.35 for 
levels and intercept and 0.22, 0.15, and 0.12 for levels, intercept, and trend respectively at 1%, 5% and 10% 
for KPSS.  *, **, *** indicate rejection of the null hypothesis at 1%, 5% and 10% levels, respectively. 

ADF 

t-statistic 

(BIC lag) 

Levels 
 Intercept 

Levels 

Intercept 

and Trend 

1st Difference 
Intercept 

1st Difference 

Intercept and 

Trend 

Result 

Retail -1.30 (2) -3.01 (2) -17.73* (1) -17.74* (1) I(1) 

Wholesale -1.45 (4) -3.40*** 
(4) -16.43* (3) -16.42* (3) I(0) 

Farm -1.99 (4) -3.24*** 
(4) -16.24* (3) -16.25* (3) I(0) 

KPSS 

t-statistic 
Levels/Intercept 

Levels 
Intercept 

and Trend 

1st Difference 
Intercept 

1st Difference 
Intercept and 

Trend 
Result 

Retail 3.11* 0.25* 0.14 0.08 I(1) 
Wholesale 2.87* 0.26* 0.104 0.103 I(1) 
Farm 2.74* 0.214 0.12 0.07 I(0) 
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Table 4.3 Zivot-Andrews Unit Root Test Allowing for One Structural Break 

Note: * indicates rejection of the null hypothesis at 5%.  Critical values are -4.80 and -5.08 for intercept and 
intercept and trend, respectively. 

t-statistic  

(BIC lag)- 

Break 

Point 

Levels/ 
Intercept 

Levels/ 

Intercept 

and Trend 

1st 

Difference/  
Intercept 
 

1st 

Difference / 

Intercept 

and Trend 

Result 

Intercept 

Intercept 

and 

Trend 

Retail -3.83 (2) 
1993m6 

-3.96 (2) 
1982m7 

-17.98* 
(1) 

1979m6 

-18.07* 
(1) 

1979m6 
I(1) I(1) 

Wholesale -4.76 (4) 
1993m6 

-4.70 (4) 
1993m6 

-16.55* 
(3) 

1979m6 

-16.57* 
(3) 

1979m6 
I(1) I(1) 

Farm -4.27 (4) 
1993m6 

-4.18 (4) 
1993m6 

-16.37* 
(3) 

1999m1 

-16.42* 
(3) 

2015m6 
I(1) I(1) 
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Table 4.4 Granger Causality Test Results   
Null hypothesis F-Statistic 

Farm price does not Granger cause wholesale price 19.84* 

Wholesale price does not Granger cause farm price 1.43 

Wholesale price does not Granger cause retail price 82.08* 

Retail price does not Granger cause wholesale price 17.20* 

Farm price does not Granger cause retail price 76.55* 

Retail price does not Granger cause farm price 23.19* 

Note: *1% significance level.
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Table 4.5 L+1 vs. L Sequentially Determined Breaks 

Break Test F-statistics Critical 
Value** 

Number of 
Breaks Dates 

0 vs. 1* 36.92 13.98 1 1980M11 

1 vs. 2* 29.56 15.72 2 1993M07 

2 vs. 3* 21.86 16.83 3 2001M05 

3 vs. 4* 19.52 17.61 4 2013M09 

4 vs. 5 0.00 18.14 4  

Note: * indicates rejection of the null hypothesis at 5%.  ** Bai-Perron (2003) critical values 
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Table 4.6 Johansen Cointegration Test Results 

Null Hypothesisa 
Trace 

statistics 

5% 

Critical value 
Eigenvalue 

r= 0* 146.12 21.13 0.00 

r ≤ 1* 39.14 14.26 0.00 

r ≤ 2 0.48 3.84    0.49 

Note: a: r is the cointegrating rank, *rejection of the null hypothesis at the 5% level. 
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Table 4.7 The Empirical Estimates of Speeds of Adjustment and Diagnostics 
Variable ∆𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∆𝑃𝑃𝑤𝑤ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∆𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

Speeds of adjustment -0.021** 0.206* 0.074* 

Model diagnostics    

R2 0.38 0.23 0.17 

AIC -5.37 -3.25 -3.47 

SIC -5.23 -3.10 -3.33 

Note: *1% and **5% significance level. 
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Figure 4.1 U.S. Beef Prices (Cents per Pound) 
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Figure 4.2 U.S. Beef Price Spreads (Cents per Pound - Averages of 2016-2021M04) 
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Figure 4.3a Retail Prices 

 

 
Figure 4.3b Wholesale Prices 

 
Figure 4.3c Farm Prices 
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CHAPTER 5. CONCLUSION 

This dissertation employs various quantitative methods to address potential 

challenges in the U.S. beef supply chain and provides empirical results with useful 

implications and tools for researchers, extension specialists, and stakeholders.  

Chapter 2 evaluates optimal culling decision strategies in cow-calf operations in the 

U.S with a novel dynamic linear programming model. It estimates a base model and runs 

several experiments with a set of assumptions related to production and replacement heifer 

costs, cow fertility, calf weights, prices, and pregnancy check use. The empirical analysis 

is performed with the data obtained for a spring calving herd in Kentucky. The results 

indicate that producers should cull all cows that are older than age 10 considering their 

productivity, production costs, and product prices in the base model. The model suggests 

culling open cows earlier (at age 7) given their productivity status and probabilities. The 

sensitivity analysis presents a range of optimal decisions that vary with respect to market 

conditions, cost structure, cow fertility, calf weights, and pregnancy check use. While the 

change in cow-calf prices considerably affects net return values among the conducted 

experiments, the cost sensitivity analysis which involves altering bred heifer replacement 

value, has the most substantial impact on both net return and herd age decomposition. The 

pregnancy checking experiment results led to an increase in the net return above selected 

costs and suggest that producer should only retain open cows that are 4-year-old and 

younger and tested as pregnant. 

Chapter 3 proposes a model selection framework which compares traditional time 

series techniques and machine learning algorithms to provide one-week-ahead steer, 

heifer, and cull cow cash price forecasts in the southern U.S. The study uses weekly 
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Kentucky cattle auction prices with lagged variables and dummy variables for weekly 

seasonal structure. The empirical results of this essay reveal that ARIMA models without 

seasonality provide the best forecasts for steer prices and the LASSO regression is the best 

technique to forecast heifer and cull cow prices. The model selection results point to the 

superiority of machine learning techniques over standard ARIMA models when 

forecasting U.S. livestock prices in larger samples and suggest that machine learning 

techniques should be considered as an alternative forecasting tool for extension specialists 

and producers.  

Chapter 4 examines the price dynamics along the U.S. beef supply chain and 

estimates the impact of COVID-19 on the dynamics of vertical price transmission in the 

U.S. beef industry using monthly farm, wholesale, and retail prices for the period from 

1970 to 2021. The empirical results of this essay provide several implications that 

contribute to the current literature. The findings indicate that the impact of COVID-19 has 

been uneven across the beef marketing channel with farmers bearing the burden of the 

shock. The results also emphasize that in the case of the COVID-19 shock, wholesale 

prices adjusted more quickly than both farm (threefold) and retail prices (tenfold). 

Historical decomposition graphs reveal that the COVID-19 pandemic led to higher prices 

for retailers and wholesalers, while farmers received lower prices than their predicted 

values. Therefore, farmers in the U.S. beef supply chain were adversely affected by the 

COVID-19 pandemic. The results point out that the U.S. beef markets were resilient 

enough to absorb the shocks and return to their pre-shock patterns in 4 to 6 months.  
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APPENDIX: DATA INTERPOLATION PROCESS (CHAPTER 3) 

Missing Data  

Missing data statistics are given in Table A.1. The Kalman filter function in R 

package imputeTS is used to generate missing observations. The selected Kalman filter 

function fits a state space model on time series and estimates value of missing observation 

based on available observations before and after the missing value, and it produces good 

results for time series with strong seasonality and trend (Moritz & Bartz-Beielstein, 2017).  

KY Price Predictions for the Period 1999-2010 

VAR causality tests and Structural VAR (SVAR) models are employed to obtain 

models to predict the statistical relation between KY and KS series for the period 2010-

2020. Using these models, KY price series are generated for the period 1999-2009. 

VAR Granger Causality Test 

The system in A.1 is used to construct a VAR model for steer and heifer prices. 

The optimal lag length for both variables is determined to be two based on BIC in lag 

selection.  

𝐾𝐾𝑌𝑌𝑡𝑡 =  𝛼𝛼 +  𝛽𝛽11𝐾𝐾𝑌𝑌𝑡𝑡−1 + 𝛽𝛽12𝐾𝐾𝑌𝑌𝑡𝑡−2 + 𝛽𝛽13𝐾𝐾𝑆𝑆𝑡𝑡−1 + 𝛽𝛽14𝐾𝐾𝑆𝑆𝑡𝑡−2 + 𝑢𝑢𝑘𝑘𝑘𝑘𝑘𝑘  

𝐾𝐾𝑆𝑆𝑡𝑡 =  𝛿𝛿 +  𝛽𝛽21𝐾𝐾𝑌𝑌𝑡𝑡−1 + 𝛽𝛽22𝐾𝐾𝑌𝑌𝑡𝑡−2+𝛽𝛽23𝐾𝐾𝑆𝑆𝑡𝑡−1 + 𝛽𝛽24𝐾𝐾𝑆𝑆𝑡𝑡−2 + 𝑢𝑢𝑘𝑘𝑘𝑘𝑘𝑘               (A.1)   

Here 𝐾𝐾𝑌𝑌𝑡𝑡 and 𝐾𝐾𝑆𝑆𝑡𝑡 are the price series, 𝛼𝛼 and 𝛿𝛿 are intercepts, β coefficients are 

short-run dynamic coefficients of the model's adjustment to the long-run, and 𝑢𝑢𝑘𝑘𝑘𝑘𝑘𝑘 and 

𝑢𝑢𝑘𝑘𝑘𝑘𝑘𝑘 are residuals in the equation.  

The results of all three tests in Table A.2 and A.3 confirm that KS prices cause KY 

prices. 
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SVAR Model 

After confirming the causal relation between series, a SVAR model is estimated 

for steer and heifer prices to find the coefficients for the contemporary and lagged relations 

between series. The system in A.2 is employed to construct the SVAR model and the 

optimal lag length is determined to be two for both variables based on BIC.  

𝐾𝐾𝑌𝑌𝑡𝑡 + 𝑎𝑎12𝐾𝐾𝑆𝑆𝑡𝑡 =  𝛼𝛼 + 𝛽𝛽11𝐾𝐾𝑌𝑌𝑡𝑡−1 + 𝛽𝛽12𝐾𝐾𝑌𝑌𝑡𝑡−2 + 𝛽𝛽13𝐾𝐾𝑆𝑆𝑡𝑡−1 + 𝛽𝛽14𝐾𝐾𝑆𝑆𝑡𝑡−2 + 𝑢𝑢𝑘𝑘𝑘𝑘𝑘𝑘 

𝑎𝑎21𝐾𝐾𝑌𝑌𝑡𝑡 + 𝐾𝐾𝑆𝑆𝑡𝑡 =  𝛿𝛿 + 𝛽𝛽21𝐾𝐾𝑌𝑌𝑡𝑡−1 + 𝛽𝛽22𝐾𝐾𝑌𝑌𝑡𝑡−2+𝛽𝛽23𝐾𝐾𝑆𝑆𝑡𝑡−1 + 𝛽𝛽24𝐾𝐾𝑆𝑆𝑡𝑡−2 + 𝑢𝑢𝑘𝑘𝑘𝑘𝑘𝑘 

(A.2) 

In the system, 𝐾𝐾𝑌𝑌𝑡𝑡and 𝐾𝐾𝑆𝑆𝑡𝑡 are the price series, 𝛼𝛼 and 𝛿𝛿 are intercepts, β coefficients 

determine short-run relations, and 𝑢𝑢𝑘𝑘𝑘𝑘𝑘𝑘 and 𝑢𝑢𝑘𝑘𝑘𝑘𝑘𝑘 are residual in the equation. 𝑎𝑎12 and 𝑎𝑎21 

are the main coefficients of interest as they represent contemporary relation between price 

series. 

It is assumed that KY prices do not impact KS prices contemporary and the 

restriction 𝑎𝑎21 = 0 is imposed in the model as identification strategy to make the system 

recursive (Wold, 1951). Estimated coefficients for steer and heifer prices are presented in 

Table A.4. These are the best models to predict KY prices with KS prices for the period 

2010-2020. These coefficients are used to generate a KY sample for the period 6/11/1999-

01/01/2010. 

The average difference (△) between series for the period 01/08/2010-12/18/2020 

is used to compute the first and second observations. 

△= 𝐸𝐸[𝐾𝐾𝑌𝑌𝑡𝑡2010−2020 − 𝐾𝐾𝑆𝑆𝑡𝑡2010−2020] 

𝐾𝐾𝑌𝑌𝑡𝑡=1 =  𝐾𝐾𝑆𝑆𝑡𝑡=1 +△ 

𝐾𝐾𝑌𝑌𝑡𝑡=2 =  𝐾𝐾𝑆𝑆𝑡𝑡=2 +△ 
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The following formulation is used to compute the remaining observations starting 

from 𝑡𝑡 = 3. 

Steer prices: 

𝐾𝐾𝑌𝑌𝑡𝑡 = −1.925 + 0.285 ∗ 𝐾𝐾𝑆𝑆𝑡𝑡 +  0.666 ∗ 𝐾𝐾𝑌𝑌𝑡𝑡−1 + 0.116 ∗ 𝐾𝐾𝑌𝑌𝑡𝑡−2 

+0.0448 ∗ 𝐾𝐾𝑆𝑆𝑡𝑡−1 −  0.123 ∗ 𝐾𝐾𝑆𝑆𝑡𝑡−2         (A.3) 

Heifer prices: 

𝐾𝐾𝑌𝑌𝑡𝑡 = −0.531 + 0.285 ∗ 𝐾𝐾𝑆𝑆𝑡𝑡 +  0.762 ∗ 𝐾𝐾𝑌𝑌𝑡𝑡−1 + 0.130 ∗ 𝐾𝐾𝑌𝑌𝑡𝑡−2 

−0.002 ∗ 𝐾𝐾𝑆𝑆𝑡𝑡−1 −  0.183 ∗ 𝐾𝐾𝑆𝑆𝑡𝑡−2          (A.4) 

Predicted values for 6/11/1999-01/01/2010 and actual values for 01/08/2010-

12/18/2020 are combined and used to forecast prices. 
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Table A.1 Missing Data Statistics 

Variables Description Sample Period 
Sample 

Size 

Missing Observations 

Number 
Percentage 

(%) 

KYS 
KY  

Steer Prices 
01/08/2010-12/19/2020 572 41 7.17 

KYH 
KY  

Heifer Prices 
01/08/2010-12/19/2020 572 45 7.87 

KSS 
KS  

Steer Prices 
6/11/1999-12/18/2020 1,124 92 8.19 

KSH 
KS  

Heifer Prices 
6/11/1999-12/18/2020 1,124 100 8.90 

KYC 

KY  

Cull Cow 

Prices 

2/5/1993-12/19/2020 1,455 113 7.77 
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Table A.2 VAR Models and t-statistic Test Results for KY Steer and Heifer Prices 

Coefficients KY Steer KY Heifer 

𝛼𝛼 -0.714 0.334 
(0.975) (0.819) 

𝛽𝛽11 0.769* 0.859* 
(0.044) (0.0438) 

𝛽𝛽12 0.0706 0.0710 
(0.0438) (0.044) 

𝛽𝛽13 0.237* 0.180* 
(0.0373) (0.035) 

𝛽𝛽14 -0.0885*** -0.119* 
(0.0375) (0.0345) 

Observations 570 570 
Note: *, **, *** indicate statistical significance at the 0.01, 0.05 and 0.10 level, respectively. Standard errors 
in parentheses. 
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Table A.3 VAR Granger Causality Test 

 
𝐻𝐻0:𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑖𝑖𝑖𝑖 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

i.e., KS do not Granger-cause KY 

 Chi2 Probability> Chi2 

KYS 57.17 0.000 

KYH 63.59 0.000 

Note: KYS: Kentucky Steer Prices, KYH: Kentucky Heifer Prices. 



 

106 
 

Table A.4. SVAR Models for KY Steer and Heifer Prices 
Coefficients KY Steer KY Heifer 

𝛼𝛼 -1.925*** -0.531 
(0.931) (0.773) 

a12 0.284* 0.285* 
(0.0339) (0.0317) 

𝛽𝛽11 0.666* 0.762* 
(0.0433) (0.0424) 

𝛽𝛽12 0.116** 0.130** 
(0.0416) (0.0417) 

𝛽𝛽13 0.0448 -0.002 
(0.0419) (0.038) 

𝛽𝛽14 -0.123* -0.183* 
(0.0357) (0.0329) 

Note: *, **, *** indicate statistical significance at the 0.01, 0.05 and 0.10 level, respectively. Standard errors 
in parentheses. 
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