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ABSTRACT  47 

 48 

Clonal multidrug resistance recently emerged in Rhodococcus equi, complicating the 49 

therapeutic management of this difficult-to-treat animal and human pathogenic 50 

actinomycete. The currently spreading multidrug-resistant (MDR) “2287” clone arose in 51 

equine farms upon acquisition, and co-selection by mass macrolide-rifampin therapy, of 52 

the pRErm46 plasmid carrying the erm(46) macrolides-lincosamides-streptogramins 53 

resistance determinant, and an rpoB
S531F

 mutation. Here, we screened a collection of 54 

susceptible and macrolide-rifampin-resistant R. equi from equine clinical cases using a 55 

panel of 15 antimicrobials against rapidly growing mycobacteria (RGM), nocardiae and 56 

other aerobic actinomycetes (NAA). R. equi –including MDR isolates– was generally 57 

susceptible to linezolid, minocycline, tigecycline, amikacin and tobramycin according to 58 

Staphylococcus aureus interpretive criteria, plus imipenem, cefoxitin and ceftriaxone 59 

based on Clinical & Laboratory Standards Institute (CLSI) guidelines for RGM/NAA. 60 

Ciprofloxacin and moxifloxacin were in the borderline category according to European 61 

Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria. Molecular analyses 62 

linked pRErm46 to significantly increased MICs for trimethoprim-sulfamethoxazole and 63 

doxycycline in addition to clarithromycin within the RGM/NAA panel, and to streptomycin, 64 

spectinomycin and tetracycline resistance. pRErm46 variants with spontaneous deletions 65 

in the class 1 integron (C1I) region, observed in 30% of erm(46)-positive isolates, 66 

indicated that the newly identified resistances were attributable to C1I’s sulfonamide 67 

(sul1) and aminoglycoside (aaA9) resistance cassettes and adjacent tetRA(33) 68 

determinant. Most MDR isolates carried the rpoB
S531F

 mutation of the 2287 clone, while 69 

different rpoB mutations (S531L, S531Y) detected in two cases suggest the emergence 70 

of novel MDR R. equi strains. 71 

72 
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Rhodococcus equi is a soil-borne facultative intracellular actinomycete that causes chronic 73 

pyogranulomatous infections in animals and immunocompromised people (1-3). Young foals 74 

are particularly susceptible to R. equi carrying the equine-specific virulence plasmid pVAPA 75 

(4-7) and develop a life-threatening purulent bronchopneumonia with frequent 76 

extrapulmonary involvement (1, 8). No effective vaccine is currently available and control of 77 

the disease largely relies on prolonged courses of antimicrobial therapy (9, 10).  78 

Many antimicrobials are active against R. equi in vitro but their clinical efficacy or 79 

applicability is compromised for a variety of reasons, such as poor intracellular penetration, 80 

reduced oral bioavailability, inadequate pulmonary pharmacokinetics, undesirable effects in 81 

foals, or lack of randomized efficacy studies (11). Intrinsic and mutational resistance, 82 

compounded by the permeability barrier afforded by a mycolic acid-containing cell envelope 83 

similar to that of Mycobacterium and other actinomycetes, may also result in inconsistent 84 

drug susceptibility, as reported for chloramphenicol, -lactams or quinolones (12-22). 85 

Consequently, co-administration of a macrolide (erythromycin, later clarithromycin or 86 

azithromycin) and rifampin has remained the mainstay therapy against foal rhodococcosis 87 

since clinical experience in the 1980’s (23, 24), further supported by in vitro (15, 25, 26) and 88 

in vivo (27) experimental data, demonstrated the efficacy of this drug combination (11).  89 

While rifampin resistance caused by rpoB mutations has been regularly reported in R. 90 

equi (15, 20, 21, 28), resistance to macrolides only recently emerged, interestingly, always 91 

associated with rifampin resistance (29, 30). Dual resistance to macrolides and rifampin was 92 

first detected in the late 1990’s in equine farms where mass macrolide-rifampin 93 

antibioprophylaxis was systematically practiced (31, 32), and is more frequent among foals 94 

exposed to the macrolide-rifampin combination (33, 34). Macrolide resistance was found to 95 

be mediated by erm(46), a novel self-transmissible rRNA methylase determinant conferring 96 

cross-resistance to lincosamides and streptogramins B (MLSB) (30). erm(46) is carried on a 97 

conjugative plasmid, pRErm46 (35), as part of a 6.9-kb transposon, TnRErm46. The latter is 98 

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/j

cm
 o

n 
06

 A
ug

us
t 2

02
1 

by
 1

92
.4

1.
12

5.
25

3.



4 
 

highly mobile and becomes stabilized in R. equi by actively transposing onto the host genome 99 

and the pVAPA virulence plasmid (35). Despite pRErm46’s high conjugal transferability, 100 

erm(46) remains largely restricted to a clonal R. equi subpopulation characterized by a unique 101 

rpoB
S531F

 mutation, presumably as a result of strong co-selection driven by the combination 102 

therapy (35, 36). pRErm46 has recently been shown to also confer tetracycline resistance via 103 

a tetRA(33) determinant associated to a class 1 integron (C1I) (35) virtually identical to those 104 

found in the corynebacterial plasmid pTET3 (37).  105 

The erm(46)-carrying multidrug-resistant (MDR) R. equi clone, designated 2287 (35, 106 

36), is increasingly prevalent across equine farms in the USA, is likely to spread 107 

internationally (36), and poses a substantial threat because of the lack of clinically-proven 108 

alternative antimicrobials to treat affected foals. The aim of this study was (i) to determine the 109 

genetic basis of macrolide resistance in R. equi equine isolates from Kentucky, USA, where 110 

foal rhodococcosis is endemic and MDR 2287 was first identified (31); and (ii) to assess the 111 

activity against MDR R. equi of a panel of antimicrobials used for susceptibility testing of 112 

closely related rapidly growing mycobacteria (RGM) and nocardiae/other aerobic 113 

actinomycetes (NAA).  114 

 115 

MATERIALS AND METHODS 116 

Bacteria. The R. equi isolates analyzed in this study were recovered from 70 117 

necropsied foals with severe rhodococcal infection diagnosed between 1989 to 2019 at the 118 

University of Kentucky Veterinary Diagnostic Laboratory (UKVDL). Necropsy specimens 119 

typically included lung, liver, small intestine, colon and any other organ/tissues with R. equi-120 

compatible lesions. Isolation was performed on blood agar, Columbia (colistin/nalidix acid) 121 

agar and eosin methylene blue agar plates incubated at 37 ºC microaerophilically for 24 h 122 

followed by a minimum additional 24 h aerobically. R. equi identification was based on 123 

standard criteria including colony morphology, gram staining, biochemical tests, CAMP-like 124 
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co-operative hemolysis with sphingomyelinase C-producing indicator bacteria (S. aureus or 125 

Listeria ivanovii) (38, 39), and PCR detection of the R. equi-specific choE and vapA gene 126 

markers (40, 41). R. equi isolates were stored at -80 ºC until used.  127 

In vitro susceptibility testing. Inocula containing 110
5
 CFU as verified by plate 128 

counting were prepared by the direct colony suspension method according to CLSI 129 

guidelines. Minimal inhibitory concentrations (MICs) for erythromycin and rifampin (and 130 

confirmatory determinations for trimethoprim-sulfamethazole [TMP-SMX] and tetracycline) 131 

were performed using gradient concentration Etest® strips as per the manufacturer’s 132 

instructions (BioMérieux, Durham, NC and Basingstoke, Hampshire, UK) using 133 

Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 as controls. 134 

Since there are currently no approved breakpoint criteria for susceptibility testing of R. equi in 135 

horses, interpretation was extrapolated from MIC-based human interpretative criteria 136 

(erythromycin: S ≤0.5 µg/ml, I = 1-4 µg/ml, R ≥8 µg/ml; rifampin: S ≤1 µg/ml, I = 2 µg/ml, R 137 

≥4 µg/ml) (42). Susceptibility testing for antimicrobials against RGM and NAA was 138 

performed by the broth microdilution method using Sensititre™ RapMyco AST Plates (Trek 139 

diagnostics, Thermo Fisher Scientific, Grand Island, NY), comprising the following 15 140 

antimicrobials: amikacin, amoxicillin/clavulanic acid, cefepime, cefoxitin, ceftriaxone, 141 

ciprofloxacin, clarithromycin, doxycycline, imipenem, linezolid, minocycline, moxifloxacin, 142 

tigecycline, tobramycin, and TMP-SMX. S. aureus ATCC 29213 and Mycobacterium 143 

peregrinum ATCC 700686 were used as controls as per CLSI guidelines (43). Susceptibility 144 

to different aminoglycosides was determined by the diffusion method using the following 145 

disks (Oxoid, Basingstoke, Hampshire, UK): streptomycin (S, 25µg), spectinomycin (SH, 25 146 

µg), gentamicin (CN, 50 µg), kanamycin (K, 30 µg) and apramycin (APR, 15 µg).  147 

Molecular characterization of MDR R. equi and pRErm46. Total bacterial DNA 148 

was prepared by heating isolated colonies at 100 °C in 100 μl of ultrapure water and 149 

centrifugation for 90 s at 16,000 × g. PCR reactions were carried out using Quick-load 2 Taq 150 
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master mix (New England Biolabs) as previously described (30). Oligonucleotide primers 151 

used are listed in Table S1. RpoB substitutions were determined by sequencing an 827-bp 152 

rpoB region amplified by PCR from R. equi genomic DNA using previously reported 153 

oligonucleotides primers (20) and Kapa HiFi HotStart ReadyMix (Roche). PCR amplicons 154 

were purified from agarose gels using QIAquick kit (Qiagen, Manchester, UK) and sequenced 155 

by the Sanger method at Source BioScience (Nottingham, UK). The deduced amino acid 156 

sequence was aligned to the RpoB sequence from the R. equi 103S reference genome 157 

(accession no. FN563149) (13) using Clustal Omega 158 

(https://www.ebi.ac.uk/Tools/msa/clustalo/). 159 

Statistical analysis. MIC50/MIC90 values were determined as previously 160 

reported (44). Data were also analyzed by descriptive statistics including modal MICs (the 161 

most common MIC), average and range when appropriate. The statistical significance of the 162 

differences in the MICs was calculated using Mann-Whitney, Kruskal-Wallis or Fisher´s 163 

exact test. Data were analyzed using GraphPad Prism version 9.1.0 software for Mac, 164 

GraphPad Software, San Diego, California USA (www.graphpad.com).  165 

 166 

RESULTS 167 

Resistance to macrolides and rifampin. We analyzed a selection of 70 R. equi 168 

clinical strains recovered post-mortem from severe cases of foal rhodococcosis, including 15 169 

macrolide-resistant isolates identified through erythromycin susceptibility screening (modal 170 

MIC 24/32 µg/ml, range 8-96 µg/ml) (Table 1). All erythromycin-resistant (Erm
R
) isolates 171 

also showed high rifampin MICs (≥32 µg/ml), consistent with the previously reported dual 172 

Erm
R
/rifampin-resistant (Rif

R
) phenotype of the R. equi 2287 clone (35, 36). The remaining 173 

strains were erythromycin susceptible (Erm
S
, MIC90 0.75/1 µg/ml, range 0.016-6 µg/ml) and 174 

included 21 Rif
R
 isolates (MIC90 ≥32 µg/ml) (Table 1). 175 
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Molecular characterization. Using a previously described PCR test (30), erm(46) 176 

was detected in 14 of the 15 Erm
R
/Rif

R
 isolates (Table 1). Sequencing of the rpoB gene 177 

determined that 13 of the 14 erm(46)-positive Erm
R
/Rif

R
 isolates carried the Ser531Phe 178 

substitution (TCGTTC transversion) characteristic (and so far unique) (35, 36) to the MDR 179 

2287 clone (35). The other erm(46)-positive isolate carried a distinct RpoB substitution also at 180 

position 531 within the rifampin resistance determining region (RRDR-1), Ser531Leu, 181 

previously described in R. equi several times (20, 21, 45).  182 

The only erm(46)-negative Erm
R
/Rif

R
 isolate also carried a distinct rpoB mutation, 183 

again at position 531, resulting in a SerTyr substitution not described before in clinical 184 

isolates of R. equi. An rpoB
S531Y

 substitution was recently reported by Huber et al. in an Erm
R
 185 

clonal R. equi population apparently restricted to the environment and which carried a variant 186 

erm(46) gene, designated erm(51) (46). Attempts to detect erm(51) in our erm(46)-negative 187 

Erm
R
 isolate (and all other Erm

R
 strains plus a selection of Erm

S
 isolates) using different 188 

primer sets (Table S1) were unsuccessful. Moreover, the rpoB Tyr531 codon in the 189 

erm(46)/erm(51)-negative isolate (TAC) is different from that found in the erm(51)-positive 190 

clonal isolates (TAT) (46), indicating that both correspond to genetically distinct Erm
R
/Rif

R
 191 

R. equi subpopulations. 192 

 erm(46) was not detected in any of the 21 Erm
S
/Rif

R
 isolates nor the 34 susceptible R. 193 

equi clinical isolates (Table 1). Analysis of the rpoB sequences from the Erm
S
/Rif

R
 isolates 194 

identified different RpoB substitutions (to be described elsewhere). As expected, no rpoB 195 

mutations were found in a random selection of the Rif
S
 isolates.  196 

Screening against antimicrobial panel for related pathogenic actinomycetes. Most 197 

of the 15 RapMyco antimicrobials for RGM/NAA susceptibility testing were active against R. 198 

equi irrespective of the Erm/Rif phenotype. MIC90’s were ≤1 µg/ml for linezolid, minocycline 199 

and tigecycline, 1 µg/ml for ciprofloxacin and moxifloxacin, 1 to 2 µg/ml for doxycycline and 200 

tobramycin, 2 µg/ml for amikacin, ≤2 µg/ml for imipenem, and ≤4 µg/ml for ceftriaxone. 201 
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Higher MIC90’s were observed for cefoxitin, cefepime and amoxicillin-clavulanic (16 µg/ml) 202 

(Table 2).  203 

Significant MIC differences between Erm
R
 and Erm

S
 isolates were observed, as 204 

expected, for the macrolide clarithromycin (8 to 16 µg/ml vs 0.06-0.5 µg/ml, respectively; P 205 

<0.0001), but interestingly also TMP-SMX (>8 and 2 µg/ml, respectively; P = 0.0025) (Table 206 

2). The differential TMP-SMX susceptibility was confirmed using gradient MIC Etest strips 207 

(≥32 µg/ml for Erm
R
, 0.5-1 µg/ml for Erm

S
; Table 3). Diffusion essays with sulfamethoxazole 208 

disks showed it was linked to sulfonamide resistance (no halo for most Erm
R 

isolates, 209 

27.3±2.4 mm mean diameter for Erm
s 
ones).  210 

pRErm46-mediated sulfonamide resistance. pRErm46’s C1I carries a sul1 gene 211 

(35) (Fig. 1) that could explain the association between macrolide and TMP-SMX resistances 212 

in MDR R. equi (47). Using specific PCR primers (Table S1), we confirmed that all isolates 213 

displaying sulfamethoxazole resistance (Smx
R
) possessed sul1 and associated C1I genes, 214 

whereas all Smx
S
 strains were negative (Table 3).  215 

A notable exception was the prototype strain of the MDR 2287 clone, PAM 2287 (35), 216 

which we tested as a control. Despite carrying the sul1 gene (35), PAM 2287 was susceptible 217 

to TMP-SMX (MIC 1 µg/ml) unlike most members of the 2287 clonal population (MIC >32 218 

µg/ml, determined by Etest). This is likely because, in PAM 2287’s pRErm46, a copy of the 219 

TnRErm46 transposon is inserted within the C1I’s aadA9 gene (35), preventing read-through 220 

transcription of the downstream sul1 cassette from the integron’s promoter (Fig 1).  221 

While there was 100% correlation between the presence of a functional sul1 and 222 

sulfonamide resistance, not all erm(46)-positive Erm
R
 isolates exhibited an Smx

R
 phenotype. 223 

Specifically, six (43%) of the 14 erm(46)-positive isolates showed low TMP-SMX MICs 224 

similar to those of the Erm
S
 group (1 - 2 µg/ml vs >8 µg/ml for Erm

R
 strains, P = 0.69) (Table 225 

3). This profile would be expected in case of pRErm46 plasmid loss with retention of the 226 
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erm(46) (TnRErm46) element by transposition onto the host genome, observed in a 227 

proportion of MDR R. equi isolates (35, 36).  228 

To examine the above possibility, we assessed the presence of pRErm46 indirectly by 229 

using the C1I-associated tetRA(33) tetracycline resistance determinant (36) as a phenotypic 230 

marker using Etest strips, and directly by PCR mapping with primers targeting the plasmid 231 

backbone and the C1I-tetRA(33) region (Table S1). This analysis showed that three of the six 232 

erm(46)-positive/Smx
S
 isolates were indeed negative to all pRErm46 markers. However, the 233 

three others retained the pRErm46 backbone but were negative to C1I and tetRA(33), 234 

consistent with the deletion of this region, previously observed in a subset of MDR 2287 235 

isolates (36). The data also revealed a perfect correlation between the sulfonamide and 236 

tetracycline susceptibility phenotypes (Table 3), except in one case. This single Smx
R
 and 237 

tetracycline susceptible isolate was positive to all pRErm46 markers except tetRA(33) (Table 238 

3), suggesting a specific deletion of the latter. The pRErm46 C1I/tetRA(33) deletions were 239 

confirmed by PCR mapping using external primers (Fig. 1, Table S1). 240 

Collectively, our results indicate that pRErm46 also confers resistance to sulfonamides 241 

in addition to macrolides and tetracycline in R. equi, and that complete or partial deletions of 242 

the C1I-tetRA(33) region (Fig 1) take place in a proportion of the plasmid population (4 of 14 243 

plasmids analyzed), resulting in corresponding loss of sulfonamide and/or tetracycline 244 

resistance.  245 

Other pRErm46-associated antimicrobial resistances. pERrm46’s C1I also codes 246 

for an aminoglycoside-modifying enzyme identical to the ANT(3”)-Ia family 247 

adenylyltranferase encoded by the aadA9 cassette from the homologous C1I of the pTET3 248 

plasmid from Corynebacterium glutamicum LP-6 (37). Consistent with the substrate range of 249 

the corynebacterial AadA9 enzyme (37), disk diffusion assays showed that all R. equi isolates 250 

carrying a pRErm46 plasmid with intact C1I (n = 8) were resistant to streptomycin and 251 

spectinomycin but susceptible to a range of other aminoglycosides (gentamicin, kanamycin 252 
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and apramycin in addition to amikacin and tobramycin), whereas those carrying C1I-deleted 253 

plasmids (and pRErm46-negative isolates) were susceptible (Table 4). Of note, the prototype 254 

MDR 2287 strain, PAM 2287, which carries a TnRErm46-disrupted aadA9 cassette (see 255 

above and Fig. 1), was also susceptible to streptomycin and spectinomycin.  256 

Finally, while there were no significant differences in doxycycline susceptibility 257 

between erm(46)-positive (Erm
R
) and -negative (Erm

S
) isolates in the global analysis (Table 258 

2), consistent with previous reports (34, 35), there was a small but significant increase in the 259 

MIC for the erm(46)-positive Erm
R
 isolates carrying tetRA(33) compared to those lacking the 260 

tetracycline resistance determinant (modal MIC 2 g/ml, range 1-2 g/ml vs 1 g/ml, range 261 

0.12-1 g/ml; P <0.0001). These data indicate that the TetA(33) efflux pump system encoded 262 

in pRErm46 confers some degree of cross-resistance to the semisynthetic tetracycline, 263 

doxycycline.  264 

 265 

DISCUSSION   266 

The emergence of MDR R. equi renders ineffective the macrolide-rifampin 267 

combination used as mainstay therapy against foal rhodococcosis (11) and, often, in the 268 

treatment of human rhodococcal infections (2, 19). To aid in the identification of alternative 269 

drugs, we used a panel of antimicrobials for susceptibility testing of RGM and NAA, to which 270 

R. equi is phylogenetically, pathogenically and physiologically closely related. We found that 271 

the pRErm46 MLSB resistance plasmid of MDR R. equi (35) also confers resistance to 272 

sulfonamides and, at low level, doxycycline (see below), both recognized as potential 273 

therapeutic options against R. equi (3, 9, 11, 23, 48, 49).  274 

Sulfonamide resistance is linked to the sul1 cassette of pRErm46’s C1I. Horizontally 275 

acquired sul1 genes encode alternative dihydropteroate synthase (DHTS) enzymes that 276 

functionally complement the core bacterial DHTS, allowing to bypass the inhibitory effect of 277 

sulfonamides (47). Doxycycline resistance is conferred by the tetRA(33) element adjacent to 278 
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the C1I (Fig 1), previously linked to pRErm46-specified tetracycline resistance (35), which 279 

we confirm here. We also report that pRErm46 additionally encodes streptomycin and 280 

spectinomycin resistance via pRErm46’s C1I aadA9 cassette (37) (Fig 1). 281 

Our data show that all the newly identified non-MLSB resistances can be lost by either 282 

(i) spontaneous deletion of the plasmid’s C1I-tetRA(33) region (36), presumably by 283 

homologous recombination between the flanking directly repeated IS6100 copies (50, 51) 284 

(Fig 1); or (ii) pRErm46 curing after transposition of the TnRErm46 element to the host 285 

genome (35). Although based on the analysis of a limited number of Erm
R
/Smx

S
/Tet

S
 isolates, 286 

both events appear to occur at similar frequency in the MDR R. equi population. pRErm46 287 

C1I-tetRA(33) variants are increasingly observed among clonal MDR 2287 isolates (36) 288 

(29% in this study), possibly reflecting genetic dispensability due to lack of antibiotic 289 

selection, because neither sulfonamides nor streptomycin, spectinomycin or tetracycline (and                                             290 

doxycycline) are used in the mass R. equi antibioprophylaxis at equine farms. We also show 291 

that deletion of the tetRA(33) locus alone, causing loss of tetracycline –but not the C1I-292 

specified sulfonamide (and streptomycin-spectinomycin)– resistance (Fig 1, Tables 3 and 4), 293 

can also occur, as detected in one of the Erm
R
 isolates.  294 

Consistent with the known substrate range of tetracycline resistance mechanisms (52), 295 

pRErm46’s TetA(33) efflux pump seems inactive against minocycline and tigecycline. For 296 

doxycycline, a word of caution is in order because the tetRA(33) determinant was associated 297 

with a statistically significant increase in the MIC from 0.5-1 µg/ml to 2 µg/ml (Table 3). 298 

While perhaps not clinically relevant in humans, the poor oral bioavailability of doxycycline 299 

in adult horses (53, 54) makes MDR R. equi isolates carrying pRErm46 plasmids with an 300 

intact tetRA(33) locus to be classified as doxycycline resistant according to CLSI’s criteria for 301 

this animal species (PK/PD breakpoint ≥0.5 µg/ml) (42). Although doxycycline’s 302 

pharmacokinetic variables are more favorable in foals, maximum serum activity values (Cmax 303 

2.54 and 2.89 g/ml after intragrastric administration of 10 and 20 mg/kg) (48) would remain 304 
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close to the MIC in MDR 2287 (2 g/ml), meaning it might be difficult to achieve the two- to 305 

four-times over-MIC concentrations required for time-dependent antibacterial activity (55). 306 

Moreover, doxycycline may also contribute to pRErm46 selection, either in R. equi or in other 307 

members of the environmental microbiota in which it can be potentially maintained (56) 308 

In the absence of specific interpretive guidelines, S. aureus breakpoints are tentatively 309 

applied to R. equi (43, 57). This may in certain cases be inapplicable because of lack of 310 

breakpoint criteria for some antimicrobials, and even be questionable given the significant 311 

drug susceptibility-relevant physiological differences between S. aureus and R. equi. For 312 

example, -lactam susceptibility testing in S. aureus relies on the cephalosporin, cefoxitin, as 313 

a marker of mecA/mecC-mediated methicillin-resistance (MRSA) and predictor of resistance 314 

to all antibiotics within this group, including cephems and carbapenems (58). With these 315 

criteria, R. equi would be resistant to cefoxitin and, by inference, generally to all -lactams. 316 

This is at odds with an interpretation based on RGM and/or NAA criteria (43, 59), with which 317 

R. equi would be susceptible to imipenem (MIC90 ≤2 µg/ml), ceftriaxone (MIC90 ≤4 µg/ml) 318 

and cefoxitin (MIC90 16 µg/ml), and intermediate to cefepime and amoxicillin/clavulanate 319 

(MIC90 16 µg/ml). The RGM/NAA guidelines take into account that MICs tend to be higher 320 

in this bacterial group owing to their less permeable cell envelope or typical abundance of 321 

intrinsic resistance mechanisms (e.g. the R. equi 103S genome encodes 10 putative -322 

lactamase homologs and an array of 11 penicillin-binding proteins [13]). 323 

To circumvent these problems, we interpreted the R. equi susceptibility data by 324 

integrating CLSI’s criteria for S. aureus (57) and RGM/NAA (43, 59), and the EUCAST 325 

criteria for both S. aureus and corynebacteria (60). Based on MIC90 values, R. equi clinical 326 

isolates, including Erm
R
 (MDR) strains, can be considered to be generally susceptible to 327 

linezolid, minocycline, tigecycline, amikacin and tobramycin. Linezolid and tigecycline reach 328 

satisfactory plasma and pulmonary concentrations and would be adequate candidates, 329 

eventually in combination, to treat R. equi infections (61). However, both are listed as 330 
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critically important antibiotics in human medicine (62) and their use in animals is restricted. 331 

Minocycline can be administered orally with good bioavailability and offers potentially 332 

favorable pharmacokinetic characteristics to treat equine rhodococcosis (63, 64), although a 333 

caveat is that it was found to be inactive against R. equi in a nude mouse infection model (65). 334 

Amikacin was also found to be weakly effective against R. equi in nude mice, possibly related 335 

to a high frequency of resistant mutants and limited intracellular uptake (65), while the 336 

effectiveness window for tobramycin according to pharmacokinetic studies in horses (MIC of 337 

1 to 2 µg/ml) (66) may be too close to the R. equi MIC. However, both aminoglycosides may 338 

be useful in combination to other antimicrobials. Although assumed to be largely resistant to 339 

-lactams based on the relatively high MICs (15, 19, 67-73), the application of the 340 

RGM/NAA breakpoints may enable a wider the use of these antibiotics against MDR R. equi, 341 

eventually in combination with -lactamase inhibitors and other antimicrobials, as 342 

exemplified with the highly drug-resistant Mycobacterium abscessus (74). While -lactams 343 

do not concentrate intracellularly, they permeate into mammalian cells and display 344 

intracellular activity (75, 76), as observed with ceftiofur and imipenem in equine monocyte-345 

derived macrophages infected with R. equi (77). With a MIC90 of 1 µg/ml (Table 2), 346 

ciprofloxacin and moxifloxacin would be also largely active against R. equi, consistent with 347 

previously reported data (2, 11, 17, 78). However, susceptibility to ciprofloxacin would be 348 

borderline while moxifloxacin would fall in the resistance category according to EUCAST 349 

criteria, more stringent based on PK/PD analyses and the potential impact of low-level 350 

resistance on clinical outcomes (resistance breakpoints for S. aureus/corynebacteria >1 µg/ml 351 

for ciprofloxacin, 0.25/0.5 µg/ml for moxifloxacin) (60). Of note, a poor response to 352 

fluoroquinolones has been invoked in human R. equi infections (14, 17, 69, 71, 79, 80). 353 

Quinolones are also associated with risks of arthropathy in foals (11).  354 

Finally, our data further confirm the predominance of the MDR 2287 clonal 355 

population, characterized by the rpoB Ser531Phe mutation (35, 36), among Erm
R
 equine 356 
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clinical isolates (90%). One pRErm46-harboring isolate carried a distinct rpoB substitution, 357 

Ser531Leu, indicative of spillover of pRErm46 to other R. equi genotypes and potential 358 

emergence of novel MDR clones carrying different rpoB mutations (36). We also identified 359 

an Erm
R
/Rif

R
 isolate with a novel rpoB Ser531Tyr mutation (recently also found in an 360 

emerging MDR clone in Kentucky) (36) in which neither erm(46)/pRErm46 markers nor the 361 

erm(51) variant recently discovered in environmental isolates of R. equi (46), were detected. 362 

This strain warrants further investigation and indicates that diverse resistance mechanisms are 363 

being actively selected in R. equi in response to the antibiotic pressure imposed by the 364 

macrolide-rifampin combination therapy commonly used at equine farms.  365 

In summary, this study adds to the known resistance spectrum of pRErm46 366 

(macrolides, lincosamides, streptogramins and tetracycline) four additional antimicrobials 367 

(sulfonamides/trimethoprim-sulfamethoxazol, doxycycline, streptomycin and spectinomycin), 368 

and identifies alternative drugs for potential consideration in the treatment of infections by 369 

MDR R. equi.  370 
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FIGURE LEGEND 616 

 617 

Fig. 1. Schematic representation of the antimicrobial resistance elements of pRErm46 from 618 

R. equi MDR 2287. The TnRErm46 mobile element is represented in pale red with the 619 

ISRe46 transposase highlighted in deep red and the macrolides-lincosamides-streptogramins 620 

(MLS) resistance determinant erm(46) in black. TnRErm46 is highly mobile and can be 621 

present in several copies in the pRErm46 plasmid and the host genome, including the 622 

pVAPA virulence plasmid (35). The class 1 integron (C1I) with integrase gene (intI1) and 623 

aminoglycoside (aadA9) and sulfonamide (sul1) resistance cassettes are represented in 624 

yellow, the adjacent tetRA(33) tetracycline resistance element in green, and the flanking 625 

IS6100 copies in magenta. The C1I and tetRA(33) elements are found in a 100% identical 626 

(but reverse) arrangement in the pTET3 plasmid from C. glutamicum (35,37), suggesting 627 

that they can be mobilized en bloc via the IS6100s. Deletion of both elements, or only 628 

tetRA(33), presumably via homologous recombination between the directly repeated IS6100 629 

copies (35, 50, 51), are observed in a proportion of the MDR 2287 isolates and result in loss 630 

of the corresponding resistances (see text). The pRErm46 plasmid of the prototype strain of 631 

the MDR 2287 clone, PAM 2287, is unique in that it carries one of its three TnRErm46 632 

copies inserted within the C1I’s aadA9 (streptomycin/spectinoycin resistance) cassette (35). 633 

This insertion does not affect tetracycline resistance despite abolishing sul1-mediated 634 

sulfonamide resistance, indicating that the IS6100-flanked tetRA(33) determinant is 635 

expressed independently of the integron’s promoter that drives the expression of C1I’s 636 

aadA9 and sul1 cassettes (Pc). The gene markers for PCR detection of pRErm46’s backbone 637 

(Table 3), and the position of the oligonucleotide primers for confirmation of the pRErm46 638 

deletions (Table S1), are indicated.  639 
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Table 1. Erythromycin and rifampicin MICs and presence/absence of erm(46) in R. equi isolates.  

 

 

 
  MIC50 /

 
MIC90 (range) µg/ml 

Phenotype n erm(46) Erm Rif 

Erm
R
 /  Rif

 R
 

14 + 24 / 64 (8-96)
 a
 ≥32 / ≥32 (≥32)

 b
 

1 – 24 ≥32 

Erm
S
 / 

Rif
 S 

34 – 0.5 / 0.75 (0.016-1)
 a
 0.12 / 0.5 (0.032-0.75)

 b 

Rif
 R

 21 – 0.5 / 1 (0.125-6)
 a
 ≥32 / ≥32 (8-≥32) 

b
 

a
  P < 0.0001, Mann-Whitney test; comparison of ErmR vs ErmS.  

b
  P < 0.0001, Kruskal-Wallis test; comparison of ErmS/RifS vs ErmR/RifR or ErmS/RifR. 
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Table 2. In vitro activity against R. equi of 15 antimicrobials used in susceptibility testing of rapidly growing mycobacteria, nocardiae and aerobic 

actinomycetes (RapMyco panel). Asterisks indicate statistically significant differences between Erm
R
 (MDR) and Erm

S
 isolates. 

  

 

 

 MIC50  /
  
MIC90 (range) µg/ml  

 Global Erm
R a

                                                      Erm
S
 

All Rif
 S

 Rif
 R

 

Amikacin ≤1/2 (≤1-4) ≤1/2 (≤1-2) 
b ≤1/2 (≤1-4) ≤1/2 (≤1-2) ≤1/2 (≤1-4) 

Amox/clavul.
 c
  8/16 (4-32) 8/16 (8-16) 8/16 (4-32) 8/16 (4-32) 8/16 (8-16) 

Cefepime  8/16 (2 to-32)
 d

 4/8 (2-8) 8/16 (2->32) 8/8 (2-16) 8/16 (4->32) 

Cefoxitin 16/16 (≤4-32)
 d

 8/16 (8-16) 16/16 (≤4-32) 16/16 (≤4-16) 8/16 (8-32) 

Ceftriaxone  ≤4/≤4 (≤4) d
 ≤4/≤4 (≤4) ≤4/≤4 (≤4) ≤4/≤4 (≤4) ≤4/≤4 (≤4) 

Ciprofloxacin 1/1 (0.5-2) 1/1 (0.5-1) 1/1 (0.25-2) 1/1 (0.25-1) 1/1 (0.5 - 2) 

Clarithromycin ≤0.06/>16 (≤0.06->16) >16/>16 (8->16)
 
*

 e
  ≤0.06/≤0.06 (≤0.06-0.5)

 
*

 e
 ≤0.06/≤0.06 (≤0.06-0.12) ≤0.06/≤0.06 (≤0.06-0.5) 

Doxycycline
 f
 1/1 (≤0.12-2) 1/2 (0.5-2)

 f 1/1 (≤0.12-1) 1/1 (≤0.12-1) 1/1 (0.5-1) 

Imipenem  ≤2/≤2 (≤2-16)
 d

 ≤2/≤2 (≤2-4) ≤2/≤2 (≤2-16) ≤2/≤2 (≤2-16) ≤2/≤2 (≤2-4) 

Linezolid ≤1/≤1 (≤1) ≤1/≤1 (≤1) ≤1/≤1 (≤1) ≤1/≤1 (≤1) ≤1/≤1 (≤1) 
Minocycline 

 ≤1/≤ (≤1) g
 ≤1/≤1 (≤1) ≤1/≤1 (≤1) ≤1/≤1 (≤1) ≤1/≤1 (≤1) 

Moxifloxacin 0.5/1 (≤0.25-1) 0.5/1 (0.5-1) 0.5/1 (≤0.25-1) 0.5/1 (≤0.25-1) 0.5/1 (≤0.25-1) 

Tigecycline 0.12/0.25 (≤0.015-0.25) 0.12/0.12 (0.06-0.12) 0.12/0.25 (≤0.015-0.25) 0.12/0.25 (≤0.015-0.25) 0.12/0.25 (0.06-0.25) 

Tobramycin ≤1/2 (≤1-2) ≤1/≤1 (≤1) b ≤1/2 (≤1-2)
 h

 ≤1/≤1 (≤1-2) ≤1/2 (≤1-2) 

TMP/SMX
 i 2/2 (1->8) 2/>8 (1->8)

 
*

 j
 2/2 (1-2)

 
*

 j
 2/2 (1-2) 2/2 (1-2) 

  
a
 Erm R strains were also Rif R. 

 

b
 See also Table 4. 

c
 Amoxicillin/clavulanate (2:1) expressed as MIC values for amoxicillin. 

d
 The most active ß-lactams were imipenem (MIC90 ≤2 µg/ml, RGM/NAA resistance breakpoints ≥32/≥16 µg/ml), ceftriaxone (MIC90 ≤4 µg/ml, NAA resistance breakpoint ≥64 µg/ml) 
and cefoxitin (MIC90 = 16 µg/ml, RGM resistance breakpoint ≥128 µg/ml); cefepime and amoxicillin/clavulanate (MIC90 = 16 µg/ml) would be in the intermediate range for NAA. 

e
 *P < 0.0001, Mann-Whitney test; comparison of ErmR vs ErmS. 

f
 See also Table 3. 

g
 Minocycline MICs were all ≤1 µg/ml, i.e. the lower detection limit of RapMyco, which is above the susceptibility/resistance breakpoints for horses (≤0.12/≥0.5 µg/ml) but within the 
susceptible category for human use (≤4/≥16 µg/ml). 

h
 14% of R. equi isolates (all in the ErmS category) had tobramycin MICs of 2 µg/ml, which while within the CLSI susceptibility range for RGM and NAA (susceptibility/resistance 

breakpoints ≤2/≥8 µg/ml and ≤4/≥16 µg/ml, respectively), is above the EUCAST resistance breakpoint for S. aureus (>1 µg/ml). 
i
 TMP/SMX: Trimethoprim/sulfamethoxazole (1:19), expressed as the MIC values of trimethoprim. 

j
 *P < 0.0025, Mann-Whitney test; comparison of ErmR vs ErmS. 
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Table 3. Sulfonamide (TMP/SMX), tetracycline (Tet) and doxycycline (Dox) susceptibility and relationship with pRErm46 components. 

 

 

 

   pRErm46 markers
  MIC (range) µg/ml

 d
 

Phenotype
 

n  TnRErm46
 a 

sul1
 b

 tetRA(33) 
plasmid 

backbone
 c  TMP-SMX

  
Tet

  
Dox

 
 

Erm
R
 

5  + + + +  ≥32 (≥32) 
*

 e 
16 (12-32)

 
*

 f 
2 (1-2)

 
*

 g 

1  + + – +  ≥32  1 0.5 

3  + – – +  0.5 (0.5-1) 0.25 (0.25-0.5) 0.5 (0.5) 

3  + – – –  0.5 (0.5-1) 0.25 (0.25-0.38) 1 (0.5-1) 

1  – – – –  0.5 0.25 0.5 

Erm
S h 6  – – – –  0.5 (0.5-1.5) 0.5 (0.25-0.75) 1 (0.5-1) 

 

a
 Determined by PCR detection of erm(46) and ISRe46 transposase (35) (see Fig. 1).   

b
 sul1 gene was always detected together with other C1I gene markers (IS6100, intl1, addA9 and qacE) (see Fig. 1). 

c
 Determined using gene markers mobP, mobC, pRERM_0200 and pRERM_0740 (35) (see Fig. 1). 

d
 Determined by eTest for TMP/SMX and Tet, RapMyco microdilution plate for Dox. Data expressed as modal MIC. 

e 
*P < 0.0001, Mann-Whitney test; comparison of sul1-positive ErmR

 vs all sul1 negative.  
f 
*P < 0.0001, Mann-Whitney test; comparison of tetRA(33)-positive ErmR vs all tetRA(33) negative. 

g 
*P = 0.0004, Mann-Whitney test; comparison of tetRA(33)-positive ErmR vs all tetRA(33) negative.  

h
 Erm

S
 R. equi isolates (n =6 randomly selected) were included as controls. 
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Table 4. Susceptibility to aminoglycosides and presence of pRErm46’s C1I in Erm
R
 (MDR) R. equi isolates  

 

 

 

 

    Mean diameter in mm (range) 
b  MIC µg/ml (range)

 c 

Phenotype C1I
 a
 n  Str Spt Gen

 
Kan

 
Apr

  Amk Tob 

Erm
R 

+ 8  
1.5

 
* 

(0-12) 

0
  
* 

(0) 

28.2 

(25-31.5) 

18.1 

(16-21.5) 

27.9 

(24.5-31) 

 
≤1 

(≤1-2) 

≤1 

(≤1) 

– 7  
24.8 

(21.5-28) 

17.9 

(15-20.5) 

27.7 

(24-31) 

18 

(16-22) 

25.3 

(19-30) 

 
≤1 

(≤1) 
≤1 

(≤1) 

Erm
S d – 6  

19.3 

(22-26) 

18.7
 
 

(15-24) 

24.9 

(26-30) 

18.3 

(16-21) 

28.1 

(28-30) 

 
≤1  

(≤1-2) 

≤1  
(≤1) 

 

a
 Class 1 integron, +/– means positive/negative to PCR markers for addA9, intl1, qacE, sul1 and IS6100 (35) (see Fig. 1). 

b Determined by disk diffusion. Spt, spectinomycin; Stp, streptomycin; Gen, gentamicin; Kan, kanamycin; Apr, apramycin. 

c
 Determined by RapMyco microdilution plates. Amk, amikacin; Tob, tobramycin. Data expressed as modal MIC. 

d
 ErmS

 isolates (n = 6 randomly selected) included as a control. 

*P < 0.0001, Kruskal-Wallis test; comparison of ErmR/C1I (+) vs ErmR/C1I (–) or ErmS. 
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